Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Robots for pipeline inspection are frequently employed in long-distance oil, wastewater, and natural gas pipelines. Much complex research is being conductedon pipeline inspection robots, including work on fluid-driven and non-fluid-driven, among other things. Research on pipeline inspection robots can be advanced by examining their current stage of development. Additionally, pipeline inspection robots may be able to promote the growth of the pipeline transportation sector by creating new structures.

Objective

This study aims to examine the benefits and drawbacks of several pipeline inspection robots and theirdevelopment trend through the lens of the most recent advancements in the field.

Methods

Through the structure and application scenarios of the latest representative patents of pipeline inspection robots, the working principle and characteristics of pipeline inspection robots are demonstrated.

Results

The shortcomings of the current pipeline inspection robots are highlighted, along with potential future development pathways and research issues, by comparing pipeline inspection robots of various structures.

Conclusion

The development of pipeline inspection robots has benefited the construction of sewage, oil, natural gas, and long-distance pipelines, as well as long-distance pipeline transportation. Because of these robots' unique features and ample room for advancement, pipeline inspection robots have even more development prospects.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121292206240318064149
2024-04-04
2025-07-04
Loading full text...

Full text loading...

References

  1. ZhengT. WangX. LiH. ZhaoC. JiangZ. HuangQ. CeccarelliM. Design of a robot for inspecting the multishape pipeline systems.IEEE/ASME Trans. Mechatron.20222764608461810.1109/TMECH.2022.3160728
    [Google Scholar]
  2. YanH. WangL. LiP. WangZ. YangX. HouX. Research on passing ability and climbing performance of pipeline plugging robots in curved pipelines.IEEE Access2020817366617368010.1109/ACCESS.2020.3025560
    [Google Scholar]
  3. ChenS. T. Motion law and mechanical properties of PIGs when passing through a pipe bend.Machines202291096310.3390/machines10100963
    [Google Scholar]
  4. LiJ. HuangF. TuC. L. TianM. Q. WangX. S. Elastic obstacle-surmounting pipeline-climbing robot with composite wheels.Machines2022101087410.3390/machines10100874
    [Google Scholar]
  5. ZhaoW. T. ZhangL. KimJ. Design and analysis of independently adjustable large in-pipe robot for long-distance pipeline.Appl. Sci20201010363710.3390/app10103637
    [Google Scholar]
  6. TorajizadehH. AsadiradA. MashayekhiE. DabiriG. Design and manufacturing a novel screw‐in‐pipe inspection robot with steering capability.J. Field Robot.202340342944610.1002/rob.22136
    [Google Scholar]
  7. ZhangT. YuanZ. HongG. CaiD. Kinematic analysis and foot end trajectory planning of quadruped wall-climbing robot based on parallel leg structure.J. Braz. Soc. Mech. Sci. Eng.202345738010.1007/s40430‑023‑04271‑1
    [Google Scholar]
  8. RenT. LiuQ. ChenY. JiS. Variable pitch helical drive in-pipe robot.Int. J. Robot. Autom.201631326327110.2316/Journal.206.2016.3.206‑4774
    [Google Scholar]
  9. WuK. SangH. XingY. LuY. Design of wireless in-pipe inspection robot for image acquisition.Ind. Rob.202350114516110.1108/IR‑02‑2022‑0043
    [Google Scholar]
  10. KazeminasabS. SadeghiN. JanfazaV. RazaviM. ZiyadideganS. BanksM.K. Localization, mapping, navigation, and inspection methods in in-pipe robots: A review.IEEE Access2021916203516205810.1109/ACCESS.2021.3130233
    [Google Scholar]
  11. ShiY. HaoL. CaiM. WangY. YaoJ. LiR. FengQ. LiY. High-precision diameter detector and three-dimensional reconstruction method for oil and gas pipelines.J. Petrol. Sci. Eng.201816584284910.1016/j.petrol.2018.02.070
    [Google Scholar]
  12. YanH. LiJ. KouZ. LiuY. LiP. WangL. Research on the traction and obstacle-surmounting performance of an adaptive pipeline-plugging robot.Stroj. Vestn./J. Mech. Eng.2022681142610.5545/sv‑jme.2021.7361
    [Google Scholar]
  13. LiuQ. RenT. ChenY. Characteristic analysis of a novel in-pipe driving robot.Mechatronics201323441942810.1016/j.mechatronics.2013.03.004
    [Google Scholar]
  14. IbrahimovB. NamazovM. Robotics in petroleum and safety requirements forcing Open Innovation to be embraced.Conference on Technology, Culture, and International Stability (TECIS), Baku, AZERBAIJAN, Sep 13-15, 2018, vol. 51, pp. 688-692.10.1016/j.ifacol.2018.11.215
    [Google Scholar]
  15. SunL. ChenC. SunQ. Experimental and finite element analyses on the corrosion of underground pipelines.Sci. China Technol. Sci.20155861015102010.1007/s11431‑015‑5824‑1
    [Google Scholar]
  16. RusuC. TatarM.O. Adapting mechanisms for in-pipe inspection robots: A review.Appl. Sci.20221212619110.3390/app12126191
    [Google Scholar]
  17. JangH. KimT.Y. LeeY.C. KimY.S. KimJ. LeeH.Y. ChoiH.R. A review: Technological trends and development direction of pipeline robot systems.J. Intell. Robot. Syst.202210535910.1007/s10846‑022‑01669‑2
    [Google Scholar]
  18. NeeL.V. ElamvazuthiI. GanesanT. KhanM. ParasuramanS. Development of a laboratory-scale pipeline inspection robot.IEEE International Symposium on Robotics and Intelligent Sensors (IEEE IRIS), Langkawi, MALAYSIA, Oct 18-20, 2015, vol. 76, pp. 9-14.10.1016/j.procs.2015.12.268
    [Google Scholar]
  19. FengG. LiW. ZhangH. LiZ. HeZ. Development of a wheeled and wall-pressing type in-pipe robot for water pipelines cleaning and its traveling capability.Mechanics202026213414510.5755/j01.mech.26.2.18783
    [Google Scholar]
  20. KimD-K. Inspection of unpiggable natural gas pipelines using in-pipe robot.AETA 2016: Recent Advances in Electrical Engineering and Related SciencesLecture Notes in Electrical EngineeringSpringer, Cham.201741536437310.1007/978‑3‑319‑50904‑4_37
    [Google Scholar]
  21. FangJ. XiangJ. MaL. LiuH. WangC. LiangS. Gas-driven endoscopic robot for visual inspection of corrosion defects inside gas pipelines.Processes2023114109810.3390/pr11041098
    [Google Scholar]
  22. MishraD. YadavR.S. AgrawalK.K. Kinematic modeling and emulation of robot for traversing over the pipeline in the refinery.Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems202026310111020
    [Google Scholar]
  23. JiangX. JiangS. HuZ. GaoY. Underactuated in-pipe robot for moving inside underground oil pipelines.International Conference on Mechatronics and Materials Processing (ICMMP 2011), Guangzhou, PEOPLES R CHINA, vol. 328-330, 2011.10.4028/www.scientific.net/AMR.328‑330.2278
    [Google Scholar]
  24. PetersJ. Actuation and stiffening in fluid-driven soft robots using low-melting-point material.2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 4692-4698.10.1109/IROS40897.2019.8967764
    [Google Scholar]
  25. LiH. LiR. ZhangJ. ZhangP. Development of a pipeline inspection robot for the standard oil pipeline of china national petroleum corporation.Appl. Sci.2020108285310.3390/app10082853
    [Google Scholar]
  26. WangZ. CaoQ. LuanN. ZhangL. Development of an autonomous in‐pipe robot for offshore pipeline maintenance.Ind. Rob.201037217718410.1108/01439911011018957
    [Google Scholar]
  27. KnedlováJ. BílekO. SámekD. ChalupaP. Design and construction of an inspection robot for the sewage pipes.8th International Conference on Manufacturing Science and Education (MSE) - Trends in New Industrial Revolution, Sibiu, ROMANIA, Jun 07-09, 2017, vol. 121 pp. 01006.10.1051/matecconf/201712101006
    [Google Scholar]
  28. NassiraeiA. A. F. KawamuraY. AhraryA. MikuriyaY. IshiiK. A new approach to the sewer pipe inspection: Fully autonomous mobile robot "KANTARO".32nd Annual Conference of the IEEE-Industrial-Electronics-Society, Paris, France, 06-10 November 2006, pp. 4088-4093
    [Google Scholar]
  29. ZhuC. In‐pipe robot for inspection and sampling tasks.Ind. Rob.2007341394510.1108/01439910710718432
    [Google Scholar]
  30. KimH.M. Design of back-drivable joint mechanism for in-pipe robot.IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, GERMANY, Sep 28-Oct 02, 2015. pp.3779-3784.
    [Google Scholar]
  31. ShiL. An underwater pipeline tracking system for amphibious spherical robots.IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, JAPAN, 2017, pp. 1390-1395.10.1109/ICMA.2017.8016020
    [Google Scholar]
  32. MiaoX. ZhaoH. GaoB. MaY. HouY. SongF. Motion analysis and control of the pipeline robot passing through girth weld and inclination in natural gas pipeline.J. Nat. Gas Sci. Eng.202210410466210.1016/j.jngse.2022.104662
    [Google Scholar]
  33. ManoY. IshikawaR. YamadaY. NakamuraT. Development of contraction force control system of peristaltic crawling robot for sewer pipe inspection.IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, NEW ZEALAND, pp. 936-941, 2018.
    [Google Scholar]
  34. ZhangC. DingB. ZhuJ. YangJ. Analysis of structure and movement characteristics of a pipeline parallel mechanism.Iran J Sci Technol Trans Mech Eng10.1007/s40997‑023‑00671‑9
    [Google Scholar]
  35. YuanJ. WuX. KangY. HuangC. Development of an inspection robot for long‐distance transmission pipeline on‐site overhaul.Ind. Rob.200936654655010.1108/01439910910994614
    [Google Scholar]
  36. ShiY. MuZ. CaiM. SongH. WangY. Advances in motion control of gas pipeline detection robot, Science China-Technological SciencesEditorial Material2020635877878
    [Google Scholar]
  37. KakogawaA. MaS. Design of a multilink-articulated wheeled pipeline inspection robot using only passive elastic joints.Adv. Robot.2018321375010.1080/01691864.2017.1393348
    [Google Scholar]
  38. McGinnC. CullinanM.F. OtubelaM. KellyK. Design of a terrain adaptive wheeled robot for human-orientated environments.Auton. Robots2019431637810.1007/s10514‑018‑9701‑1
    [Google Scholar]
  39. LeeD.H. MoonH. ChoiH.R. Landmark detection methods for in-pipe robot traveling in urban gas pipelines.Robotica201634360161810.1017/S0263574714001726
    [Google Scholar]
  40. DengQ.Z. LiuY.Q. GaoH.B. ZhaoL. DingL. YuH.T. A study on the ratio of walking leg segment lengths of a hydraulically driven hexapod robot.Robot20143605544551
    [Google Scholar]
  41. XueY.Y. ZhangJ.Z. WangQ.Q. YuX. GongJ. Adams-based adaptive mechanism optimization design for pipeline robots.J. Qingdao Univ.202035013338
    [Google Scholar]
  42. KimH.M. ChoiY.S. LeeY.G. ChoiH.R. Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism.IEEE/ASME Trans. Mechatron.201722122723510.1109/TMECH.2016.2621978
    [Google Scholar]
  43. MoghaddamM.M. ArbabtaftiM. HadiA. In-pipe inspection crawler adaptable to the pipe interior diameter.Int. J. Robot. Autom.201126213514510.2316/Journal.206.2011.2.206‑3078
    [Google Scholar]
  44. ZhangY.X. HuangJ. HanL.L. Overview of the current status of research on mobile exploration robots on the surface of the stars.Journal of Aeronautics202142016279
    [Google Scholar]
  45. YanH. Design and kinematic characteristic analysis of a spiral robot for oil and gas pipeline inspections.Actuators202312624010.3390/act12060240
    [Google Scholar]
  46. ZhaoS.K. Research on the kinematics of pipeline robot based on curved omnidirectional wheel system”, master’s degree.Hebei University of Technology2019
    [Google Scholar]
  47. KamataM. YamazakiS. TaniseY. YamadaY. NakamuraT. Morphological change in peristaltic crawling motion of a narrow pipe inspection robot inspired by earthworm’s locomotion.Adv. Robot.201832738639710.1080/01691864.2017.1417158
    [Google Scholar]
  48. ShaoQ. XieZ.D. Development and prospects of pipeline robotics.Agriculture and Technology20163605173175
    [Google Scholar]
  49. WangY.C. A novel adaptive pipe diameter mechanism for pipeline robots.Robotics and Applications2017064548
    [Google Scholar]
  50. MishraD. AgrawalK. AbbasA. SrivastavaR. YadavR. S. PIG [Pipe Inspection Gauge]: An artificial dustman for cross country pipelines.Procedia Comput. Sci.201915233334010.1016/j.procs.2019.05.009
    [Google Scholar]
  51. HeZ. DongZ. FangG. HoJ.D-L. CheungC-L. ChangH-C. ChongC.C-N. ChanJ.Y-K. ChanD.T.M. KwokK-W. Design of a percutaneous MRI-guided needle robot with soft fluid-driven actuator.IEEE Robot. Autom. Lett.2020522100210710.1109/LRA.2020.2969929
    [Google Scholar]
  52. WangZ. WangY. ZhangB. Development and experiment of clamp type submarine cable inspection robot.Machines 202311662710.3390/machines11060627
    [Google Scholar]
  53. WangW.F. Study of drive characteristics of fluid-driven pipeline robots”, master’s degree.Harbin Institute of Technology2012
    [Google Scholar]
  54. PanasiukJ. SiwekM. KaczmarekW. BorysS. PrusaczykP. The concept of using the mobile robot for telemechanical wires installation in pipelines.14th International Conference Mechatronic Systems and Materials (MSM), Zakopane, POLAND, 2018, vol. 2029.10.1063/1.5066516
    [Google Scholar]
  55. GaoM. HuangM. TangK. LangX. GaoJ. Design, analysis, and control of a multilink magnetic wheeled pipeline robot.Ieee Access2022106716867180
    [Google Scholar]
  56. KakogawaA. MaS. Design of a multilink-articulated wheeled inspection robot for winding pipelines: AIRo-IIIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), SOUTH KOREA, Oct 09-14, 2016, pp. 2115-2121.10.1109/IROS.2016.7759332
    [Google Scholar]
  57. AldulaimiH.H. Diameter-adjustable controller design of wheel type pipe inspection robot using fuzzy logic control method.AETA International ConferenceHo Chi Minh City, VIETNAM, Dec 09-12, 2015, vol. 371, pp. 685-696.10.1007/978‑3‑319‑27247‑4_57
    [Google Scholar]
  58. RashidM.Z.A. Reconfigurable multi-legs robot for pipe inspection: Design and gait movement.Indian J. Geo-Mar. Sci.201948711321144
    [Google Scholar]
  59. KhanM. B. ChuthongT. HomchanthanakulJ. ManoonpongP. Electromagnetic feet with soft toes for adaptive, versatile, and stable locomotion of an inchworm-inspired pipe crawling robot.Front Bioeng Biotechnol. 20221084281610.3389/fbioe.2022.842816
    [Google Scholar]
  60. SavinS. VorochaevaL. Footstep planning for a six-legged in-pipe robot moving in spatially curved pipes.International Siberian Conference on Control and Communications, Astana, KAZAKHSTAN, Jun 29-30, 2017.10.1109/SIBCON.2017.7998581
    [Google Scholar]
  61. GargadeA. A. OholS. S. Development of actively steerable in-pipe inspection robot for various sizes.Conference on Advances in Robotics (AIR), New Delhi, INDIA, Jun 28-Jul 02, 2017.
    [Google Scholar]
  62. LiX. YuW. LinX. IyengarS.S. On optimizing autonomous pipeline inspection.IEEE Trans Robot.2012281223233
    [Google Scholar]
  63. ZhangS. DubljevicS. Trajectory determine for pipelines using an inspection robot and pipeline features.Metrol. Meas. Syst.2021283439453
    [Google Scholar]
  64. ChenY. CuiZ. ZhangH. WuL. Design and research of visual pipeline robot based on Wi-Fi.2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 214-16 December 2018, pp. 935-939.10.1109/ITOEC.2018.8740572
    [Google Scholar]
  65. KermanshachiS. RouhanizadehB. CobanogluM.M. DamnjanovicI. Optimal pipeline maintenance strategies in the united states: Stochastic reliability analysis of gas pipeline network failures.J. Pipeline Syst. Eng. Pract.20201110401904110.1061/(ASCE)PS.1949‑1204.0000419
    [Google Scholar]
  66. MahmoodzadehZ. WuK.Y. Lopez DroguettE. MoslehA. Condition-based maintenance with reinforcement learning for dry gas pipeline subject to internal corrosion.Sensor20202019570810.3390/s2019570833036494
    [Google Scholar]
  67. AdegboyeM.A. FungW.K. KarnikA. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches.Sensors20191911254810.3390/s1911254831167413
    [Google Scholar]
  68. JangH. KimT.Y. LeeY.C. SongY.H. ChoiH.R. Autonomous navigation of in-pipe inspection robot using contact sensor modules.IEEE ASME Trans Mechatron.202227646654674
    [Google Scholar]
  69. KarkoubM. BouhaliO. SheharyarA. Gas pipeline inspection using autonomous robots with omni-directional cameras.IEEE Sens. J.202121141554415553
    [Google Scholar]
  70. BogueR. Applications of robotics in test and inspection.Indust Robot2018452169174
    [Google Scholar]
  71. XuH. LiZ. LiY. GongL. Study on the error analysis of pipeline inspection robot mileage wheel localization.3rd International Conference on Mechatronics and Intelligent Materials (MIM 2013), Xishuangbanna, PEOPLES R CHINA, 2013, pp. 1171-1174.10.4028/www.scientific.net/AMR.706‑708.1171
    [Google Scholar]
  72. MistinasV. MatuliauskasA. RagulskisK. SpruogisB. KutP. Behavior of dynamic processes in self-exciting vibration of an in-pipe robot6th International Conference on BioengineeringKaunas, LITHUANIA, 2006 Oct 12-14, 2006, pp. 91-94.
    [Google Scholar]
  73. ParkJ. YangH. Pipeline mapping with crawler-type in-pipe robot feature.J. Mech. Sci. Technol.2023375015502010.1007/s12206‑023‑0908‑5
    [Google Scholar]
  74. ChavdarovIvan PavlovVeselin Robot for internal pipeline inspection.B.G. Patent 112867A2019
    [Google Scholar]
  75. SeungB. S. Nondestructive inspection device movable in pipe.K.R. Patent 101,647,256 B12016
    [Google Scholar]
  76. FangH. Y. ZhaoP. LiB. LiJ. W. GuoC. C. PanY. H. Nondestructive inspection device movable in pipe.U.S. Patent 202,101,062,8 A12021
    [Google Scholar]
  77. SunZ. H. Pipeline inspection device.U.S. Patent 202,226,839,3 A12022
    [Google Scholar]
  78. LuX. Y. Pipe detecting robot.W.O. Patent 202,008,811,6 A12020
    [Google Scholar]
  79. ZhangH. LiuX. B. ShiT. ZhaoH. L. LiuC. G. Pipeline structure fault diagnosis apparatus.U.S. Patent 202,310,454,6 A12023
    [Google Scholar]
  80. MatthiasN. Inspection equipment.W.O. Patent 202,118,554,3 A12024
    [Google Scholar]
  81. ErtugrulC. Wireless inspection robot for natural gas pipe.W.O. Patent 202,014,203,4 A12020
    [Google Scholar]
  82. FadiS. Outer surface inspecting robot with flipping over flange mechanism.W.O. Patent 201,408,206,2 A12024
    [Google Scholar]
  83. PeterK. Pipe inspection device with variable height control.U.S. Patent 202,217,848,8 A12022
    [Google Scholar]
  84. YanH. W. ZhaoP. Y. HeB. L. ZhangD. X. ChengY. H. Straight wheel driving type pipeline inspection robot.C.N. Patent 115,0311,090 A12022
    [Google Scholar]
  85. LiuP. LuoZ. W. YangL. Q. LiuH. XiongW. HeD. M. Wheel type pipeline detection robot utilizing magnetic adsorption.C.N. Patent 216,692,698 U2022
    [Google Scholar]
  86. HongC. K. KimT. H. Wheel type pipeline detection robot utilizing magnetic adsorption.K.R. Patent 201,700,236,11 A2017
    [Google Scholar]
  87. RafalC. JohnW. TomP. ChrisB. Pipeline inspection robot.U.S. Patent 201,831,371,5 A12018
    [Google Scholar]
  88. DaiY. WangQ. LvX. B. ChengK. Pipeline channel detection robot and system thereof.W.O. Patent 201,600,044,3 A12016
    [Google Scholar]
  89. JiangM. N. LiQ. Crawler-type pipeline detection robot.C.N. Patent 209,977,572 U2009
    [Google Scholar]
  90. SongA. G. MiaoT. Y. ShaoB. C. XuB. G. SongG. G. Pipeline inspection robot with variable tracks and control method therefor.W.O. Patent 202,219,871,4 A12022
    [Google Scholar]
  91. AmulT. SaeedehZ. ManishP. JacobS. Robotic in-pipe inspection.U.S. Patent 202,2228,282,1 A12022
    [Google Scholar]
  92. HassanG. F. BrusterD. J. Autonomous robotic crawler for in-pipe inspection.W.O. Patent 200,505,707,6 A12005
    [Google Scholar]
  93. JiaoZ. P. YuanC. ZhangJ. L. HuaZ. J. Streamline underwater pipeline inspection robot.C.N. Patent 215,862,343 U2022
    [Google Scholar]
  94. YuanR. B. ShiT. ShaoY. R. ChenK. LiX. HuQ. M. Fluid-driven pipeline robot with adjustable speed.C.N. Patent 218,378,341 U2023
    [Google Scholar]
  95. WangZ. F. GuiQ. Z. MaY. N. Fluid-driven robot for detecting interior of the liquid pipeline.C.N. Patent 114,135,738 A2022
    [Google Scholar]
/content/journals/eng/10.2174/0118722121292206240318064149
Loading
/content/journals/eng/10.2174/0118722121292206240318064149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test