Skip to content
2000
image of MCDM Method for Managing the Water Resources Based on Possibility Theory under Bipolar Fuzzy Environment

Abstract

Background

Uncertainty is a common factor in every real-life decision-making problem. Possibility theory is one uncertainty theory in Fuzzy sets (FS). The possibility-based decision-making under a fuzzy environment is a significant multi-criteria decision-making (MCDM) method.

Methods

A bipolar FS is an extension of a fuzzy set. With the bipolarity concept, we can handle both positive and negative thoughts. In this study, we have provided a possibility mean of a bipolar fuzzy number. We have developed a ranking method for bipolar fuzzy numbers using this possibility concept. A novel possibility MCDM method is suggested for solving the water resources management (WRM) in the Nagpur area, Maharashtra State, India.

Results

The MCDM technique is an effective tool for solving WRM problems in an area. Many uncertainties and bipolarities occur together in the Nagpur water resources systems WRM technique with fuzzy is one approach that can be used to solve the area's water problem. We have used the proposed MCDM to address the water-related issues of this district. With this proposed MCDM method, numerically, we employed water resource problems under a bipolar fuzzy environment.

Conclusion

The Nagpur area is covered by Basaltic rock and faces water shortage. The district is experiencing severe water shortages. Groundwater, surface water, and rainfall are three water resources considered as alternatives. According to the proposed MCDM technique in Nagpur district, Groundwater is the best water source from three flanks: quality of water, affordability, and availability.

Loading

Article metrics loading...

/content/journals/iscce/10.2174/0126662949317545240923092950
2024-10-17
2024-11-22
Loading full text...

Full text loading...

References

  1. Dwivedi C.S. Raghib R. Mitra D. Pandey A.C. Jhariya D.C. Groundwater potential zone delineation in hard rock terrain for sustainable groundwater development and management in south Madhya Pradesh, India, Geography. Environ. Sustain. (Singap.) 2021 14 1 106 121
    [Google Scholar]
  2. Warsi T. Mukherjee S. Biswas G. Mitran T. Rizvi S.S. Urban water resources and its sustainable management. Urban Water Crisis and Management - Strategies for Sustainable Development 2022 6 489 509 10.1016/B978‑0‑323‑91838‑1.00020‑8
    [Google Scholar]
  3. He C. Liu Z. Wu J. Pan X. Fang Z. Li J. Bryan B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021 12 1 4667 10.1038/s41467‑021‑25026‑3 33397941
    [Google Scholar]
  4. Schoene B. Eddy M.P. Keller C.B. Samperton K.M. An evaluation of Deccan traps eruption rates using geochronologic data. Geochronology 2021 3 1 181 198 10.5194/gchron‑3‑181‑2021
    [Google Scholar]
  5. Singh S. Crisis of water and water in crisis: Some reflections from India. Reflections on 21st Century Human Habitats in India 2021 143 166 10.1007/978‑981‑16‑3100‑9_6
    [Google Scholar]
  6. Warsi T. Kumar V.S. Kumar D. Nandan M.J. Biswas G. Kumar Sahadevan D. Manikyamba C. Rao T.V. Rangarajan R. Ahmed S. Chandrasekhar V. Integration of geophysics and petrography for identifying the aquifer and the rock type: A case study from Giddalur, Andhra Pradesh, India. J. Earth Syst. Sci. 2020 129 1 44 10.1007/s12040‑019‑1321‑4
    [Google Scholar]
  7. Taheri F. Jafari H. Rezaei M. Bagheri R. The use of continuous fuzzy and traditional classification models for groundwater potentiality mapping in areas underlain by granitic hard-rock aquifers. Environ. Earth Sci. 2020 79 5 91 10.1007/s12665‑020‑8830‑y
    [Google Scholar]
  8. Kumar A. Sah B. Singh A.R. Deng Y. He X. Kumar P. Bansal R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017 69 596 609 10.1016/j.rser.2016.11.191
    [Google Scholar]
  9. Zavadskas E.K. Turskis Z. Multiple criteria decision making methods in economics: An overview. Technol. Econ. Dev. Econ. 2011 17 2 397 427 10.3846/20294913.2011.593291
    [Google Scholar]
  10. Garai T. Garg H. Possibilistic multi-attribute decision making for water resource management problem under single valued bipolar neutrosophic environment. Int. J. Intell. Syst. 2021 38 1 28
    [Google Scholar]
  11. Ghorui N. Mondal S.P. Chatterjee B. Ghosh A. Pal A. De D. Giri B.C. Selection of cloud service providers using MCDM methodology under intuitionistic fuzzy uncertainty. Soft Comput. 2023 27 5 2403 2423 10.1007/s00500‑022‑07772‑8
    [Google Scholar]
  12. Momena A.F. Mandal S. Gazi K.H. Giri B.C. Mondal S.P. Prediagnosis of disease based on symptoms by generalized dual hesitant hexagonal fuzzy multi-criteria decision-making techniques. Systems (Basel) 2023 11 5 231 10.3390/systems11050231
    [Google Scholar]
  13. Chakraborty A. Mondal S.P. Alam S. Pamucar D. Marinkovic D. A new idea to evaluate networking problem and mcgdm problem in parametric interval valued pythagorean arena. Discrete Dyn. Nat. Soc. 2022 2022 1 7369045 10.1155/2022/7369045
    [Google Scholar]
  14. Ghosh A. Ghorui N. Mondal S.P. Kumari S. Mondal B.K. Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics 2020 9 4 1 21
    [Google Scholar]
  15. Yilmaz B. Harmancioglu N. Multi-criteria decision making for water resource management: A case study of the Gediz River Basin, Turkey. Water S.A. 2010 36 5 1 12 10.4314/wsa.v36i5.61990
    [Google Scholar]
  16. Garai T. Biswas G. Santra U. "A novel MCDM method based on possibility mean and its application to water resource management problem under bipolar fuzzy environment", International Conference on Intelligent and Fuzzy Systems, 2022, pp. 405-412. 10.1007/978‑3‑031‑09173‑5_49
    [Google Scholar]
  17. Roozbahani A. Ebrahimi E. Banihabib M.E. A framework for ground water management based on bayesian network and MCDM techniques. Water Resour. Manage. 2018 32 15 4985 5005 10.1007/s11269‑018‑2118‑y
    [Google Scholar]
  18. Moore R. Interval Analysis Prentice-Hall 1966
    [Google Scholar]
  19. Dubois D. Prade H. The mean value of a fuzzy number. Fuzzy Sets Syst. 1987 24 3 279 300 10.1016/0165‑0114(87)90028‑5
    [Google Scholar]
  20. Dubois D. Prade H. Fuzzy sets and systems: Theory and applications. Academic Press 1980
    [Google Scholar]
  21. Garai T. Chakraborty D. Roy T.K. Possibility mean, variance and covariance of generalized intuitionistic fuzzy numbers and its application to multi-item inventory model with inventory level dependent demand. J. Intell. Fuzzy Syst. 2018 35 1021 1036 10.3233/JIFS‑17298
    [Google Scholar]
  22. Atanassov K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986 20 1 87 96 10.1016/S0165‑0114(86)80034‑3
    [Google Scholar]
  23. Jafarian E. Rezvani M.A. A valuation-based method for ranking the intuitionistic fuzzy numbers. J. Intell. Fuzzy Syst. 2012 23 1 12
    [Google Scholar]
  24. Atanassov K. Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989 31 3 343 349 10.1016/0165‑0114(89)90205‑4
    [Google Scholar]
  25. Zhang W.G. Wang Y.L. Portfolio selection: Possibilistic mean-variance model and possibilistic efficient frontier. Lect. Notes Comput. Sci. 2005 3521 203 213 10.1007/11496199_23
    [Google Scholar]
  26. Zhou M. Li S. Applications of bipolar fuzzy theory to semi-rings. Int. J. Innov. Comput., Inf. Control 2014 10 1 767 781
    [Google Scholar]
  27. Zhang W.R. Bipolar fuzzy sets 1998
    [Google Scholar]
  28. Akram M. Bipolar fuzzy graphs with applications. Knowl. Base. Syst. 2013 39 1 1 8 10.1016/j.knosys.2012.08.022
    [Google Scholar]
  29. Akram M. Shumaiza   Alcantud J.C.R. Multi-criteria decision making methods with bipolar fuzzy sets Springer Singapore 2023 2023 214 226 10.1007/978‑981‑99‑0569‑0.
    [Google Scholar]
  30. Ali G. Akram M. Koam A.N.A. Alcantud J.C.R. Parameter reductions of bipolar fuzzy soft sets with their decision-making algorithms. Symmetry (Basel) 2019 11 8 949 10.3390/sym11080949
    [Google Scholar]
  31. Akram M. Arshad M. A novel trapezoidal bipolar fuzzy TOPSIS method for group decision-making. Group Decis. Negot. 2019 28 3 565 584 10.1007/s10726‑018‑9606‑6
    [Google Scholar]
  32. Akram M. Shumaiza Al-Kenani A.N. Multi-criteria group decision-making for selection of green suppliers under bipolar fuzzy PROMETHEE process. Symmetry (Basel) 2020 12 1 77 85 10.3390/sym12010077
    [Google Scholar]
  33. Ali G. Akram M. Alcantud J.C.R. Attributes reductions of bipolar fuzzy relation decision systems. Neural Comput. Appl. 2020 32 14 10051 10071 10.1007/s00521‑019‑04536‑8
    [Google Scholar]
  34. Akram M. Amjad U. Davvaz B. Decision-making analysis based on bipolar fuzzy N-soft information. Comput. Appl. Math. 2021 40 6 182 191 10.1007/s40314‑021‑01570‑y
    [Google Scholar]
  35. Akram M. Shumaiza Arshad M. Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. Comput. Appl. Math. 2020 39 1 7 10.1007/s40314‑019‑0980‑8
    [Google Scholar]
  36. Gazi K.H. Mondal S.P. Chatterjee B. Ghorui N. Ghosh A. De D. A new synergistic strategy for ranking restaurant locations: A decision-making approach based on the hexagonal fuzzy numbers. Oper. Res. 2023 57 2 571 608 10.1051/ro/2023025
    [Google Scholar]
  37. Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978 1 1 3 28 10.1016/0165‑0114(78)90029‑5
    [Google Scholar]
  38. Carlsson C. Fullér R. On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 2001 122 2 315 326 10.1016/S0165‑0114(00)00043‑9
    [Google Scholar]
  39. Fullér R. Majlender P. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 2003 136 3 363 374 10.1016/S0165‑0114(02)00216‑6
    [Google Scholar]
  40. Wan S.P. Multi-attribute decision making method based on possibility variance coefficient of triangular intuitionistic fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2013 21 2 223 243 10.1142/S0218488513500128
    [Google Scholar]
  41. Garai T. Garg H. Roy T.K. A ranking method based on possibility mean for multi-attribute decision making with single valued neutrosophic numbers. J. Ambient Intell. Humaniz. Comput. 2020 11 11 5245 5258 10.1007/s12652‑020‑01853‑y
    [Google Scholar]
  42. Garai T. Dalapati S. Garg H. Roy T.K. Possibility mean, variance and standard deviation of single-valued neutrosophic numbers and its applications to multi-attribute decision-making problems. Soft Comput. 2020 24 24 18795 18809 10.1007/s00500‑020‑05112‑2
    [Google Scholar]
/content/journals/iscce/10.2174/0126662949317545240923092950
Loading
/content/journals/iscce/10.2174/0126662949317545240923092950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test