Skip to content
2000
Volume 13, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background: For the traditional Fourier Transform (FT), it cannot effectively detect the frequency of non-stationary signals with time. Analyzing the local characteristics of time-varying signal by using FT is hard to achieve. Therefore, many time-frequency analysis methods which can meet different needs have been proposed on the basis of the traditional Fourier transform, like the Short Time Fourier Transform (STFT), the widely used Continuous Wavelet Transform (CWT), Wigner-Ville Distribution (WVD) and so on. However, the best time and frequency resolution cannot be achieved at the same time due to the uncertainty criterion. Methods: From the point of view of optimizing time-frequency performance, a new Generalized S Transform (GST) window function optimization method is proposed by combining time frequency aggregation with an improved genetic algorithm in this paper. Results: In the noiseless condition, the Linear Frequency Modulation (LFM), Nonlinear Frequency Modulation (NLFM) and binary Frequency Shift Keying (2FSK) signals are simulated. The simulation results prove that the method can improve the time-frequency concentration and decreasing Rényi entropy effectively. Compared with other four traditional time-frequency analysis methods, the improved GST has more advantages. Conclusion: In this paper, a new method of optimizing the window function in GST based on improved GA is proposed in this paper. Experiments on LFM, NLFM and 2FSK signals show that the proposed method not only has the advantages of high resolution, but also determines the optimal parameters via the time frequency focusing criterion and the Rényi entropy. Compared with the other four kinds of time-frequency analysis methods, the optimized GST based on improved GA in this paper has the best time-frequency focusing.

Loading

Article metrics loading...

/content/journals/eng/10.2174/1872212112666180828124755
2019-12-01
2025-06-18
Loading full text...

Full text loading...

/content/journals/eng/10.2174/1872212112666180828124755
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test