Skip to content
2000
image of A Decade of Prostate Intervention Robots: Systematic Review

Abstract

The image-guided prostate intervention robot can assist surgeons in performing minimally invasive intervention procedures. It has the advantage of overcoming the disadvantages of a traditional surgeon's hand tremor and dependence on the need for an experienced surgeon, improving the intervention precision, and reducing the hazards caused by normal soft tissues due to surgical precision errors compared to traditional intervention procedures. In the design of prostate intervention robots, structural design, materials, actuators, and compatibility issues should be considered. Based on the above considerations, a representative literature of the last decade was selected for review.

Patents and articles on image-guided prostate intervention robots published in the last 10 years (2013-2023)were searched in several electronic databases, focusing on keywords (structural design, puncture accuracy, image compatibility, actuator) for screening.

We retrieved a total of 26 prostate intervention robots guided by different images, classified them by US, MRI, MRI-US and CT, selected representative robots guided by different image modalities for review and tabulated them for comparison, and finally boldly predicted that the future direction will be prostate robots guided by MRI-US images.

Image-guided prostate intervention robots can improve the deficiencies of conventional intervention procedures. In the future how to improve the intervention accuracy will be the primary problem of all intervention robots, through structural design, materials, actuators, and image compatibility issues have been improved.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121286139240827074802
2024-11-29
2025-01-17
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121286139240827074802/BMS-ENG-2023-120.html?itemId=/content/journals/eng/10.2174/0118722121286139240827074802&mimeType=html&fmt=ahah

References

  1. Rocío O-R. Macarena L-L. Inmaculada S-B. Antonio J-P. Fernando V-A. Marta G-C. María-José S. José-Juan J-M. Compliance with the 2018 World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations and prostate cancer. Nutrients 2020 12 3 768 10.3390/nu12030768 32183345
    [Google Scholar]
  2. Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019 10 2 63 89 10.14740/wjon1191 31068988
    [Google Scholar]
  3. Wallis C.J.D. Glaser A. Hu J.C. Huland H. Lawrentschuk N. Moon D. Murphy D.G. Nguyen P.L. Resnick M.J. Nam R.K. Survival and complications following surgery and radiation for localized prostate cancer: An international collaborative review. Eur. Urol. 2018 73 1 11 20 10.1016/j.eururo.2017.05.055 28610779
    [Google Scholar]
  4. Kee D.L.C. Gal J. Falk A.T. Schiappa R. Chand M.E. Gautier M. Doyen J. Hannoun-levi J.M. Brachytherapy versus external beam radiotherapy boost for prostate cancer: Systematic review with meta-analysis of randomized trials. Cancer Treat. Rev. 2018 70 265 271 10.1016/j.ctrv.2018.10.004 30326422
    [Google Scholar]
  5. Gandaglia G. Mazzone E. Stabile A. Pellegrino A. Cucchiara V. Barletta F. Scuderi S. Robesti D. Leni R. Samanes Gajate A.M. Picchio M. Gianolli L. Brembilla G. De Cobelli F. van Oosterom M.N. van Leeuwen F.W.B. Montorsi F. Briganti A. Prostate-specific membrane antigen radioguided surgery to detect nodal metastases in primary prostate cancer patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection: Results of a planned interim analysis of a prospective phase 2 study. Eur. Urol. 2022 82 4 411 418 10.1016/j.eururo.2022.06.002 35879127
    [Google Scholar]
  6. Kim M. Yoo D. Pyo J. Cho W. Clinicopathological significances of positive surgical resection margin after radical prostatectomy for prostatic cancers: A meta-analysis. Medicina (Kaunas) 2022 58 9 1251 10.3390/medicina58091251 36143928
    [Google Scholar]
  7. Würnschimmel C. Wenzel M. Chierigo F. Flammia R.S. Tian Z. Saad F. Briganti A. Shariat S.F. Suardi N. Terrone C. Gallucci M. Chun F.K.H. Tilki D. Graefen M. Karakiewicz P.I. External beam radiotherapy and radical prostatectomy are associated with better survival in Asian prostate cancer patients. Int. J. Urol. 2022 29 1 17 24 10.1111/iju.14701 34553428
    [Google Scholar]
  8. Dhaliwal S.S. Chettibi T. Wilby S. Polak W. Palmer A.L. Reynaert N. Merzouki R. Review of clinical and technological consideration for MRI-guided robotic prostate brachytherapy. IEEE Trans. Med. Robot. Bionics 2021 3 3 583 605 10.1109/TMRB.2021.3097127
    [Google Scholar]
  9. Sidana A. Blank F. Wang H. Patil N. George A.K. Abbas H. Schema and cancer detection rates for transperineal prostate biopsy templates: A review. Ther Adv Urol. 2022 14 17562872221105019
    [Google Scholar]
  10. Bass E.J. Pantovic A. Connor M.J. Loeb S. Rastinehad A.R. Winkler M. Gabe R. Ahmed H.U. Diagnostic accuracy of magnetic resonance imaging targeted biopsy techniques compared to transrectal ultrasound guided biopsy of the prostate: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022 25 2 174 179 10.1038/s41391‑021‑00449‑7 34548624
    [Google Scholar]
  11. Kaye D.R. Stoianovici D. Han M. Robotic ultrasound and needle guidance for prostate cancer management. Curr. Opin. Urol. 2014 24 1 75 80 10.1097/MOU.0000000000000011 24257431
    [Google Scholar]
  12. Gupta N.P. Bansal S. Yadav R. Khera R. Ahlawat K. Gautam D. Ahlawat R. Gautam G. Multiparametric magnetic resonance imaging-transrectal ultrasound fusion prostate biopsy: A prospective, single centre study. Indian J. Urol. 2017 33 2 134 139 10.4103/0970‑1591.203414 28469301
    [Google Scholar]
  13. Sridhar A.N. Hughes-Hallett A. Mayer E.K. Pratt P.J. Edwards P.J. Yang G.Z. Darzi A.W. Vale J.A. Image-guided robotic interventions for prostate cancer. Nat. Rev. Urol. 2013 10 8 452 462 10.1038/nrurol.2013.129 23774960
    [Google Scholar]
  14. Zhang Y. Yuan Q. Muhammad Muzzammil H. Gao G. Xu Y. Image-guided prostate biopsy robots: A review. Math. Biosci. Eng. 2023 20 8 15135 15166 10.3934/mbe.2023678 37679175
    [Google Scholar]
  15. Liang Y. Xu D. Wang B. Zhang Y. Xu Y. Experimental study of needle insertion strategies of seed implantation articulated robot. J. Mech. Med. Biol. 2018 18 3 1850023 10.1142/S0219519418500239
    [Google Scholar]
  16. Eslami S. Fischer G.S. Song S.E. Tokuda J. Hata N. Tempany C.M. Iordachita I. Towards clinically optimized MRI-guided surgical manipulator for minimally invasive prostate percutaneous interventions: constructive design 2013 IEEE International Conference on Robotics and Automation 2013 1228 1233 10.1109/ICRA.2013.6630728
    [Google Scholar]
  17. Kim K.Y. Woo H.S. Cho J.H. Lee Y.K. Development of a two DOF needle driver for CT-guided needle insertion-type interventional robotic system 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 2017, pp. 470-475. 10.1109/ROMAN.2017.8172344
    [Google Scholar]
  18. Liang H. Zuo W. Kessler D. Barrett T. Tse Z.T.H. A Pneumatic Driven MRI-Guided Robot System for Prostate Interventions. IEEE Trans. Med. Robot. Bionics 2024 1 10.1109/TMRB.2024.3389490
    [Google Scholar]
  19. Jiang W. Wu D. Dong W. Ding J. Ye Z. Zeng P. Gao Y. Design and validation of a non-parasitic 2R1T parallel hand-held prostate biopsy robot with remote center of motion. J. Mech. Robot. 2024 16 5 051009 10.1115/1.4062793
    [Google Scholar]
  20. Duan H. Zhang Y. Liu H. Continuous body type prostate biopsy robot for confined space operation. IEEE Access 2023 11 113667 113677 10.1109/ACCESS.2023.3323312
    [Google Scholar]
  21. Long J.A. Hungr N. Baumann M. Descotes J.L. Bolla M. Giraud J.Y. Rambeaud J.J. Troccaz J. Development of a novel robot for transperineal needle based interventions: focal therapy, brachytherapy and prostate biopsies. J. Urol. 2012 188 4 1369 1374 10.1016/j.juro.2012.06.003 22906671
    [Google Scholar]
  22. Vaida C. Plitea N. Gherman B. Szilaghyi A. Galdau B. Cocorean D. Covaciu F. Pisla D. Structural Analysis and Synthesis of Parallel Robots for Brachytherapy. New Trends in Medical and Service Robots Mechanisms and Machine Science Springer: Cham 2014 16 10.1007/978‑3‑319‑01592‑7_14
    [Google Scholar]
  23. Poquet C. Mozer P. Vitrani M.A. Morel G. An endorectal ultrasound probe comanipulator with hybrid actuation combining brakes and motors. IEEE/ASME Trans. Mechatron. 2015 20 1 186 196 10.1109/TMECH.2014.2314859
    [Google Scholar]
  24. Zhang Y. Liang Y. Wang X. Xu Y. Design and experimental study of joint torque balance mechanism of seed implantation articulated robot. Adv. Mech. Eng. 2015 7 6
    [Google Scholar]
  25. Khalaji I. Hadavand M. Asadian A. Patel R.V. Naish M.D. Analysis of needle-tissue friction during vibration-assisted needle insertion 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013, pp.4099-4104. 10.1109/IROS.2013.6696943
    [Google Scholar]
  26. Barnett A.C. Feidner M. Moore J.Z. Vibration needle tissue cutting with varying tip geometry International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers 2015 10.1115/MSEC2015‑9353
    [Google Scholar]
  27. Vaida C. Birlescu I. Plitea N. Crisan N. Pisla D. Design of a needle insertion module for robotic assisted transperineal prostate biopsy. New Trends in Medical and Service Robots: Design. Springer International Publishing 2018 1 15 10.1007/978‑3‑319‑59972‑4_1
    [Google Scholar]
  28. Ban G. Li C. Zhang X. Liu G. Liu Y. Zhao J. Zhang L. Fan Y. Design of A Close-range Radiotherapy Particle Implantation Device 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019, pp.1331-1337. 10.1109/ROBIO49542.2019.8961469
    [Google Scholar]
  29. Lim S. Jun C. Chang D. Petrisor D. Han M. Stoianovici D. Robotic transrectal ultrasound guided prostate biopsy. IEEE Trans. Biomed. Eng. 2019 66 9 2527 2537 10.1109/TBME.2019.2891240 30624210
    [Google Scholar]
  30. Ye W. Zhang B. Li Q. Design of a 1R1T planar mechanism with remote center of motion. Mechanism Mach. Theory 2020 149 103845 10.1016/j.mechmachtheory.2020.103845
    [Google Scholar]
  31. Li J. Zhang G. Müller A. Wang S. A family of remote center of motion mechanisms based on intersecting motion planes. J. Mech. Des. 2013 135 9 091009 10.1115/1.4024848
    [Google Scholar]
  32. Kuo C.H. Dai J.S. Dasgupta P. Kinematic design considerations for minimally invasive surgical robots: an overview. Int. J. Med. Robot. 2012 8 2 127 145 10.1002/rcs.453 22228671
    [Google Scholar]
  33. Chunwoo Kim Doyoung Chang Petrisor D. Chirikjian G. Misop Han Stoianovici D. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting. IEEE Trans. Biomed. Eng. 2013 60 6 1728 1734 10.1109/TBME.2013.2241430 23358940
    [Google Scholar]
  34. Wang W. Pan B. Ai Y. Fu Y. Li G. Liu Y. Ultrasound-guide prostate biopsy robot and calibration based on dynamic kinematic error model with POE formula. Robot. Auton. Syst. 2023 166 104465 10.1016/j.robot.2023.104465
    [Google Scholar]
  35. Fu Y.L. Wang W.R. A transrectal ultrasound image-guided prostatic puncture machine. C.N. Patent 114767228 B 2023.
  36. Yang D.Y. An artificial intelligence robot assisted prostate targeted puncture diagnosis and treatment device. C.N. Patent 113367777 A 2021.
  37. Zhang H.Z. Li B. Lin G.J. Lin Y.P. Prostate biopsy puncture machine guided by ultrasound image. C.N. Patent 113331875 B 2023.
  38. Bauman M. Hungr N. Leroy A. Troccaz J. Daanen V. Control system and method for precisely guiding a percutaneous needle toward the prostate. U.S. Patent 8702579 B2 2014.
  39. Yan J. Pan B. Fu Y. Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization. Front. Mech. Eng. 2022 17 1 3 10.1007/s11465‑021‑0659‑x
    [Google Scholar]
  40. Chen S. Gonenc B. Li M. Song D.Y. Burdette E.C. Iordachita I. Kazanzides P. Needle release mechanism enabling multiple insertions with an ultrasound-guided prostate brachytherapy robot. Annu Int Conf IEEE Eng Med Biol Soc. 2017 2017 4339 4342 10.1109/EMBC.2017.8037816
    [Google Scholar]
  41. Tang C. Xie G. Omisore O.M. Xiong J. Xia Z. A real-time needle tracking algorithm with first-frame linear structure removing in 2D ultrasound-guided prostate therapy 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019, pp. 1240-1245. 10.1109/ROBIO49542.2019.8961638
    [Google Scholar]
  42. Chen L. Paetz T. Dicken V. Krass S. Issawi J.A. Ojdanić D. Krass S. Tigelaar G. Sabisch J. Poelgeest A. Schaechtele J. Design of a dedicated five degree-of-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J. Med. Device. 2015 9 1 015002 10.1115/1.4029506
    [Google Scholar]
  43. Su H. Cardona D.C. Shang W. Camilo A. Cole G.A. Rucker D.C. Webster R.J. Fischer G.S. A MRI-guided concentric tube continuum robot with piezoelectric actuation: a feasibility study 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012, pp. 1939-1945. 10.1109/ICRA.2012.6224550
    [Google Scholar]
  44. Jiang S. Feng W. Lou J. Yang Z. Liu J. Yang J. Modelling and control of a five-degrees-of-freedom pneumatically actuated magnetic resonance-compatible robot. Int. J. Med. Robot. 2014 10 2 170 179 10.1002/rcs.1524 23893561
    [Google Scholar]
  45. Kim K.Y. Li M. Gonenc B. Shang W. Eslami S. Iordachita I. Design of an MRI-compatible modularized needle driver for in-bore MRI-guided prostate interventions. 2015 15th International Conference on Control, Automation and Systems (ICCAS) 2015 10.1109/ICCAS.2015.7364595
    [Google Scholar]
  46. Stoianovici D. Kim C. Srimathveeravalli G. Sebrecht P. Petrisor D. Coleman J. Solomon S.B. Hricak H. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans. Mechatron. 2014 19 4 1289 1299 10.1109/TMECH.2013.2279775 25378897
    [Google Scholar]
  47. Eslami S. Shang W. Li G. Patel N. Fischer G.S. Tokuda J. Hata N. Tempany C.M. Iordachita I. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. 2016 12 2 199 213 10.1002/rcs.1671 26111458
    [Google Scholar]
  48. Patriciu A. Petrisor D. Muntener M. Mazilu D. Schär M. Stoianovici D. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans. Biomed. Eng. 2007 54 8 1499 1506 10.1109/TBME.2007.900816 17694871
    [Google Scholar]
  49. Su H. Iordachita I.I. Yan X. Cole G.A. Fischer G.S. Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 2011, pp.2111-2114. 10.1109/IEMBS.2011.6090393
    [Google Scholar]
  50. Li G. Su H. Shang W. Tokuda J. Hata N. Tempany C.M. Fischer G.S. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy. Proc SPIE Int Soc Opt Eng. 2013 8671 867117
    [Google Scholar]
  51. Yiallouras C. Ioannides K. Dadakova T. Pavlina M. Bock M. Damianou C. Three-axis MR-conditional robot for high-intensity focused ultrasound for treating prostate diseases transrectally. J. Ther. Ultrasound 2015 3 1 2 10.1186/s40349‑014‑0023‑2 25657846
    [Google Scholar]
  52. Patel N.A. Li G. Shang W. Wartenberg M. Heffter T. Burdette E.C. Iordachita I. Tokuda J. Hata N. Tempany C.M. Fischer G.S. System integration and preliminary clinical evaluation of a robotic system for MRI-guided transperineal prostate biopsy. J. Med. Robot. Res. 2019 4 2 1950001 10.1142/S2424905X19500016 31485544
    [Google Scholar]
  53. Li B. Yuan L. Wang C. Guo Y. Structural design and analysis of pneumatic prostate seed implantation robot applied in magnetic resonance imaging environment. Int. J. Med. Robot. 2022 18 6 e2457 10.1002/rcs.2457 36063541
    [Google Scholar]
  54. Xin Y. Guo D. Qi J. Chen Z. Shao H. Yuan G. Prospective clinical study of 125I particle permanent implantation for prostate cancer. Open Journal of Urology 2020 10 3 52 59 10.4236/oju.2020.103007
    [Google Scholar]
  55. Seifabadi R. Aalamifar F. Iordachita I. Fichtinger G. Toward teleoperated needle steering under continuous MRI guidance for prostate percutaneous interventions. Int. J. Med. Robot. 2016 12 3 355 369 10.1002/rcs.1692 26264564
    [Google Scholar]
  56. Chen W. Guo J.M. Wang G.M. Yang Y.F. Xu Z.B. A prostate-piercing robot. C.N. Patent 109124770 B 2020.
  57. Stoianovici D. Petrisor D. Kim C. Sebrechts P. MRI-safe robot for transrectal prostate biopsy. U.S. Patent 20150265354 2015.
  58. Bi J. Zhang Y. US/MRI guided robotic system for the interventional treatment of prostate. Int. J. Pattern Recognit. Artif. Intell. 2020 34 5 2059014 10.1142/S0218001420590144
    [Google Scholar]
  59. Miah S. Servian P. Patel A. Lovegrove C. Skelton L. Shah T.T. Eldred-Evans D. Arya M. Tam H. Ahmed H.U. Winkler M. A prospective analysis of robotic targeted MRI-US fusion prostate biopsy using the centroid targeting approach. J. Robot. Surg. 2020 14 1 69 74 10.1007/s11701‑019‑00929‑y 30783886
    [Google Scholar]
  60. Martin P.R. Cool D.W. Fenster A. Ward A.D. A comparison of prostate tumor targeting strategies using magnetic resonance imaging targeted, transrectal ultrasound-guided fusion biopsy. Med. Phys. 2018 45 3 1018 1028 10.1002/mp.12769 29363762
    [Google Scholar]
  61. Zhang S. Jiang S. Yang Z. Liu R. Yang Y. Liang H. An ultrasound image navigation robotic prostate brachytherapy system based on US to MRI deformable image registration method. Hell. J. Nucl. Med. 2016 19 3 223 230 27824961
    [Google Scholar]
  62. Seifabadi R. Xu S. Pinto P. Wood B.J. A motorized ultrasound system for MRI-ultrasound fusion guided prostatectomy Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions and Modeling, SPIE 2016 9786 732 737
    [Google Scholar]
  63. Plitea N. Szilaghyi A. Pisla D. Kinematic analysis of a new 5-DOF modular parallel robot for brachytherapy. Robot. Comput.-Integr. Manuf. 2015 31 70 80 10.1016/j.rcim.2014.07.005
    [Google Scholar]
  64. Garg A. Siauw T. Berenson D. Cunha J.A.M. Hsu I.C. Pouliot J. Stoianovici D. Goldberg K. Robot-guided open-loop insertion of skew-line needle arrangements for high dose rate brachytherapy. IEEE Trans. Autom. Sci. Eng. 2013 10 4 948 956 10.1109/TASE.2013.2276940
    [Google Scholar]
  65. Elhawary H. Tse Z.T.H. Rea M. Zivanovic A. Davies B. Besant C. de Souza N. McRobbie D. Young I. Lampérth M. Robotic system for transrectal biopsy of the prostate: real-time guidance under MRI. IEEE Eng. Med. Biol. Mag. 2010 29 2 78 86 10.1109/MEMB.2009.935709 20659844
    [Google Scholar]
  66. Franco E. Brujic D. Rea M. Gedroyc W.M. Ristic M. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans. Mechatron. 2016 21 2 931 944 10.1109/TMECH.2015.2476556
    [Google Scholar]
  67. Groenhuis V. Siepel F.J. Veltman J. Stramigioli S. Design and characterization of Stormram 4: An MRI-compatible robotic system for breast biopsy 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp.928-933. 10.1109/IROS.2017.8202256
    [Google Scholar]
  68. Tsekos N.V. Christoforou E. Ozcan A. A general-purpose MR-compatible robotic system: implementation and image guidance for performing minimally invasive interventions. IEEE Eng. Med. Biol. Mag. 2008 27 3 51 58 10.1109/EMB.2007.910270 18519182
    [Google Scholar]
  69. Jiang S. Sun F. Dai J. Liu J. Yang Z. Design and analysis of a tendon-based MRI-compatible surgery robot for transperineal prostate needle placement. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 2015 229 2 335 348 10.1177/0954406214533783
    [Google Scholar]
  70. Kim S.T. Kim Y. Kim J. Design of an MR-compatible biopsy needle manipulator using pull-pull cable transmission. Int. J. Precis. Eng. Manuf. 2016 17 9 1129 1137 10.1007/s12541‑016‑0137‑2
    [Google Scholar]
  71. Gassert R. Yamamoto A. Chapuis D. Dovat L. Bleuler H. Burdet E. Actuation methods for applications in MR environments. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2006 29B 4 191 209 10.1002/cmr.b.20070
    [Google Scholar]
  72. Jiang S. Lou J. Yang Z. Dai J. Yu Y. Design, analysis and control of a novel tendon-driven magnetic resonance–guided robotic system for minimally invasive breast surgery. Proc. Inst. Mech. Eng. H 2015 229 9 652 669 10.1177/0954411915599018 26334035
    [Google Scholar]
  73. Zhang T. Navarro-Alarcon D. Ng K.W. Chow M.K. Liu Y.H. Chung H.L. A novel palm-shape breast deformation robot for MRI-guided biopsy 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 2016, pp.527-532. 10.1109/ROBIO.2016.7866376
    [Google Scholar]
  74. Navarro-Alarcon D. Singh S. Zhang T. Chung H.L. Ng K.W. Chow M.K. Liu Y. Developing a compact robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot. Autom. Lett. 2017 2 3 1648 1655 10.1109/LRA.2017.2678542
    [Google Scholar]
  75. Yang B. Tan U.X. McMillan A.B. Gullapalli R. Desai J.P. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines. IEEE/ASME Trans. Mechatron. 2011 16 6 1040 1048 10.1109/TMECH.2010.2071393 22058649
    [Google Scholar]
  76. Fischer G.S. Iordachita I. Csoma C. Tokuda J. DiMaio S.P. Tempany C.M. Hata N. Fichtinger G. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 2008 13 3 295 305 10.1109/TMECH.2008.924044 21057608
    [Google Scholar]
  77. Wineland A. Chen Y. Tsz Ho Tse Z. Magnetic resonance imaging compatible pneumatic stepper motor with Geneva drive. J. Med. Device. 2016 10 2 020950 10.1115/1.4033244
    [Google Scholar]
  78. Wei Y. Chen Y. Yang Y. Li Y. Novel design and 3-D printing of nonassembly controllable pneumatic robots. IEEE/ASME Trans. Mechatron. 2016 21 2 649 659 10.1109/TMECH.2015.2492623
    [Google Scholar]
  79. Guo Z. Dong Z. Lee K.H. Cheung C.L. Fu H.C. Ho J.D.L. He H. Poon W-S. Chan D.T.M. Kwok K.W. Compact design of a hydraulic driving robot for intraoperative MRI-guided bilateral stereotactic neurosurgery. IEEE Robot. Autom. Lett. 2018 3 3 2515 2522 10.1109/LRA.2018.2814637
    [Google Scholar]
  80. Williams E.D. Stebbins M.J. Cavanagh P.R. Haynor D.R. Chu B. Fassbind M.J. Isvilanonda V. Ledoux W.R. The design and validation of a magnetic resonance imaging–compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition. Proc. Inst. Mech. Eng. H 2015 229 10 732 742 10.1177/0954411915606150 26405098
    [Google Scholar]
  81. Jarrahi B. Gassert R. Wanek J. Michels L. Mehnert U. Kollias S.S. Design and application of a new automated fluidic visceral stimulation device for human fMRI studies of interoception. IEEE J. Transl. Eng. Health Med. 2016 4 1 12 10.1109/JTEHM.2016.2538239 27551646
    [Google Scholar]
  82. Mendoza E. Whitney J.P. A testbed for haptic and magnetic resonance imaging-guided percutaneous needle biopsy. IEEE Robot. Autom. Lett. 2019 4 4 3177 3183 10.1109/LRA.2019.2925558
    [Google Scholar]
  83. Zhang Y. Sun L. Liang D. Du H. Design and workspace analysis of a differential motion rotary style breast interventional robot. Appl. Bionics Biomech. 2020 2020 1 15 10.1155/2020/8852228 33488767
    [Google Scholar]
  84. Qiu Y. Wu L. Huang F. Huang Z. Yan Q. Guo J. MRI-Compatible Hydraulic Drive Needle Insertion Robot. 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 2021, pp. 86-92. 10.1109/ICARM52023.2021.9536120
    [Google Scholar]
  85. Frishman S. Kight A. Pirozzi I. Coffey M.C. Daniel B.L. Cutkosky M.R. Enabling in-bore MRI-guided biopsies with force feedback. IEEE Trans. Haptics 2020 13 1 159 166 10.1109/TOH.2020.2967375 31976906
    [Google Scholar]
  86. Dai J. He Z. Fang G. Wang X. Li Y. Cheung C.L. Liang L. Iordachita I. Chang H.C. Kwok K.W. A robotic platform to navigate MRI-guided focused ultrasound system. IEEE Robot. Autom. Lett. 2021 6 3 5137 5144 10.1109/LRA.2021.3068953
    [Google Scholar]
  87. Lin Y. Shi Y. Wang F. Zhang J. Sun H. Wu W. Development and placement accuracy evaluation of an MR conditional robot for prostate intervention. Med. Biol. Eng. Comput. 2021 59 5 1023 1034 10.1007/s11517‑021‑02347‑5 33860444
    [Google Scholar]
  88. Lu M. Zhang Y. Du H. Design and control of a novel magnetic resonance imaging-compatible breast intervention robot. Int. J. Adv. Robot. Syst. 2020 17 3 10.1177/1729881420927853
    [Google Scholar]
  89. Melzer A. Gutmann B. Remmele T. Wolf R. Lukoscheck A. Bock M. Bardenheuer H. Fischer H. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng. Med. Biol. Mag. 2008 27 3 66 73 10.1109/EMB.2007.910274 18519184
    [Google Scholar]
  90. Stoianovici D. Jun C. Lim S. Li P. Petrisor D. Fricke S. Sharma K. Cleary K. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 2018 65 1 165 177 10.1109/TBME.2017.2697766 28459678
    [Google Scholar]
  91. Zhang Y. Li B. Yuan L. Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access 2020 8 218621 218643 10.1109/ACCESS.2020.3041370
    [Google Scholar]
  92. Yu K.K. Hricak H. Imaging prostate cancer. Radiol. Clin. North Am. 2000 38 1 59 85, viii 10.1016/S0033‑8389(05)70150‑0 10664667
    [Google Scholar]
  93. Szegedi M. Boehm C. Paxton A. Rassiah-Szegedi P. Sarkar V. Zhao H. Su F. Kokeny K.E. Lloyd S. Tward J. Salter B.J. Comparison of transperineal ultrasound image guidance technique to transabdominal technique for prostate radiation therapy. Med. Phys. 2020 47 12 6113 6121 10.1002/mp.14522 33020930
    [Google Scholar]
  94. O’Connor L.P. Lebastchi A.H. Horuz R. Rastinehad A.R. Siddiqui M.M. Grummet J. Kastner C. Ahmed H.U. Pinto P.A. Turkbey B. Role of multiparametric prostate MRI in the management of prostate cancer. World J. Urol. 2021 39 3 651 659 10.1007/s00345‑020‑03310‑z 32583039
    [Google Scholar]
  95. Markelj P. Tomaževič D. Likar B. Pernuš F. A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 2012 16 3 642 661 10.1016/j.media.2010.03.005 20452269
    [Google Scholar]
  96. Makni N. Toumi I. Puech P. Issa M. Colot O. Mordon S. Betrouni N. A non-rigid registration and deformation algorithm for ultrasound & MR images to guide prostate cancer therapies 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp.3711-3714. 10.1109/IEMBS.2010.5627656
    [Google Scholar]
  97. Valsecchi A. Damas S. Santamaria J. Evolutionary intensity-based medical image registration: a review. Curr. Med. Imaging Rev. 2014 9 4 283 297 10.2174/15734056113096660003
    [Google Scholar]
  98. Carias M. Comparison of radiofrequency coil configurations for multiple mouse magnetic resonance imaging. Doctoral Dissertation, University of Toronto 2013
    [Google Scholar]
  99. Tennakoon R. Bab-Hadiashar A. Cao Z. Nonlinear approaches in three-dimensional medical image registration. Nonlinear Approaches in Engineering Applications: Applied Mechanics Vibration Control, and Numerical Analysis 2015 251 280 10.1007/978‑3‑319‑09462‑5_10
    [Google Scholar]
  100. Cosse A. Diffeomorphic surface-based registration for MR-US fusion in prostate brachytherapy.Electrotechnical Conference (MELECON) 2012 16th IEEE Mediterranean, IEEE, Electrotechnical Conference (MELECON), Mediterranean, 2012, pp. 903-907. 10.1109/MELCON.2012.6196575
    [Google Scholar]
  101. Jun Xie Yifeng Jiang Hung-tat Tsui Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imaging 2005 24 1 45 57 10.1109/TMI.2004.837792 15638185
    [Google Scholar]
  102. Hennersperger C. Fuerst B. Virga S. Zettinig O. Frisch B. Neff T. Navab N. Towards MRI-based autonomous robotic US acquisitions: a first feasibility study. IEEE Trans. Med. Imaging 2017 36 2 538 548 10.1109/TMI.2016.2620723 27831861
    [Google Scholar]
  103. Ahmadi S.A. Milletari F. Navab N. Schuberth M. Plate A. Bötzel K. 3D transcranial ultrasound as a novel intra-operative imaging technique for DBS surgery: a feasibility study. Int. J. CARS 2015 10 6 891 900 10.1007/s11548‑015‑1191‑4 25861056
    [Google Scholar]
  104. Palladino L. Maris B. Antonelli A. Fiorini P. Autonomy in robotic prostate biopsy through AI-assisted fusion. 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 2021, pp. 142-147. 10.1109/ICAR53236.2021.9659396
    [Google Scholar]
  105. Shakeri S. Menard C. Lopes R. Kadoury S. Deformable MRI-TRUS surface registration from statistical deformation models of the prostate. Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling 2019 10951 504 510
    [Google Scholar]
  106. Vitrani M.A. Baumann M. Reversat D. Morel G. Moreau-Gaudry A. Mozer P. Prostate biopsies assisted by comanipulated probe-holder: first in man. Int. J. CARS 2016 11 6 1153 1161 10.1007/s11548‑016‑1399‑y 27072834
    [Google Scholar]
  107. Wang L. Zhang Y. Zuo S. Xu Y. A review of the research progress of interventional medical equipment and methods for prostate cancer. Int. J. Med. Robot. 2021 17 5 e2303 10.1002/rcs.2303 34231317
    [Google Scholar]
  108. Fichtinger G. Fiene J.P. Kennedy C.W. Kronreif G. Iordachita I. Song D.Y. Burdette E.C. Kazanzides P. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 2008 12 5 535 545 10.1016/j.media.2008.06.002 18650122
    [Google Scholar]
  109. Song D.Y. Burdette E.C. Fiene J. Armour E. Kronreif G. Deguet A. Zhang Z. Iordachita I. Fichtinger G. Kazanzides P. Robotic needle guide for prostate brachytherapy: Clinical testing of feasibility and performance. Brachytherapy 2011 10 1 57 63 10.1016/j.brachy.2010.01.003 20729152
    [Google Scholar]
  110. Zhang Y. Bi J. Zhang W. Du H. Xu Y. Bi, W. Zhang, H. Du, and Y. Xu, “Recent advances in registration methods for MRI-TRUS fusion image-guided interventions of prostate”. Recent Pat. Eng. 2017 11 2 115 124 10.2174/1872212110666161201115248
    [Google Scholar]
/content/journals/eng/10.2174/0118722121286139240827074802
Loading
/content/journals/eng/10.2174/0118722121286139240827074802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test