Skip to content
2000
image of Recent Research on anti-G suit for Fighter Pilots

Abstract

Background

With the arrival of the first airplane, the technology of anti-G suits for fighter pilots emerged. Anti-G suit technology has advanced rapidly over time, and anti-G suits are now widely used in modern fighter jets around the world. Furthermore, as fighter aircraft performance improves, the pilots' driving environment becomes more severe, and traditional anti-G suits no longer meet the requirements. As a result, all relevant countries are currently researching new types of anti-G suits for pilots to meet the load-resistant requirements in high-performance fighter aircraft.

Objective

Through a detailed analysis of the development history, research status and related technologies of fighter pilots' anti-G suit, and with reference to the papers and latest patents related to anti-G suit, we are looking for ways to improve the anti-overload resistance of fighter pilots' anti-G suit, and to optimize the man-machine efficacy of the anti-G suit.

Methods

The methodology of this study is as follows: By classifying the anti-G suit for fighter pilots, briefly explainining the development direction and research direction of key technologies, summarizing the advantages and disadvantages of each type of key technology respectively, and looking forward to the future development trend of anti-G suits.

Results

Through the research and analysis of each key technology of anti-G suit for fighter pilots, it can be seen that the anti-G suit mainly maintains the pilot's ability to operate the aircraft by pressurizing the abdomen and lower limbs of the human body when positive overload is applied, in order to reduce the deformation and displacement of the internal organs and to stop the transfer of the blood to the lower half of the body, so as to ensure the circulating blood volume of the head; the differences in the clothing material, structure and filling medium influence the anti-G suit's anti-overload performance. The speed of media filling reaction and the filling process also have an important effect on the overload resistance performance.

Conclusion

The use of new anti-G suit clothing materials, filler structures, and media, and the use of intelligent technology to improve the reaction speed of media filling and optimize the media filling process can significantly improve the anti-load performance of fighter pilots and meet the higher anti-load requirements of today's high-performance fighter pilots.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121316059240815060549
2024-12-09
2025-01-18
Loading full text...

Full text loading...

References

  1. Liu Y.N. Jia Z.Y. Overview of the development of anti-G suit. Gansu Science and Technology 2015 31 18 15 16
    [Google Scholar]
  2. Keskimölö T. Pernu J. Karppinen J. Niinimäki J. Oura P. Leino T. Honkanen T. Degenerative cervical spine changes among early career fighter pilots: a 5-year follow-up. BMJ Mil. Health 2023 169 4 291 296 10.1136/bmjmilitary‑2021‑001848 34131064
    [Google Scholar]
  3. Liu B.G. Zhao X.L. Zhang L.L. Su F. Zhang X.L. Aeromedical issues arising from the hypermobility of fourth-generation fighters. Chinese Journal of Aerospace Medicine 2017 28 218 222
    [Google Scholar]
  4. Vashisth S. “Acquisition and analysis of human carotid pulse waveforms during tilt table maneuvers.”. Int. J. App. Biomed. Engg 2013 6 01 32 39
    [Google Scholar]
  5. Vashisth S. Khan M. Vijay R. Salhan A.K. A review of high G-stress induced problems and their solutions. Int. J. Med. Eng. Inform. 2017 9 1 47 60 10.1504/IJMEI.2017.080924
    [Google Scholar]
  6. Khan M. Vashisth S. Vijay R. Salhan A.K. Computer based real time systems for analyzing cardiovascular response to orthostatic stress. Biocybern. Biomed. Eng. 2015 35 4 232 239 10.1016/j.bbe.2015.01.001
    [Google Scholar]
  7. Yu F. Wang J. A study of the occurrence of G-LOC in Nanchang CJ-6. Trainer 2021 03 3 6
    [Google Scholar]
  8. Ercan E. Gunduz S.H. The effects of acceleration forces on cognitive functions. Microgravity Sci. Technol. 2020 32 4 681 686 10.1007/s12217‑020‑09793‑0
    [Google Scholar]
  9. Chen L. Overview and prospect of the development of the world’s fighter jets Science, technology and industry for national defense 2009 11 54 57
    [Google Scholar]
  10. Wu Y. Zhang L. Gao Y.X. Jiang S.Q. A study of the effects of high-performance fighter flight on the pilot’s spine Aviation medics 2002 30 1 32 35
    [Google Scholar]
  11. Mathias S. Bernd W. Simon W. Monika B.M. Aviation accidents in the Austrian Mountains-A 10-year retrospective study. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 2018 53 S01 S4
    [Google Scholar]
  12. Riches A. Spratford W. Witchalls J. Newman P. A systematic review and meta-analysis about the prevalence of neck pain in fast jet pilots. Aerosp. Med. Hum. Perform. 2019 90 10 882 890 10.3357/AMHP.5360.2019 31558197
    [Google Scholar]
  13. Shiri R. Frilander H. Sainio M. Karvala K. Sovelius R. Vehmas T. Viikari-Juntura E. Cervical and lumbar pain and radiological degeneration among fighter pilots: a systematic review and meta-analysis. Occup. Environ. Med. 2015 72 2 145 150 10.1136/oemed‑2014‑102268 25180267
    [Google Scholar]
  14. Shin S. Association of Genotype, High-G Tolerance, and Body Composition in Jet Aircraft Aviators. Mil. Med. 2023 usad248 37384593
    [Google Scholar]
  15. Huang W. Li X. Xu J.H. Jiang G.H. Wang J. Shen Q.J. You D.L. Guo Y.H. Exploration of the value of CPET in the evaluation and application of cardiopulmonary function in pilots of high-performance fighter jets. Medical Journal of Air Force 2022 31 01 76 79
    [Google Scholar]
  16. Soh M. Park J. Shin J. Effect of high-gravity acceleration forces and anti-gravity maneuver for cardiac function in fighter pilots European Heart Journal 2023 44 s02 ehad655.2578 10.1093/eurheartj/ehad655.2578
    [Google Scholar]
  17. Whinnery T. Forster E.M. The +Gz-induced loss of consciousness curve. Extrem. Physiol. Med. 2013 2 1 19 10.1186/2046‑7648‑2‑19 23849181
    [Google Scholar]
  18. Standring S. Gray’s anatomy e-book: the anatomical basis of clinical practice. Elsevier Health Sciences 2020
    [Google Scholar]
  19. Meyer F. Humm J. Purushothaman Y. Willinger R. Pintar F.A. Yoganandan N. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests. J. Mech. Behav. Biomed. Mater. 2019 90 681 688 10.1016/j.jmbbm.2018.09.043 30529569
    [Google Scholar]
  20. Wang H.X. Li B.H. Wang Q. Lin R. Xu Y. Jin C. Wang H. Wei X.Y. Yang J.H. Zhang L.H. Gen X.C. Analysis of the strength and endurance of the neck muscles of a pilot. Air Force Medical Journal 2020 36 06 476 478
    [Google Scholar]
  21. Song R. Z. Suo S. F. Jia X. H. Liu Y. Liu S. Y. Research on head-neck injuries of pilots during emergency ejection from the aircraft Proceedings of Journal of Physics: Conference Series 2019 10.1088/1742‑6596/1213/5/052100
    [Google Scholar]
  22. Cheng G. The pilot’s life-saving device: the ejection seat. Military Digest 2020 18 16 19
    [Google Scholar]
  23. Xu Y. Lin R. Li B.H. Jin C. Zhang L.H. Wei X.Y. Wu S.Y. Wang H.X. Liu X.Y. Wang Q.Y. Gui D. Geng X.C. Method of combining HP and PHP actions with new machine anti-load oxygen supply system and protection performance. Space Med. Med. Eng 2014 27 05 318 323
    [Google Scholar]
  24. Li B.H. Wei X.Y. Wang H.X. Li Y.F. Yang J.H. Zang X.X. Yang M.H. Wang H. Zang L.H. Xu Y. Jiang K. Geng X.C. Wang Y. Jing Z. Evaluation of effect of combined anti-G measures via gradual-onset rate run acceleration tolerance measurement. Aviation Medicine of Air Force 2022 39 05 188 192
    [Google Scholar]
  25. Liu C.J. Study on the dynamic response and injury of the pilot during emergency ejection under high G load M.S. thesis,Tianjin University of Technology, Tianjin, China, 2022
    [Google Scholar]
  26. Andersen H.T. Wagstaff A.S. Sverdrup H.U. Spinal X-ray screening of high performance fighter pilots. Aviat. Space Environ. Med. 1991 62 12 1171 1173 1755799
    [Google Scholar]
  27. Vanderbeek R.D. Period prevalence of acute neck injury in U.S. Air Force pilots exposed to high G forces. Aviat. Space Environ. Med. 1988 59 12 1176 1180 3240219
    [Google Scholar]
  28. Fan H.L. Li M. Analyzing the development of life-support technology for Chinese space suits from the perspective of patents. China Science and Technology Information 2023 15 24 26
    [Google Scholar]
  29. Knudson R. McMillan D. Doucette D. Seidel M. A comparative study of G-induced neck injury in pilots of the F/A-18, A-7, and A-4. Aviat. Space Environ. Med. 1988 59 8 758 760 3178626
    [Google Scholar]
  30. Crooks L.M. Long term effects of ejecting from aircraft. Aerosp. Med. 1970 41 7 803 804 5422272
    [Google Scholar]
  31. Eiken O. Kölegärd R. Bergsten E. Grönkvist M. G protection: interaction of straining maneuvers and positive pressure breathing. Aviat. Space Environ. Med. 2007 78 4 392 398 17484342
    [Google Scholar]
  32. Montmerle S. Linnarsson D. Cardiovascular effects of anti-G suit inflation at 1 and 2 G. Eur. J. Appl. Physiol. 2005 94 3 235 241 10.1007/s00421‑005‑1331‑6 15815936
    [Google Scholar]
  33. Wood E.H. Development of anti-G suits and their limitations. Aviat. Space Environ. Med. 1987 58 7 699 706 3304268
    [Google Scholar]
  34. Bao X.N. Zao P.L. Zang B.Z. Hu Z.W. Lan Y.Q. Xue F. Advanced Fighter Life Support System. Acta Aeronautica ET Astronautica Sinica 2020 41 06 253 265
    [Google Scholar]
  35. Zang H.B. Aircraft safety lifesaving. Beijing Beihang University Press 1990
    [Google Scholar]
  36. Aviation personal protective equipment. Beijing National Defense Industry Press 1982
    [Google Scholar]
  37. Smiley J.R. RCAF EJECTION EXPERIENCE: DECADE 1952-1961. Aerosp. Med. 1964 35 125 129 14128629
    [Google Scholar]
  38. Li J.M. Zhang Q. Bai L. Analysis of the reasons for the grounding of 199 cases of flight personnel due to illness Aviation medics 1995 23 3 154 156
    [Google Scholar]
  39. Shen S.S. Plain radiographs of the cervical spine for chronic intercervical back pain in flight personnel and general professionals. Chinese Journal of Aviation Medicine 1996 7 3 178
    [Google Scholar]
  40. Wu H. Ma Z.Y. Tang Q.Y. 137 cases of pilot medical grounding disease classification. Chinese Journal of Aerospace Medicine 1997 8 1 63
    [Google Scholar]
  41. Jing X.Q. Yang S.S. Study on the relationship between high G load and cervical spondylosis in pilots People's military doctor 2006 49 9 512 513
    [Google Scholar]
  42. Stemper B.D. Yoganandan N. Pintar F.A. Shender B.S. Paskoff G.R. Physical effects of ejection on the head-neck complex: demonstration of a cadaver model. Aviat. Space Environ. Med. 2009 80 5 489 494 10.3357/ASEM.2422.2009 19456013
    [Google Scholar]
  43. Wu M.L. Ma C.S. Liu W. Yue H. Zhao G. Cong H. Wang R.D. Li L.C. Huang S.L. Biomechanical effects of ejection fashion display helmets on the human body. Chinese Journal of Aerospace Medicine 2005 16 4 267 271
    [Google Scholar]
  44. Liu G.Y. Gravitational physiology. Beijing National Defense Industry Press 1993
    [Google Scholar]
  45. Wang H. Li B.H. Zang L.H. Xu Y. Li Y.F. Wei X.Y. Wang Q. Wang H.X. Yang J.H. Wang Y. Yang M.H. Geng X.C. Jin Z. Study on the effect of new integrated load resisting measures on the protection against high overload exposure of fast growth rate mode. Medical Journal of Air Force 2020 36 05 376 380
    [Google Scholar]
  46. Liu C. M. Fang R. H. Anti-G suit. China Personal Protective Equipment 2003 04
    [Google Scholar]
  47. Clère J. M. Ossard G. Kerguelen M. Anti-G suits. In AGARD Current Concepts on G-Protection Research and Development 1995 12 54
    [Google Scholar]
  48. Brook W.H. The development of the Australian anti-G suit. Aviat. Space Environ. Med. 1990 61 2 176 182 2178602
    [Google Scholar]
  49. Sieker H.O. Martin E.E. Gauer O.H. A Comparative Study of Two Experimental Pneumatic Anti-G Suits and the Standard USAF G-4A Anti-G Suit Wright Air Development Center Technical Report 1953 52 317 10.21236/AD0012716
    [Google Scholar]
  50. Burton R.R. Parkhurst M.J. Leverett S.D. Jr +G z protection afforded by standard and preacceleration inflations of the bladder and capstan type G-suits. Aerosp. Med. 1973 44 5 488 494 4710521
    [Google Scholar]
  51. Krutz R.W. Jr Burton R.R. Forster E.M. Physiologic correlates of protection afforded by anti-G suits. Aviat. Space Environ. Med. 1990 61 2 106 111 2310356
    [Google Scholar]
  52. Geng X.C. Zan C.L. Yang G.D. Chu X. Lu X. The +Gz protective effect of load-resistant positive pressure breathing in different pressure regimes. Space Med. Med. Eng 2000 03 166 170 11543476
    [Google Scholar]
  53. Geng X.C. Jin Z. High Performance Fighter Pilot + Gz Integrated Protection Advances. Chinese Journal of Aerospace Medicine 2002 13 01 60 64
    [Google Scholar]
  54. Zhang L.H. Geng X.C. Jin Z. Centrifuge evaluation of a new integrated pilot protection system. Chinese Journal of Aerospace Medicine 2004 15 04 204 209
    [Google Scholar]
  55. McGrady M.B. Wright M.W. F-22 Life Support System Development In SAFE Association Proceedings of the 33rd annual symposium, Cottage Grove: SAFE Association, America, 1995 124 130
    [Google Scholar]
  56. Wiegand C. “F-35 air vehicle technology overview”, In 2018 Aviation Technology, Integration, and Operations Conference, Atlanta. America (NY) 2018 3368
    [Google Scholar]
  57. Dong F. Sun Q. Jiang Y. Chen Z. Sun M. Pressure Control for Oxygen Supply System Based on ADRC-GPC Chinese Control Conference (CCC) Wuhan, China 2018 2753 2758 10.23919/ChiCC.2018.8483863
    [Google Scholar]
  58. Li X.Y. Lin B. Huang R. Zhang Y.H. Lei Z.J. Li J.Q. Lin Z.X. Bian Y.Q. A kind of motorized pressurized anti-loading suit C.N. Patent, 110182368, A, 2019
  59. Ye J.B. Xu Y. Wang H.X. Wei X.Y. Wang Q. Li B.H. Jin Z. Wu S.Y. Wang H. Lin R. Wang Y. Zhang L.H. Geng X.C. Experimental study on the load resistance of a new type of integrated protective clothing. Medical Journal of Air Force 2018 34 03 150 152
    [Google Scholar]
  60. Ma H.L. Yi R. Li F.Z. Xiao Y.H. Zhu Y. Wang J.Q. Liu B.K. Fei J.X. Guo Y.Y. Sun H. Fu W.W. A pressure-adaptive gradient-varying load-resistant suit C.N. Patent, 112591154, A, 2021
  61. Liu M. Zang W. Gong X.W. Shi D.Y. Zhou W.J. Wu P. Zou L. Li Y. Li N.L. Huang W.F. Design and development of capsule-type liquid-filled anti-G suit. Space Med. Med. Eng 2021 34 03 194 200
    [Google Scholar]
  62. Gao Y. Zhu Z.C. A PVC gel-driven anti-loading suit based devicet C.N. Patent, 113879572, A, 2022
  63. Zang Q. Niu W.X. Hua J.C. Gao J. Wang L. Advances in pressure garments against musculoskeletal disuse lesions in microgravity environments. Journal of Textile Research 2023 44 01 38 46
    [Google Scholar]
  64. Geng X.C. Xu Y. Wang H. Jin Z. Li B.H. Yan G.D. Load-resistant performance of airborne molecular sieve oxygen system and its supporting load-resistant equipment. Space Med. Med. Eng 2002 01 40 43 11965683
    [Google Scholar]
  65. Scientific Advisory Board (Air Force) Aircraft Oxygen Generation Washington D. C, America 2012
    [Google Scholar]
  66. Geng X.C. Zan C.L. Yan G.D. Chu X. Zhang W.X. Wang R.D. Lu X. Wu Q. Load resistance and utility performance of a novel bladder-type load-resistant suit. Chinese Journal of Aerospace Medicine 1999 02 14 17
    [Google Scholar]
  67. Xue L.H. Shi L.Y. Li J.W. Li X.X. Ren Z.S. Xiao H.J. Ding L. Thermal loading of large-coverage bladder-type load-resistant clothing. Journal of Preventive Medicine of Chinese People’s Liberation Army 2013 31 05 392 395
    [Google Scholar]
  68. Zhang L. H. Geng X. C. Jin Z. Yan G. D. Wang H. Li L.H. Li B. H. Li Y. F. Load resistance of a new integrated protective suit Chinese Journal of Applied Physiology 2005 3 288 352
    [Google Scholar]
  69. Sun X. Q. Jiang S. Z. Aerospace biodynamics. Fourth Military Medical University Press Xi,an 2013
    [Google Scholar]
  70. Hoepfner M. Schultz M. Schultz J. Libelle self-contained anti-G ensemble: Overcoming negative transfer. J. Aviat. Aerosp. Educ. Res. 2004 13 21 34 10.15394/jaaer.2004.1555
    [Google Scholar]
  71. Chen Y. Li X.X. Ding L. Simulation study on the overload response characteristics of bladder-type liquid-filled load-resistant service. Beijing Biomedical Engineering 2019 38 111 118
    [Google Scholar]
  72. Nordwall B.D. Novel anti-G suit protects with liquid Journal of Preventive Medicine of Aviation Week & Space Technology 2001 155 06 60 60
    [Google Scholar]
  73. Xu Y. New armor for pilots - liquid-filled load resistant suits Small Arms 2002 09 09
    [Google Scholar]
  74. Liu Z. "Protective and life-saving equipment for shipboard pilots - Protective and life-saving features for shipboard pilots" China Personal Protective Equipment 2022 01 04 07
    [Google Scholar]
  75. Wang L.Y. Li Y.M. Application and development trends of phase change materials in textiles and clothing knitting industries 2023 11 04 08
    [Google Scholar]
  76. Yang J.H. Li G.Y. Wang Y. Wang X.J. Wang X.F. Wang Q.Z. A new type of phase change fiber--JOULELON super enthalpy fiber Synthetic Fiber in China 2023 52 12 07 11
    [Google Scholar]
  77. Michas R. Buick F. Carter R. Sustained Tolerance of Increased G (STING): A Canadian Forces Acceleration Protection System In 1998 SAFE Association, ed. Proceedings of the 36th annual symposium, Phoenix, America 1998 186 195
    [Google Scholar]
  78. Gao Y. Shi F. Wang Y.C. Yang C.B. Li X.T. Li C.F. Pan Y.K. Sun X.Q. Effect of inflation of anti-load clothing with different coverage areas on human cardiovascular function at +1Gz. Space Med. Med. Eng 2018 31 01 12 15
    [Google Scholar]
  79. Gronkvist M.J. Kolegard R. Bergsten E. Cardiovascular effects of wearing a pre-inflated full-coverage anti-g suit during 8-hrs; effects of fluid intake. Aviat. Space Environ. Med. 2008 79 03 512
    [Google Scholar]
  80. Geng X.C. Zan C.L. Comparison of Load Resistance Performance of Advanced Bladder Load Resisting Systems and Side Tube Load Resisting Systems. Acta Aeronautica ET Astronautica Sinica 1999 s01 s64 s65
    [Google Scholar]
  81. Bogović S. Stjepanovič Z. Cupar A. Jevšnik S. Rogina-Car B. Rudolf A. The use of new technologies for the development of protective clothing: comparative analysis of body dimensions of static and dynamic postures and its application. AUTEX Res. J. 2019 19 4 301 311 10.1515/aut‑2018‑0059
    [Google Scholar]
  82. Xu Y. Ma Y.X. Zhang L.H. Integrated load resistance performance study of PHP action with a novel bladder load resisting system. Space Med. Med. Eng 2011 24 03 173 177
    [Google Scholar]
  83. Zhao C. Pilot overload protection techniques for high agility flight. Aerocraft Design 2016 36 03 63 67
    [Google Scholar]
  84. Balldin U.I. O’Connor R.R. Werchan P.M. Isdahl W.M. Demitry P.F. Stork R.L. Morgan T.R. Heat stress effects for USAF anti-G suits with and without a counter-pressure vest. Aviat. Space Environ. Med. 2002 73 5 456 459 12014604
    [Google Scholar]
  85. Xu Z. B. Aerospace physiology. Fourth Military Medical University Press: Xi,an 2008
    [Google Scholar]
  86. Zhang L.H. Xue L.H. Investigation and analysis of man-machine ergonomics problems of in-service load-resistant clothing. Medical Journal of Air Force 2014 30 01 1 4
    [Google Scholar]
  87. Ding L. Tian Y. Li X. “The ergonomic system for the partial pressure suit”, in 2022 biomechanics of injury and prevention. Singapore Springer Nature Singapore 2022 437 463
    [Google Scholar]
  88. Cang W. Peng Z.Y. Liu S.L. Li C.T. Yao Y.J. Effectiveness of large-coverage liquid-filled anti-loading measures for physiological protection against high overload exposure in small pigs. Academic Journal of Naval Medical University 2022 43 04 355 361
    [Google Scholar]
  89. Reffeltrath P.A. Heat stress reduction of helicopter crew wearing a ventilated vest. Aviat. Space Environ. Med. 2006 77 5 545 550 16708535
    [Google Scholar]
  90. Barwood M.J. Newton P.S. Tipton M.J. Ventilated vest and tolerance for intermittent exercise in hot, dry conditions with military clothing. Aviat. Space Environ. Med. 2009 80 4 353 359 10.3357/ASEM.2411.2009 19378904
    [Google Scholar]
  91. Zhang Y.Z. Zhang X.L. Progress in the study of anti-load regulators China Aviation Society Academic Annual Conference-Safety and Lifesaving Symposium Xiangfan, China 2009 1 20
    [Google Scholar]
  92. Lee H. Ahn J. Jeong W. Studies on the improvement of pressurized quality for high maneuver aircraft by characteristic analysis of anti-g valve. Journal of the Korean Society for Aeronautical & Space Sciences 2018 46 3 230 236 10.5139/JKSAS.2018.46.3.230
    [Google Scholar]
  93. Zhu Z. Liu C.M. Flight dynamics and equipment to increase tolerance to dynamics. China Personal Protective Equipment 2018 01 19 22
    [Google Scholar]
  94. Muehlberger P.M. Pilmanis A.A. Webb J.T. Olson J.E. Altitude decompression sickness symptom resolution during descent to ground level. Aviat. Space Environ. Med. 2004 75 6 496 499 15198274
    [Google Scholar]
  95. Ohrui N. Takeuchi A. Tong A. Ohuchi M. Iwata M. Sonoda H. Yamasaki S. Akasaki S. Hakamata N. Ohashi K. Nakamura A. Physiological incidents during 39 years of hypobaric chamber training in Japan. Aviat. Space Environ. Med. 2002 73 4 395 398 11952064
    [Google Scholar]
  96. Zhang H. Liu Y.S. Zhai H. Application and development trend of airborne oxygen source in aviation field. Cryogenics 2008 04 61 66
    [Google Scholar]
  97. Liu Y.H. Working principle of molecular sieve pressure adsorption oxygen generation technology and hospital application. China Medical Devices 2012 27 10 90 92
    [Google Scholar]
  98. Zhang Q. Gong J. Design and realization of an airborne oxygen generation system. Electronics Quality 2022 10 67 71
    [Google Scholar]
  99. Liu W.B. He W. Fang L. Xia Y. Discussion on the dynamic evaluation method of molecular sieve bed in airborne oxygen generation system. Science and Technology Innovation Herald 2019 16 24 167 168
    [Google Scholar]
  100. Waddington E. Merret J.M. Ansell P.J. Impact of liquid-hydrogen fuel-cell electric propulsion on aircraft configuration and integration. J. Aircr. 2023 60 5 1588 1600 10.2514/1.C037237
    [Google Scholar]
  101. Zhao Y.J. "Research on the integration technology of electronic oxygen supply and anti-load regulator" M.S. thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017
    [Google Scholar]
  102. Liu J. Zhang X. Zhu S. Li X. Zhao H. Li X. Zhang H. Jiang H. Lu X. Kong W. Miao Y. Waddington E. Merret J.M. Ansell P.J. Development and measurement of airborne oxygen sensor for aircraft inerting system based on TDLAS with pressure compensation and 2f/1f normalized method. Infrared Phys. Technol. 2023 131 104689 10.1016/j.infrared.2023.104689
    [Google Scholar]
/content/journals/eng/10.2174/0118722121316059240815060549
Loading
/content/journals/eng/10.2174/0118722121316059240815060549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test