Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

One of the main directions of modern technology in the field of precision machining is high-speed operation. The spindle system is commonly utilized in this kind of operation, and the electric spindle is the main preference among high-speed machine tool spindles.

Objective

High-speed electric spindle vibration characteristics affect the machining accuracy of the machine tool and the quality of the workpiece, so the research on high-speed electric spindle vibration characteristics has important engineering practical significance.

Methods

The research status of high-speed electrospindle at home and abroad has been summarized in this paper. Combined with the patents related to the dynamics modelling of electrospindle, the research on the dynamics modelling of high-speed electrospindle is analyzed. On this basis, the computational and analytical methods for the vibration modelling of the electrospindle, including the transfer matrix method and the finite element method, are investigated, the theoretical foundations of these methods are discussed in depth, and the advantages and disadvantages of the methods are evaluated. The applicability and limitations of the two methods are also compared.

Results

The analysis has shown that the current research on the vibration characteristics of high-speed electrospindle is mainly based on mechanical modal analysis and electromagnetic analysis. At present, the dynamic modeling of the electrospindle mainly includes bearing modeling, shaft bearing modeling, spindle-case modeling, electrospindle electromechanical coupling modeling, electrospindle thermal coupling modeling, . The correctness of the modelling theory is verified through experimental and simulation results. Although these models tend to be perfected, they are still insufficient in the case of multiple influencing factors coupling and need further development.

Conclusion

Finally, through the analysis of the patent and dynamic characteristics related to the high-speed electric spindle, thermal deformation, magnetic tension, material, and other factors should be considered comprehensively, and these factors should be coupled to establish an overall dynamics model for the vibration characteristics analysis. The dynamic modelling, vibration modelling method, and vibration characteristics of the high-speed electric spindle have been summarized in this study, and the outlook is presented.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121271162231128045700
2023-12-04
2025-02-17
Loading full text...

Full text loading...

References

  1. HuangD. Dynamics modeling and vibration characteristics study of high-speed electric spindlePh.D. thesis, Zhejiang University, Zhejiang, China2018
    [Google Scholar]
  2. El-HanbaliA. FahoumA.A. The development and validation of an autonomous UVC (ultraviolet - c) disinfection robot system.Int. J. Emerg. Technol. Adv. Eng.20221212
    [Google Scholar]
  3. HouP.P. Study on vibration characteristics of speed ball bearings and its extended characterization methodPh.D. thesis, Harbin Institute of Technology, Harbin, China2021
    [Google Scholar]
  4. QiaoX.L. ZhuC.S. Active control of multi-frequency vibration in permanent magnet type electric spindles.Zhongguo Jixie Gongcheng2014252162168
    [Google Scholar]
  5. ChenX.A. ZhangP. HeY. LiuJ.F. High-speed electric spindle axial vibration studyVibration & shock201433207074-90Available From: [https://en.czjst.com/products_list/1.html?gclid=EAIaIQobChMI64Lvwo_ZgQMV5kJBAh2Y1g_7EAAYASAAEgI2xPD_BwE]
    [Google Scholar]
  6. TsedanZ. TianW. HeC.Y. YangJ.B. Research on vibration characteristics of electric spindles based on experimental modal analysis.J. Hai Uni.20143251320
    [Google Scholar]
  7. MañéI. GagnolV. BouzgarrouB.C. RayP. Stability-based spindle speed control during flexible work piece high-speed milling.Int. J. Mach. Tools Manuf.200848218419410.1016/j.ijmachtools.2007.08.018
    [Google Scholar]
  8. XuJ. ZhengX.H. ZhangJ.J. LiuX. Vibration characteristics of unbalance response for motorized spindle system.Procedia. Engg.2017174331340
    [Google Scholar]
  9. PandaK.C. DuttJ.K. Optimum support characteristics for rotor–shaft system with preloaded rolling element bearings.J. Sound Vibrat.2003260473175510.1016/S0022‑460X(02)01071‑4
    [Google Scholar]
  10. AlfaresM.A. ElsharkawyA.A. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system.J. Mater. Process. Technol.20031361-34859
    [Google Scholar]
  11. XuG.H. CaiY.F. XuY.T. FuJ.Z. GuM.J. A dynamic loading vibration test system for electric spindleC. N. Patent, 208, 383, 298U2019
    [Google Scholar]
  12. JorgensenB. ShinY.C. Dynamics of Spindle-bearing system at high speed including cutting load effects.J. Manuf. Sci. Eng.199812038739410.1115/1.2830138
    [Google Scholar]
  13. JiangS.Y. LinS.Y. A design method for dynamic performance of electric spindle of rolling bearing based on optimal preloadC. N. Patent, 109, 063, 384A2018
    [Google Scholar]
  14. PengB.Y. YinG.F. JiangH. HuT. ZhongK.Y. ZhengY.L. Theoretical modeling and experimental study of machining center electric spindle dynamics analysis.J. Sichuan Uni.2011434249253
    [Google Scholar]
  15. ZhaoC. WangH.J. ZhangH.C. XuY.C. Analysis of modal recognition and high-speed effects under high-speed electric spindle operation.Mach. Sci. Technol.2016356846852
    [Google Scholar]
  16. Al-FahoumA. GhobonT. An applied approach for speed estimation of induction motors using sensorless flux observer system with sliding mode field oriented control.Int. J. Electric. Engg. & Tech. (IJEET)2020116109122
    [Google Scholar]
  17. ChenX.A. KangM.H. HeY. ChenM. MiaoY.Y. ChenW.Q. Analysis of dynamic performance of high-speed electric spindle under speed sensor vector control.Jixie Gongcheng Xuebao20104679610110.3901/JME.2010.07.096
    [Google Scholar]
  18. WangL.Y. Analysis of electromagnetic force and loss of ceramic electric spindleM.S. Thesis, Shenyang University of Architecture, Liaoning, China2012
    [Google Scholar]
  19. WangW. WangH. ShenH.H. Analysis of electromagnetic force and vibration characteristics for transverse flux permanent magnet motor2016 Chinese Control and Decision Conference (CCDC), 2016, pp. 6929-6934 Yinchuan, China10.1109/CCDC.2016.7532247
    [Google Scholar]
  20. ZhangW. Harmonic analysis of air-gap potential of multi-phase induction motor.Micromotor201043258
    [Google Scholar]
  21. Wang HeW.Z. DuS.Y. YuanZ. Study on the unbalanced fault dynamic characteristics of eccentric motorized spindle considering the effect of magnetic PullShock & Vibration2021202119
    [Google Scholar]
  22. LiuJ. LaiT. ChenX. Dynamics analysis of unbalanced motorized spindles supported on ball bearings.Shock Vib.20162016211010.1155/2016/2787524
    [Google Scholar]
  23. FengW. ZhangK. LiuZ.Y. LiuB.G. Modeling and analysis of unbalanced magnetic pull in synchronous motorized spindle considering magneto-thermal couplingResearch Square2021
    [Google Scholar]
  24. HeZ.H. WangY.K. LiJ.B. FanR. WeiM. Nature of electromagnetic torque coefficient of power system and its calculation method.Journal of Power Systems and Automation20212318691
    [Google Scholar]
  25. AbeleE. AltintasY. BrecherC. Machine tool spindle units.CIRP Annals201059278180210.1016/j.cirp.2010.05.002
    [Google Scholar]
  26. DengS.E. JiaQ.Y. Rolling bearing design principleBeijingChina Standard Publishing House2008
    [Google Scholar]
  27. JonesA.B. Ball Motion and Sliding Friction in Ball Bearings.J. Basic Eng.195981111210.1115/1.4008346
    [Google Scholar]
  28. HarrisT.A. MindelM.H. Rolling element bearing dynamics.Wear197323331133710.1016/0043‑1648(73)90020‑3
    [Google Scholar]
  29. YuZ.Z. JinM. LiuZ. WangF. LiC.G. ZhangJ.J. DingL. A sliding bearing modeling method based on ADAMSC.N. Patent, 109, 583, 079A2019
    [Google Scholar]
  30. LiuS.Q. ZongQ.H. BianZ.G. A method for modeling magnetic levitation bearings under multi-parameter uncertaintiesC.N. Patent, 112, 784, 452A2021
    [Google Scholar]
  31. GaoC.L. Simulation and analysis of rolling bearing dynamics.Mech. Design & Manufac.20112193195
    [Google Scholar]
  32. DongH. ZhuX.Z. ChenL. Analysis of vibration characteristics of spindle-bearing of high-speed milling machine.J. Liaoning Uni. Petrol. & Chem. Tech.202141015660
    [Google Scholar]
  33. GagnolV. BouzgarrouB.C. RayP. BarraC. Modelling approach for a high speed machine tool spindle-bearing system.IDETC-CIE200530531310.1115/DETC2005‑84681
    [Google Scholar]
  34. CaoY. AltintasY. A general method for the modeling of spindle-bearing systems.J. Mech. Des.200412661089110410.1115/1.1802311
    [Google Scholar]
  35. CaoY. AltintasY. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations.Int. J. Mach. Tools Manuf.20074791342135010.1016/j.ijmachtools.2006.08.006
    [Google Scholar]
  36. ZhuC.F. Theoretical modeling and experimental verification of spindle bearing system dynamics.Modern Vibra. & Noise201210
    [Google Scholar]
  37. LiH. ShinY.C. Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: model development.J. Manuf. Sci. Eng.2004126114815810.1115/1.1644545
    [Google Scholar]
  38. LiH. ShinY.C. Integrated dynamic thermo-mechanical modeling of high speed spindles, part 2: solution procedure and validations.J. Manuf. Sci. Eng.2004126115916810.1115/1.1644546
    [Google Scholar]
  39. LiH. ShinY.C. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo mechanical spindle model.Int. J. Mach. Tools Manuf.200444434736410.1016/j.ijmachtools.2003.10.011
    [Google Scholar]
  40. HuangB.W. KungH.K. Variations of instability in a rotating spindle system with various bearings.Int. J. Mech. Sci.2003451577210.1016/S0020‑7403(03)00039‑0
    [Google Scholar]
  41. LinY.H. LinS.C. Optimal weight design of rotor systems with oil-film bearings subjected to frequency constraints.FiniteElem. Anal. Des.2001371077779810.1016/S0168‑874X(00)00072‑X
    [Google Scholar]
  42. LinY.H. YuH.C. Active modal control of a flexible rotor.Mech. Syst. Signal Process.20041851117113110.1016/j.ymssp.2003.10.004
    [Google Scholar]
  43. LinC.W. TuJ.F. KammanJ. An integrated thermomechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation.Int. J. Mach. Tools Manuf.200343101035105010.1016/S0890‑6955(03)00091‑9
    [Google Scholar]
  44. ChenJ.S. ChenK-W. Bearing load analysis and control of a motorized high speed spindle.Int. J. Mach. Tools Manuf.20054512-131487149310.1016/j.ijmachtools.2005.01.024
    [Google Scholar]
  45. ChenC. Research on dynamic loading reliability test of high-speed electric spindle and its fault diagnosisPh.D. Thesis, Jilin University, Jilin, China2016
    [Google Scholar]
  46. LiG.X. YangY. Research on vibration characteristics of hobbing spindle of CNC hobbing machine.Jixie Gongcheng Xuebao201753113013910.3901/JME.2017.01.130
    [Google Scholar]
  47. AmiratY. BenbouzidM. BensakerB. WamkeueR. Condition Monitoring and ault Diagnosis in Wind Energy Conversion Systems: A Review2007 IEEE International Electric Machines and Drives Conference, 2007pp. 1434-1439 Antalya, Turkey.10.1109/IEMDC.2007.383639
    [Google Scholar]
  48. LiuC.Y. ZhengF. WangL.P. Spindle-case vibration transmission mechanics model in high-speed electric spindles.J. Tsinghua Uni.20185807671676
    [Google Scholar]
  49. GaoF. ChengM. LiY. Analysis of coupled vibration characteristics of PMS grinding motorized spindle.J. Mech. Sci. Technol.20203493497351510.1007/s12206‑020‑0802‑3
    [Google Scholar]
  50. LvL. Research on the design method of high-speed grinding electric spindle system based on electromechanical coupling dynamicsPh.D. Thesis, Hunan University, Hunan, China2010
    [Google Scholar]
  51. KangM.H. LiH.Q. MengJ. LiuD.S. DengC.H. ZhouZ.J. HuB.J. Modeling and simulation study of electromechanical coupling of high-speed electric spindle.J. Hunan Uni. Sci. & Tech.201227041822
    [Google Scholar]
  52. BrecherC. SpachtholzG. PaepenmüllerF. Developments for high performance machine tool spindles.CIRP Ann.200756139539910.1016/j.cirp.2007.05.092
    [Google Scholar]
  53. JorgensenB.R. ShinY.C. Dynamics of machine tool spindle/bearing systems under thermal growth.J. Tribol.1997119487588210.1115/1.2833899
    [Google Scholar]
  54. ChenX.A. ZhangP. LiuJ.F. HeY. Multi-field coupling dynamics of high-speed electric spindle.J. Vibration Engg.2013263303310
    [Google Scholar]
  55. ChenX.A. ZhangP. HeY. LiuJ.F. High-speed electric spindle power flow model and thermal state characteristics study.Mashin/Ha-Yi Kishavarzi2013449251254
    [Google Scholar]
  56. MengJ. ChenX.A. HeY. Electromechanical coupling dynamics modeling of high-speed electric spindle motor-spindle system.Jixie Gongcheng Xuebao20071216016510.3901/JME.2007.12.160
    [Google Scholar]
  57. YamazakiK. IshigamiH. Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses.IEEE Trans. Ind. Electron.2010571616910.1109/TIE.2009.2025285
    [Google Scholar]
  58. IshibashiF. MatsushitaM. NodaS. Harmonic electromagnetic forces in induction motors.IEEJ Transactions on Industry App.2009129437538110.1541/ieejias.129.375
    [Google Scholar]
  59. VerdyckD. BelmansR. GeysenW. An acoustic model for a permanent magnet machine: Modal shapes and magnetic forcesIEEE Transactions on Industry Applications30,, 1994616251631
    [Google Scholar]
  60. BossmannsB. TuJ.F. A thermal model for high speed motorized spindles.Int. J. Mach. Tools Manuf.19993991345136610.1016/S0890‑6955(99)00005‑X
    [Google Scholar]
  61. BossmannsB. TuJ.F. A power flow model for high speed motorized spindles—Heat generation characterization.J. Manuf. Sci. Eng.2001123349450510.1115/1.1349555
    [Google Scholar]
  62. ChenJ.S. HsuW.Y. Characterizations and models for the thermal growth of a motorized high speed spindle.Int. J. Mach. Tools Manuf.200343111163117010.1016/S0890‑6955(03)00103‑2
    [Google Scholar]
  63. ChenX. Thermal properties of high speed motorized spindle and their effects.Jixie Gongcheng Xuebao2013491113510.3901/JME.2013.11.135
    [Google Scholar]
  64. MinX. ShuyunJ. YingC. An improved thermal model for machine tool bearings.Int. J. Mach. Tools Manuf.2007471536210.1016/j.ijmachtools.2006.02.018
    [Google Scholar]
  65. MaC. MeiX. YangJ. ZhaoL. ShiH. Thermal characteristics analysis and experimental study on the high-speed spindle system.Int. J. Adv. Manuf. Technol.2015791-446948910.1007/s00170‑015‑6821‑z
    [Google Scholar]
  66. CuiY. LiH. LiT. ChenL. An accurate thermal performance modeling and simulation method for motorized spindle of machine tool based on thermal contact resistance analysis.Int. J. Adv. Manuf. Technol.2018965-82525253710.1007/s00170‑018‑1593‑x
    [Google Scholar]
  67. UhlmannE. HuJ. Thermal modelling of a high speed motor spindle.Procedia CIRP20121131331810.1016/j.procir.2012.04.056
    [Google Scholar]
  68. ZhangL. LiC. WuY. ZhangK. ShiH. Hybrid prediction model of the temperature field of a motorized spindle.Appl. Sci. (Basel)2017710109110.3390/app7101091
    [Google Scholar]
  69. LiuJ.F. ChenX.A. KangM.H. ZhangP. HeY. Analysis of thermal performance of grease lubricated ball bearings.Mach. Sci. Technol.2014336845848
    [Google Scholar]
  70. ChenX.A. LiuJ.F. HeY. ZhangP. ShanW.Y. High-speed electric spindle thermal performance and its influence.Jixie Gongcheng Xuebao2013491113514210.3901/JME.2013.11.135
    [Google Scholar]
  71. LiuZ. PanM. ZhangA. ZhaoY. YangY. MaC. Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance.Int. J. Adv. Manuf. Technol.2015769-121913192610.1007/s00170‑014‑6350‑1
    [Google Scholar]
  72. YanK. HongJ. ZhangJ. MiW. WuW. Thermaldeformation coupling in thermal network for transient analysis of spindle-bearing system.Int. J. Therm. Sci.201610411210.1016/j.ijthermalsci.2015.12.007
    [Google Scholar]
  73. LiuY. MaY.X. MengQ.Y. XinX.C. MingS-S. Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system.Advances in Manufact.20186438440010.1007/s40436‑018‑0239‑4
    [Google Scholar]
  74. KimS.M. LeeS.K. Prediction of thermo-elastic behavior in a spindle–bearing system considering bearing surroundings.Int. J. Mach. Tools Manuf.200141680983110.1016/S0890‑6955(00)00103‑6
    [Google Scholar]
  75. LeeJ. KimD.H. LeeC.M. A study on the thermal characteristics and experiments of High-Speed spindle for machine tools.Int. J. Precis. Eng. Manuf.201516229329910.1007/s12541‑015‑0039‑8
    [Google Scholar]
  76. ZivkovicA. ZeljkovicM. TabakovicS. MilojevicZ. Mathematical modeling and experimental testing of high-speed spindle behavior.Int. J. Adv. Manuf. Technol.2015775-81071108610.1007/s00170‑014‑6519‑7
    [Google Scholar]
  77. LiuJ. ZhangP. Thermo-mechanical behavior analysis of motorized spindle based on a coupled model.Adv. Mech. Eng.201810110.1177/1687814017747144
    [Google Scholar]
  78. WangB. MeiX. WuZ. ZhuF. Dynamic modeling for thermal error in motorized spindles.Int. J. Adv. Manuf. Technol.2015785-81141114610.1007/s00170‑014‑6716‑4
    [Google Scholar]
  79. LiuJ. ChenX. Dynamic design for motorized spindles based on an integrated model.Int. J. Adv. Manuf. Technol.2014719-121961197410.1007/s00170‑014‑5640‑y
    [Google Scholar]
  80. YangZ.W. YinG.F. ShangX. JiangH. ZhongK.Y. Coupled analysis model of thermal and dynamic characteristics of highspeed electric spindle.J. Jilin Uni.2011411100105
    [Google Scholar]
  81. HanX.S. LiH.H. Thermal weak coupling analysis of electric spindle based on thermal effect.Mech. Engg. & Autom.2018435
    [Google Scholar]
  82. WangS.T. ChenF.J. LiuT. GouW.D. Modeling of force thermal coupling characteristics of high-speed electric spindles.J. Huazhong Uni. Sci. & Tech.2015431015
    [Google Scholar]
  83. ChenJ.B. Research on thermal coupling modeling and optimization design method for high-speed electric spindle M.S. Thesis, Xi'an University of Technology, Xi'an, China2021
    [Google Scholar]
  84. WangX.D. WangH.L. SuJ.X. Modeling and experimental analysis of electric spindle based on transfer matrix method.Mach. Tools & Hydraul.202250041318
    [Google Scholar]
  85. JiangS. LinS. A technical note: an ultra-high-speed motorized spindle for internal grinding of small-deep hole.Int. J. Adv. Manuf. Technol.2018971-41457146310.1007/s00170‑018‑1984‑z
    [Google Scholar]
  86. LiC.H. HouY.L. DuC. DingY.C. An analysis of the electric spindle’s dynamic characteristics of high-speed grinder.J. Adv. Manuf. Syst.201110115916610.1142/S0219686711002107
    [Google Scholar]
  87. LinS.Y. ZhangS.W. GengK.K. Dynamic analysis of a high speed motorized spindle for internal grinding of slender holes10th International Conference on Mechatronics and Manufacturing, 2019, p. 012013 Bangkok, Thailand10.1088/1757‑899X/635/1/012013
    [Google Scholar]
  88. FengH.H. JiangS.Y. Dynamics of a motorized spindle supported on water-lubricated bearings.J. Mech. Engg. Sci.2015231319891996
    [Google Scholar]
  89. ZhangK. ZhangL.Q. WangZ. GaoL.W. Nonlinear dynamic characteristics of full-ceramic motorized spindle considering axial transfer of unbalanced magnetic pullMech. Engg. Sci.202200
    [Google Scholar]
  90. FedorynenkoD. KirigayaR. NakaoY. Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultraprecision machine tools.Precis. Eng.202063418719610.1016/j.precisioneng.2020.02.003
    [Google Scholar]
  91. LuoW. LuB. ChenF. SongY. FRF prediction modeling and joint parameter identification of motorized spindle-tool handle.J. Braz. Soc. Mech. Sci. Eng.202244730310.1007/s40430‑022‑03552‑5
    [Google Scholar]
  92. LiuJ. HuE.D. Analysis of dynamic characteristics of CNC lathe spindle unit.Ningxia Engg. Tech.2003014344
    [Google Scholar]
  93. ChenJ.W. HuS.J. ChenW. High-speed electric spindle finite element modeling and static and dynamic characteristics analysis,vol. 35, no. 07, pp. 27-35,2017.
    [Google Scholar]
  94. CaoY. LiQ. Finite element analysis of dynamic characteristics of high-speed electric spindles.Baosteel Technology201339035355
    [Google Scholar]
  95. CaiL. MaS.M. ZhaoY.S. LiuZ.F. YangW.T. Finite element modeling and modal analysis of heavy-duty mechanical spindle under multiple constraints.Jixie Gongcheng Xuebao201248316517310.3901/JME.2012.03.165
    [Google Scholar]
  96. HuangX.Z. GuoB. JiangZ.Y. Vibration characteristics and accuracy reliability analysis of high-speed motorized spindle system.J. Jilin Uni.2023202319
    [Google Scholar]
  97. LianY.D. Simulation analysis of static and dynamic characteristics of electric spindle based on ANSYS.Mach. Build. & Automa.2021500476100
    [Google Scholar]
  98. BaiX.J. Vibration analysis and research of high-speed motorized spindle in cutting process.J. Qinghai University201836016974
    [Google Scholar]
  99. LinC.W. TuJ.F. Model-based design of motorized spindle systems to improve dynamic performance at high speeds.J. Manuf. Process.2007929410810.1016/S1526‑6125(07)70111‑1
    [Google Scholar]
  100. QX.L. Review of dynamic analysis and vibration control technology of magnetic levitation electric spindle system.J. Hebei Uni. Sci. & Tech.201637052531
    [Google Scholar]
  101. XiongW.L. LiF.F. JiZ.H. LvL. A review of the dynamics of rolling bearing electric spindle systems.Manufact. Tech. & Mach. Tools2010032531
    [Google Scholar]
/content/journals/eng/10.2174/0118722121271162231128045700
Loading
/content/journals/eng/10.2174/0118722121271162231128045700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test