Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

When computerized numerical control (CNC) machine tools are working, the electric spindle generates serious heat, which can easily cause the thermal elongation of the spindle and generate thermal errors. Designing cooling devices to control the generation of thermal errors in the spindle and utilizing thermal error compensation techniques for error compensation are essential for improving machining quality and productivity.

Objective

By summarizing the current status of research on cooling devices and compensation technology of electric spindles in recent years, some conclusions have been drawn in this work to propose the future research direction.

Methods

By reviewing patents on cooling devices and thermal error compensation technology of high-speed electric spindles published in recent years, we have explored the ideas for the improvement of existing cooling devices and compensation technology.

Results

Some problems of the patents on current cooling devices and thermal error compensation technology are analyzed, and future research directions are proposed, respectively.

Conclusion

As spindle power and speed continue to increase, the existing spindle cooling device and compensation technology also need to be continuously improved. Designers use intelligent technology to monitor the temperature changes during the work of the spindle and fast and accurate control of the cooling system so that the high-speed spindle cooling device tends to be intelligent. Aiming at the thermal error generated in the spindle working process, the designer enhances the error compensation effect by continuously improving and upgrading the key steps in the thermal error compensation technology, which in turn improves the spindle machining accuracy.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121280172231228102221
2024-02-13
2025-07-09
Loading full text...

Full text loading...

References

  1. ChenE.P. LiS.H. WuF.H. JiangC.M. Structure design of biaxial rotary milling head with high-torque, high-precision and mechanical spindle.Key Eng. Mater.2014335162133734510.4028/www.scientific.net/KEM.621.337
    [Google Scholar]
  2. AbeleE. AltintasY. BrecherC. Machine tool spindle units.CIRP Annals – Manufacturing Technology.Elsevier20105978180210.1016/j.cirp.2010.05.002
    [Google Scholar]
  3. MayrJ. JedrzejewskiJ. UhlmannE. WegenerK. Thermal issues in machine tools.CIRP Annals - Manufact. Technol.201261277179110.1016/j.cirp.2012.05.008
    [Google Scholar]
  4. LiY. ZhaoW. LanS. NiJ. WuW. LuB. A review on spindle thermal error compensation in machine tools.Int. J. Mach. Tools Manuf.201595203810.1016/j.ijmachtools.2015.04.008
    [Google Scholar]
  5. TruongD.S. KimB-S. RoS-K. An analysis of a thermally affected high-speed spindle with angular contact ball bearings.Tribol. Int.202115710688110.1016/j.triboint.2021.106881
    [Google Scholar]
  6. XiaL. ChenG. WuT. GaoY. MohammadzadehA. GhaderpourE. Optimal intelligent control for doubly fed induction generators.Mathematics2022111202010.3390/math11010020
    [Google Scholar]
  7. BobyrM.V. YakushevA.S. DorodnykhA.A. Fuzzy devices for cooling the cutting tool of the CNC machine implemented on FPGA.Measurement202015210737810737810.1016/j.measurement.2019.107378
    [Google Scholar]
  8. SunY.J. Thermal Characteristics Mechanism Analysis and Cooling Experiment Study of Motorized Spindle.Master's Degree, Harbin University of Science and Technology, Harbin, China.2019
    [Google Scholar]
  9. WangK. LiuJ.X. SunX.W. Comparative fluid-solid coupling analysis of spiral channel and axial channel water cooling system.Modul. Mach. Tool Automat. Manufact. Techni.201411464810.13462/j.cnki.mmtamt.2014.11.012
    [Google Scholar]
  10. GuoZ. FuL. TangY.H. XuY.J. A double helix cooling structure.C.N. Patent 114598107A2022
    [Google Scholar]
  11. ShenJ. A spiral circulating cooling water jacket.CN Patent 203600571U2014
    [Google Scholar]
  12. CuiS.L. LiJ. Cooling structure of double helical circuit electric spindle.CN Patent 215903315U2022
    [Google Scholar]
  13. DaiY. YinX.M. XuanL.Y. WangJ.H. WenW.J. GaoY.F. A kind of bidirectional double helix cooling water jacket.CN Patent 110052890A2019
    [Google Scholar]
  14. XiaC. FuJ. LaiJ. YaoX. ChenZ. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling.Appl. Therm. Eng.2015901032104210.1016/j.applthermaleng.2015.07.024
    [Google Scholar]
  15. EricL. YannickP. Jean-PhilippeD. MartinH. Jean-PhilippeD. MathieuL. FrancoisD. Electric machine provided with an enclosed cooling assembly paired to an open cooling assembly.US Patent 11218057B22022
    [Google Scholar]
  16. WuM.Y. ZhangG.X. ZhangY.L. ZhangJ.Y ChengY.N. A kind of high-efficiency electric spindle cooling jacket for easy installation.CN. Patent 214263911U2021
    [Google Scholar]
  17. ZhangG.Q. WuZ.J. RaoZ.H. FuL.P. Experimental invesitigation on heat pipe cooling effect for power battery.Chem. Ind. Eng. Prog.2009281165116810.16085/j.issn.1000‑6613.2009.07.032
    [Google Scholar]
  18. LiS.F. LiuZ. Parametric study of rotating heat pipe performance: A review.Renew. Sustain. Energy Rev.2020117C10948210948210.1016/j.rser.2019.109482
    [Google Scholar]
  19. HassettT. HodowanecM. Electric motor with heat pipes.US Patent 8283818 B22019
    [Google Scholar]
  20. FedoseyevL. PearceE.M. Rotor assembly with heat pipe cooling system. applied for by tesla motors.US Patent 9331552B22016
    [Google Scholar]
  21. PonnappanR. BeamJ.E. LelandJ.E. Spray cooled con- denser for an integral heat pipe shaft in high power motors and generators.US Patent 5629573A11997
    [Google Scholar]
  22. DongQ.J. ChenC.L. Motor rotor cooling with rotation heat pipes.US Patent 7433062B22008
    [Google Scholar]
  23. JuddR.L. AftabK. ElbestawiM.A. An investigation of the use of heat pipes for machine tool spindle bearing cooling.Int. J. Mach. Tools Manuf.19943471031104310.1016/0890‑6955(94)90033‑7
    [Google Scholar]
  24. AboutalebiM. Nikravan MoghaddamA.M. MohammadiN. ShafiiM.B. Experimental investigation on performance of a rotating closed loop pulsating heat pipe.Int. Commun. Heat Mass Transf.20134513714510.1016/j.icheatmasstransfer.2013.04.008
    [Google Scholar]
  25. WakaokaT. KishimotoA. MiuraT. Sheet-shaped heat pipe.US Patent 10544994B22020
    [Google Scholar]
  26. LiangF. GaoJ. XuL. Investigation on a grinding motorized spindle with miniature-revolving-heat-pipes central cooling structure.Int. Commun. Heat Mass Transf.2020112C10450210450210.1016/j.icheatmasstransfer.2020.104502
    [Google Scholar]
  27. MisaleM. FrogheriM. Stabilization of a single-phase natural circulation loop by pressure drops.Exp. Therm. Fluid Sci.200125527728210.1016/S0894‑1777(01)00075‑9
    [Google Scholar]
  28. GaoJ.M. A flexible heat pipe for surface cooling of high-speed electric spindle rotor.CN Patent 108568703B2020
    [Google Scholar]
  29. GaoJ.M. LiF.J. ShiX.J. TangR. XuL. A high-speed and high-precision electric spindle based on pulsating heat pipe cooling structure.CN Patent 105798701B2019
    [Google Scholar]
  30. GaoJ.M. LiF.J. ShiX.J. XuL. ZhuK. LiY.L. An electric spindle based on improved rotary heat pipe axial cooling.CN Patent 107617751B2019
    [Google Scholar]
  31. GaoJ.M. LiF.J. ShiX.J. XuL. LiangF. LiY.L. A high-speed and high-precision electric spindle based on a single-loop thermal siphon cooling structure.CN Patent 106685129BU2019
    [Google Scholar]
  32. ShimadaA. Magnetic bearing device.US Patent 0163962A12006
    [Google Scholar]
  33. AllisonJ.M. StaatsW.L. McCarthyM. JenicekD. EdohA.K. LangJ.H. WangE.N. BrissonJ.G. Enhancement of convective heat transfer in an air-cooled heat exchanger using interdigitated impeller blades.Int. J. Heat Mass Transf.20115421-224549455910.1016/j.ijheatmasstransfer.2011.06.023
    [Google Scholar]
  34. ColtonM.W. Cooling air flow system for a self contained motor generator set.US Patent 5678512A1997
    [Google Scholar]
  35. QiangH. YuanS. FengzhangR. LiliL. Alex AV. Numerical simulation and experimental study of the air-cooled motorized spindle.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2017231122357236910.1177/0954406216631781
    [Google Scholar]
  36. WengY.C. ChenC.H. YenH.C. Heat Dissipation Apparatus for Motors.US Patent 0134174A12016
    [Google Scholar]
  37. SunZ.D. XiaoY. GuiL.Y. XuK.F. Air-cooled electric spindle. CN Patent 212210750U2020
    [Google Scholar]
  38. WangZ. TangX.Q. A spindle device with built-in air cooling system.CN Patent 207372308U2018
    [Google Scholar]
  39. QianC. QianH.Q. An air-cooled electric spindle.CN Patent 204013076U2014
    [Google Scholar]
  40. HeZ.T. LiuY.L. GengJ.Q. WangP. An air-cooled cooling device for electric spindle.CN. Patent 110774052BU2021
    [Google Scholar]
  41. ClinJ.M. Cooling/lubricating device for machine tool feed shaft.US Patent 84439412013
    [Google Scholar]
  42. ChengY.N. ZhangX.P. ZhangG.X. JiangW.Q. LiB.W. An efficient core cooling device for high-speed electric spindle.CN Patent 113231885A2021
    [Google Scholar]
  43. MurakamiS. IkedaM. OkazawaT. Stator cooling structure.US Patent 3975392A12020
    [Google Scholar]
  44. TangY. JingX. LiW. HeY. YaoJ. Analysis of influence of different convex structures on cooling effect of rectangular water channel of motorized spindle.Appl. Therm. Eng.202119811747810.1016/j.applthermaleng.2021.117478
    [Google Scholar]
  45. LiX.B. YuG.M. TangJ. LiW. CaiM.F. Cooling water flow detection device for electric spindle.CN Patent 201833230U2011
    [Google Scholar]
  46. ChenN. An electric spindle operation cooling water circulation control device.CN Patent 107186544A2017
    [Google Scholar]
  47. LiX.H. LiC. LiZ.P. LiS. ZhongP.H. A real-time cooling system and control method of electric spindle with automatic flow adjustment.CN Patent 107160237A2017
    [Google Scholar]
  48. WuG.F. YeS. X. ZhanB. A real-time cooling system for electric spindle with automatic flow adjustment.CN Patent 212095552U2020
    [Google Scholar]
  49. YuW. Q. ZhangB. D. ZhangW. A spindle temperature monitoring device.CN Patent 215526475U2022
    [Google Scholar]
  50. WeiS.J. LiK.Y. LiaoY.H. LuoS.J. XiaoS.H. LinS.J. Temperature control system and its method.CN Patent 110837262B2021
    [Google Scholar]
  51. YaoX.H. LuanC.C. FuJ.Z. HeY. ChenZ.C. LaiJ.T. A temperature self-detecting electric spindle cooling device.CN Patent 104190958B2016
    [Google Scholar]
  52. LiuZ.L. A device for improving the temperature control accuracy of cooling equipment of electric spindle of CNC machine tool.CN Patent 210499488U2020
    [Google Scholar]
  53. LiZ. WangQ. ZhuB. WangB. ZhuW. DaiY. Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine.Case Stud. Therm. Eng.20223910243210.1016/j.csite.2022.102432
    [Google Scholar]
  54. AttiaM.H. FraserS. A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures.Int. J. Mach. Tools Manuf.19993961001101610.1016/S0890‑6955(98)00063‑7
    [Google Scholar]
  55. SarhanA.A.D. Investigate the spindle errors motions from thermal change for high-precision CNC machining capability.Int. J. Adv. Manuf. Technol.2014705-895796310.1007/s00170‑013‑5339‑5
    [Google Scholar]
  56. PahkH. LeeS.W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error.Int. J. Adv. Manuf. Technol.200220748749410.1007/s001700200182
    [Google Scholar]
  57. FujishimaM. NarimatsuK. IrinoN. MoriM. IbarakiS. Adaptive thermal displacement compensation method based on deep learning.CIRO J. Manuf. Sci. Technol.201925222510.1016/j.cirpj.2019.04.002
    [Google Scholar]
  58. CastroH.F.F. A method for evaluating spindle rotation errors of machine tools using a laser interferometer.Measurement200841552653710.1016/j.measurement.2007.06.002
    [Google Scholar]
  59. YangM. LeeJ. Measurement and prediction of thermal errors of a CNC machining center using two spherical balls.J. Mater. Process. Technol.1998751-318018910.1016/S0924‑0136(97)00316‑6
    [Google Scholar]
  60. YangS-H. KimK-H. ParkY.K. Measurement of spindle thermal errors in machine tool using hemispherical ball bar test.Int. J. Mach. Tools Manuf.2004442-333334010.1016/j.ijmachtools.2003.08.010
    [Google Scholar]
  61. ChengY. ZhangX. ZhangG. JiangW. LiB. Thermal deformation analysis and compensation of the direct-drive five-axis CNC milling head.J. Mech. Sci. Technol.20223694681469410.1007/s12206‑022‑0829‑8
    [Google Scholar]
  62. GuoQ. YangJ. WuH. Application of ACO-BPN to thermal error modeling of NC machine tool.Int. J. Adv. Manuf. Technol.2010505-866767510.1007/s00170‑010‑2520‑y
    [Google Scholar]
  63. LiY.X. YangJ.G. GelvisT. LiY.Y. Optimization of measuring points for machine tool thermal error based on grey system theory.Int. J. Adv. Manuf. Technol.2008357-874575010.1007/s00170‑006‑0751‑8
    [Google Scholar]
  64. YanJ.Y. YangJ.G. Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation.Int. J. Adv. Manuf. Technol.20094311-121124113210.1007/s00170‑008‑1791‑z
    [Google Scholar]
  65. LeeD.S. ChoiJ.Y. ChoiD.H. ICA based thermal source extraction and thermal distortion compensation method for a machine tool.Int. J. Mach. Tools Manuf.200343658959710.1016/S0890‑6955(03)00017‑8
    [Google Scholar]
  66. WangH. HuangQ. YangH. In-line statistical monitoring of machine tool thermal error through latent variable modeling.J. Manuf. Syst.200625427929210.1016/S0278‑6125(06)80240‑2
    [Google Scholar]
  67. HanJ. WangL. WangH. ChengN. A new thermal error modeling method for CNC machine tools.Int. J. Adv. Manuf. Technol.2012621-420521210.1007/s00170‑011‑3796‑2
    [Google Scholar]
  68. LiG.L. TangX.D. LiZ.Y. XuK. The temperature-sensitive point screening for spindle thermal error modeling based on IBGOA-feature selection.Prec. Eng.20227314015210.1016/j.precisioneng.2021.08.021
    [Google Scholar]
  69. ChengQ. QiZ. ZhangG. Manufacturing; Investigators at Shantou University Detail Findings in Manufacturing (Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks).Int. Net. Commun.2016
    [Google Scholar]
  70. VyroubalJ. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method.Precis. Eng.201236112112710.1016/j.precisioneng.2011.07.013
    [Google Scholar]
  71. LeeJ-H. YangS-H. Statistical optimization and assessment of a thermal error model for CNC machine tools.Int. J. Mach. Tools Manuf.200242114715510.1016/S0890‑6955(01)00110‑9
    [Google Scholar]
  72. VeldhuisS.C. ElbestawiM.A. A strategy for the compensation of errors in five-axis machining.CIRP Annals - Manufact. Technol.199544137337710.1016/S0007‑8506(07)62345‑2
    [Google Scholar]
  73. LiY. ZhaoW. WuW. LuB. Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction.Int. J. Adv. Manuf. Technol.2017909-122803281210.1007/s00170‑016‑9594‑0
    [Google Scholar]
  74. LiuX.L. SongH.W. WuS. Selection method of temperature sensitive point for thermal error modeling of double rotary table five-axis CNC machine tool.CN. Patent 109765846B2022
    [Google Scholar]
  75. NielsW. JanK. FrankW. JürgenK. Predicting thermal displacements in modular tool systems.Chaos2004141923
    [Google Scholar]
  76. OuafiA.E. GuillotM. BarkaN. An integrated modeling approach for ann-based real-time thermal error compensation on a CNC turning center.Adv. Mat. Res.201366466490791510.4028/www.scientific.net/AMR.664.907
    [Google Scholar]
  77. BlaserP. PavličekF. MoriK. MayrJ. WeikertS. WegenerK. Adaptive learning control for thermal error compensation of 5-axis machine tools.J. Manuf. Syst.20174430230910.1016/j.jmsy.2017.04.011
    [Google Scholar]
  78. ZapłataJ. PajorM. Piecewise compensation of thermal errors of a ball screw driven CNC axis.Precis. Eng.201960C16016610.1016/j.precisioneng.2019.07.011
    [Google Scholar]
  79. RameshR. MannanM.A. PooA.N. Support vector machines model for classification of thermal error in machine tools.Int. J. Adv. Manuf. Technol.200220211412010.1007/s001700200132
    [Google Scholar]
  80. ZhangY. YangJ. JiangH. Machine tool thermal error modeling and prediction by grey neural network.Int. J. Adv. Manuf. Technol.2012599-121065107210.1007/s00170‑011‑3564‑3
    [Google Scholar]
  81. WeiX.Y. YeH.H. MiaoE.M. PanQ.S. Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools.Precis Eng.202277657610.1016/J.PRECISIONENG.2022.05.008
    [Google Scholar]
  82. ShiH. JiangC. YanZ. TaoT. MeiX. Bayesian neural network–based thermal error modeling of feed drive system of CNC machine tool.Int. J. Adv. Manuf. Technol.20201089-103031304410.1007/s00170‑020‑05541‑1
    [Google Scholar]
  83. LiB. TianX. ZhangM. Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network.Int. J. Adv. Manuf. Technol.20191051-41497150510.1007/s00170‑019‑04375‑w
    [Google Scholar]
  84. AbdulshahedA.M. LongstaffA.P. FletcherS. The application of ANFIS prediction models for thermal error compensation on CNC machine tools.Appl. Soft Comput.20152715816810.1016/j.asoc.2014.11.012
    [Google Scholar]
  85. LiZ. ZhuB. DaiY. ZhuW. WangQ. WangB. Research on thermal error modeling of motorized spindle based on bp neural network optimized by beetle antennae search algorithm.Machines202191128628610.3390/machines9110286
    [Google Scholar]
  86. YangJ. ShiH. FengB. ZhaoL. MaC. MeiX. Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine.Procedia CIRP20141769870310.1016/j.procir.2014.01.080
    [Google Scholar]
  87. HaoW. HongtaoZ. QianjianG. XiushanW. JianguoY. Thermal error optimization modeling and real-time compensation on a CNC turning center.J. Mater. Process. Technol.20082071-317217910.1016/j.jmatprotec.2007.12.067
    [Google Scholar]
  88. HuangZ. LiuY. DuL. YangH. Thermal error analysis, modeling and compensation of five-axis machine tools.J. Mech. Sci. Technol.202034104295430510.1007/s12206‑020‑0920‑y
    [Google Scholar]
  89. DaiY. PangJ. LiZ. LiW. WangQ. LiS. Modeling of thermal error electric spindle based on KELM ameliorated by snake optimization.Case Stud. Therm. Eng.20224010250410.1016/j.csite.2022.102504
    [Google Scholar]
  90. PostlethwaiteS.R. AllenJ.P. FordD.G. Machine tool thermal error reduction-an appraisal.Proc. Inst. Mech. Eng., B J. Eng. Manuf.199921311910.1177/095440549921300101
    [Google Scholar]
  91. LiY. ZhaoW. ZhaoW.H. ZhangX.Y. ZhuX. Axial thermal error compensation method for the spindle of the precision horizontal machining center.Modul. Mach. Tool Automat. Manufact. Techniq.2012462082319232310.1109/ICMA.2012.6285706
    [Google Scholar]
  92. LiY. QuH. DaiY. ZhanS.Q. Research advances in thermal error compensation technology for motorized spindle.Aeronaut. Manufact. Technol.202265118797
    [Google Scholar]
  93. MayrJ. MüllerM. WeikertS. Automated thermal main spindle & B-axis error compensation of 5-axis machine tools.CIRP Ann.201665147948210.1016/j.cirp.2016.04.018
    [Google Scholar]
  94. MarešM. HorejšO. HavlíkL. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece.Precis. Eng.202066213010.1016/j.precisioneng.2020.06.010
    [Google Scholar]
  95. Narendra ReddyT. ShanmugarajV. VinodP. Gopi KrishnaS. Real-time thermal error compensation strategy for precision machine tools.Mater. Today Proc.20202242386239610.1016/j.matpr.2020.03.363
    [Google Scholar]
  96. LiuK. QinB. LiX. GanY.Q. HaW. HuangR.J. WangY.Q. A spindle thermal error compensation method insensitive to cooling system disturbance.CN Patent 109739182B2020
    [Google Scholar]
  97. LuoH.P. LiuY.J. BiY. LiZ.D. ChenR. ShaoY. MaG.Y. MiaoS. JiJ. BaiY.J. LiuB. LiT. ChenG. QiB. FengZ.Y. LvZ. LvB. BaiY. Real-time compensation method of thermal elongation error of CNC machine tool spindle based on PMC control.CN Patent 107861470A2018
    [Google Scholar]
  98. HsiehM.C. MauryaS.N. LuoW.J. LiK.Y. HaoL. Coolant volume prediction for spindle cooler with adaptive neuro-fuzzy inference system control method.Sensor. Mater.2022346244710.18494/SAM3794
    [Google Scholar]
/content/journals/eng/10.2174/0118722121280172231228102221
Loading
/content/journals/eng/10.2174/0118722121280172231228102221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test