Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Rolling bearings are being widely used in various applications because of their unique functions, but at the same time, bearing failures are becoming more and more prominent. Among them, the bearing failure caused by cage failure also accounted for 25% of the total proportion. With the progress of intelligent manufacturing and “Industry 4.0”, the operating environment of rolling bearings is becoming increasingly complex and variable, and higher demands are made on the dynamic characteristics of cages. In this regard, the research on the nonlinear dynamics of the cell under different influencing factors can help to explain better the mechanism of dynamic, unstable motion of the cage under various influencing factors and solve the bearing life and reliability problems caused by uneven rolling bearing cage from the perspective of design and experimental research.

Objective

By summarizing the influencing factors of cage dynamics characteristics, the design of new structures, test methods, and testing devices of dynamics attributes in recent years, some valuable conclusions were obtained, and the future development direction of rolling bearing cage dynamics characteristics was proposed to provide a reference for researchers in related fields.

Methods

This paper reviews the patents and documents related to the dynamic characteristics of rolling bearing cages, as well as analyzes the different influencing factors on the operational stability of the bearings, and introduces the improved design of cage structures, as well as the test methods and testing devices for the dynamic characteristics of cages.

Results

Through the analysis of relevant patents and papers on rolling bearing cage dynamics, the development status and problems of rolling bearing cage dynamics were discussed, future research on rolling bearing cage dynamics was prospected, and design ideas and research directions were proposed.

Conclusion

Through the discussion of the factors influencing the cage dynamics, the optimization of the rolling bearing cage structure design, and the study of test methods and testing devices, it was found that the research direction of the rolling bearing cage dynamics needs to be further expanded so that a better research method and testing devices could be researched, and a new structure with more stable operation and higher cage life and reliability could be designed.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121270932230926034136
2023-10-02
2024-12-26
Loading full text...

Full text loading...

References

  1. ZhangJ.H. YuY.J. XueY.J. LiJ.S. Dynamic characterization of high-speed cylindrical roller bearing cage.Modern Mfg. Engg202367177
    [Google Scholar]
  2. LiuW.J. ZhuM.L. ZhangL.L. WangJ.G. WangS.F. Stability analysis and test method of high precision bearing cage.Vibration Shock.202241102107
    [Google Scholar]
  3. YuQ.F. Design and validation of high-speed deep groove ball bearing cage for new energy vehicles.Mech. Transmission.202347123130
    [Google Scholar]
  4. ZhengH.T. LiQ.L. YinY.J. WeiL. LiD.Y. NiuQ.B. Impact load analysis of bearing balls and cages based on ADAMS.Electro. Engg. Tech.2019483335
    [Google Scholar]
  5. ZhangT. ChenX.Y. GuJ.M. ZhaoL.F. Analysis of unstable motion mechanism of high-speed angular contact ball bearing cage.Vibration & Shock.201938233241
    [Google Scholar]
  6. ZhangJ. ZhangY. ZhaoY. HanW. Research on lubrication characteristics of cage-free ball bearing with local functional slot.Lubricants202311520310.3390/lubricants11050203
    [Google Scholar]
  7. ZhangW.H. HuY.S. DengS.E. XuJ. LiF. Ball-cage collision behavior of oscillating ball bearings.J. of Military Engineering.202243207217
    [Google Scholar]
  8. ZhuY.K. A finite element analysis method for evaluating the dynamic performance of angular contact ball bearings for machine toolsC. N. Patent 114818424A2022
    [Google Scholar]
  9. LiL.L. YangL.Q. XueW.H. GaoS.Y. WangX. DuanD.L. LiS. Sliding frictional wear between rare earth modified GCr15 steel and cage material.J. Mater. Res.202337408416
    [Google Scholar]
  10. SongH.T. QuQ. LiuM.H. YanS.P. WangF.T. The effect of collar tilt on the dynamic characteristics of angular contact ball bearings.Bearing202091521
    [Google Scholar]
  11. GaoS. HanQ.K. ChuF.L. Dynamics of angular contact rolling bearing considering thermo-hydrodynamic coupling and analysis of slipping state.Jixie Gongcheng Xuebao202258879710.3901/JME.2022.09.087
    [Google Scholar]
  12. LiaoH. XieP. DengS. ZhangW. ShiL. ZhaoS. Investigation of dynamic characteristics experiments and stability evaluation criterion of space ball bearing cage.Tribol. Trans.202366345346510.1080/10402004.2022.2163015
    [Google Scholar]
  13. XueK. WangX. HuangH. Analysis of cage wear in rolling bearing greased.Tribology Online202217429129910.2474/trol.17.291
    [Google Scholar]
  14. NiY.G. LiuJ. XuD.S. ZhangY.B. ZhangW.H. Temperature field and strength analysis of ultra-low temperature angular contact ball bearing cage.Mech. Strength202233684690
    [Google Scholar]
  15. HeK.G. WangP. A type of hydraulic motor bearing cage fracture fault analysis and improvement.Hydraul. Pneuma. & Seal.2019397376
    [Google Scholar]
  16. OuL.L. MaY. LiL.J. Analysis of the causes of fracture of cylindrical roller bearing cage.Phy. & Chem. Inspection2016526165
    [Google Scholar]
  17. ZhangA.N. ZhouG. QingT. Study on the dimensional stability of porous polyimide cages for space bearings.Lubrication & Sealing202146102112
    [Google Scholar]
  18. ShiL.W. DongY.Z. LiJ.X. HanT. ZhangH.Y. Factors influencing the microporous properties of porous polyimide cage materials.Bearing202344548
    [Google Scholar]
  19. DengK.W. NiuR.J. SunX.B. GuoJ.L. DengS.E. Study on the performance of graphene-modified porous polyimide bearing cage materials.Materials Guide.202236222226
    [Google Scholar]
  20. SunX.B. LiY.Y. MaiN.N. LiL. WangL.Q. Preparation and properties of porous polyimide cage materials with small pore size and narrow distribution.Bearing202224447
    [Google Scholar]
  21. SchwarzS. GrillenbergerH. TremmelS. WartzackS. Investigations on the rolling bearing cage dynamics with regard to different operating conditions and cage properties.IOP Conf. Series Mater. Sci. Eng.20211097101200910.1088/1757‑899X/1097/1/012009
    [Google Scholar]
  22. SchwarzS. GrillenbergerH. TremmelS. WartzackS. Prediction of rolling bearing cage dynamics using dynamic simulations and machine learning algorithms.Tribol. Trans.202265222524110.1080/10402004.2021.1934618
    [Google Scholar]
  23. TuW.B. LiangJ. YangJ.W. YangB.M. ZhangG.Y. YuanX.W. Analysis of collision contact dynamics of rolling bearing cage under variable working conditions.Vibration & Shock.202241278286
    [Google Scholar]
  24. SakaguchiT. HaradaK. Dynamic analysis of cage behavior in a tapered roller bearing.J. Tribol.2006128360461110.1115/1.2197527
    [Google Scholar]
  25. XuT. LiY.F. XuS.D. MoJ.Y. Oil breakage performance test of a new type of angular contact ball bearing without cage.J. Mech. Transmission.202246112116
    [Google Scholar]
  26. WangZ.B. DengS.E. ZhangW.H. HuangX.M. Analysis of the operational stability of high-speed cylindrical roller bearing cages.Vibration & Shock.201938100108
    [Google Scholar]
  27. AbeleE. HollandL. Image based movement analysis of bearing cages of cylindrical hybrid roller bearings.J. Tribol.2017139606110110.1115/1.4036320
    [Google Scholar]
  28. LiY. LiW. ZhuY. HeG. MaS. HongJ. Dynamic performance analysis of cage in four-point contact ball bearing.Lubricants202210714910.3390/lubricants10070149
    [Google Scholar]
  29. MaS. ZhangX. YanK. ZhuY. HongJ. A study on bearing dynamic features under the condition of multiball-cage collision.Lubricants2022101910.3390/lubricants10010009
    [Google Scholar]
  30. SelvarajA. MarappanR. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing.Int. J. Adv. Manuf. Technol.2011535-863564410.1007/s00170‑010‑2854‑5
    [Google Scholar]
  31. LiuY.B. DengZ.H. SangD.Y. High-speed dynamic performance of V-shaped pocket cylindrical roller bearings.J. Aeronautics.202142579590
    [Google Scholar]
  32. HuangJ.X. XiaoS.H. Stability analysis of rolling bearing cage under vibration conditions.Electro. Engg. Tech.2021503295
    [Google Scholar]
  33. ZhangD.G. NiuL.K. Effect of groove surface corrugation on cage slippage of high-speed ball bearings.Bearing2019103238
    [Google Scholar]
  34. DengS. ChangH. ZhuX. QianD. HuaL. JiangS. Sensitivity of different types of structural size combinations to dynamic stability and vibration of angular contact ball bearings based on nonlinear dynamic model.Tribol. Int.202318110830910.1016/j.triboint.2023.108309
    [Google Scholar]
  35. GuptaP.K. Modeling of instabilities induced by cage clearances in ball bearings.Tribol. Trans.1991341939910.1080/10402009108982014
    [Google Scholar]
  36. GuptaP.K. Modeling of instabilities induced by cage clearances in cylindrical roller bearings.Tribol. Trans.19913411810.1080/10402009108982002
    [Google Scholar]
  37. YuanD. WangR. ChenS. ChenX. Experimental research on cage motion with different pocket shapes in angular contact ball bearing.Proc. Inst. Mech. Eng., Part J J. Eng. Tribol.202223671325133510.1177/13506501211059365
    [Google Scholar]
  38. LiuG.L. YangJ.X. YangX.W. GaoF. MaX.Z. Influence of radial clearance on the contact characteristics of cross shaft universal joint bearings.Bearing2018113842
    [Google Scholar]
  39. WangS.H. YangH.S. YanJ. GaoL.X. Dynamic characteristics analysis of cylindrical roller bearing cage with ERSFD on the outer ring for non-stationary operating conditions.Bearing.202351112
    [Google Scholar]
  40. GhaisasN. WassgrenC.R. SadeghiF. Cage instabilities in cylindrical roller bearings.J. Tribol.2004126468168910.1115/1.1792674
    [Google Scholar]
  41. ZhangZ.C. TieX.Y. JiaoC.Z. GuoJ.H. ZhengZ.G. Dynamic study of the slip characteristics of flywheel bearings.Electro. Engg. Tech.2022513439
    [Google Scholar]
  42. YuanQ.Q. ZhuY.S. J.H. Zhang, M.Y. Yang, K. Yan, and J. Hong. “Dynamic characteristics of precision bearing cage considering lubrication collision”.Journal of Xi’an Jiao tong University.202155110117
    [Google Scholar]
  43. XiongT. YaoT.Q. HuangY.Y. Multi-body dynamics analysis of ball bearing-spiral bevel gears under variable speed conditions.J. Kunm. Uni. Sci. Techn.2016415763
    [Google Scholar]
  44. TuW.B. ChenC. XiangY.P. Research on dynamic characteristics of axle box bearing cage for high-speed trains.Railway Rolling Stock.2022423440
    [Google Scholar]
  45. QuC.F. YangZ. XieP.F. ZhangZ.Y. LiC.Q. Simulation analysis of dynamic performance of variable speed running ball bearing cage.Bearing201772629
    [Google Scholar]
  46. ChenS.J. ChenX.Y. LiQ.Q. GuJ.M. Experimental study on cage dynamic characteristics of angular contact ball bearing in acceleration and deceleration process.Tribol. Trans.202020146
    [Google Scholar]
  47. TuW.B. H,B, He, L.P. Liu, Y. Luo, and C.B. Wang. “Analysis of dynamic characteristics of cylindrical roller bearings under fluctuating rotational speed”.Mech. Strength.20194112011205
    [Google Scholar]
  48. ZhangZ.Q. WangL.Q. ZhangC.W. ZhangY.M. GuL. Stability of ball bearing cages during variable operating conditions.J. Engg. Sci.20194114581464
    [Google Scholar]
  49. HuangY.S. DengS.E. ZhangW.H. HuJ. SunL.M. MaZ.K. Study on the effect of shock load on the dynamic performance of plastic cage of railroad axle box bearing.Vibration and Shock.201837172180
    [Google Scholar]
  50. YuX.K. XieP.F. ZhuC.F. QuC.F. Analysis of the effect of axial preload on the dynamic performance of a variable speed running ball bearing cage.Smart Mfg201784144
    [Google Scholar]
  51. LuoY. HeH.B. Analysis of dynamic characteristics of angular contact ball bearing cages during acceleration.Mech. Strength.202042907912
    [Google Scholar]
  52. GuptaP.K. Dynamic loads and cage wear in high-speed rolling bearings.Wear1991147111913410.1016/0043‑1648(91)90123‑C
    [Google Scholar]
  53. FengY.J. YinY.F. ZhaoC.J. ZhangJ. ZengG. Finite element analysis of dynamic characteristics of angular contact ball bearing cage.Bearing2020616
    [Google Scholar]
  54. GongA.Q. YaoT.Q. XianL.G. Analysis of the dynamics of flexible cages for medium and large cylindrical roller bearings.Bearing20192611
    [Google Scholar]
  55. LiZ. YanZ.Y. ZhengL.Z. LiD. Study on the slip characteristics of tapered roller bearings based on RecurDyn.Mechanical Design & Manufacture201712130133
    [Google Scholar]
  56. YeZ.H. WangL.Q. Effect of external loads on cage stability of high-speed ball bearings.Proc. Inst. Mech. Eng., Part J J. Eng. Tribol.2015229119
    [Google Scholar]
  57. YuanD.J. ChenX.Y. LiQ.Q. QiuL.W. ZhangT. Influence of mounting orientation on the dynamic characteristics of angular contact ball bearing cages.J. Tribol.202242822831
    [Google Scholar]
  58. JiangW. JinG.D. PanG.F. Stability test analysis of special motor bearing cage.Bearing200913638
    [Google Scholar]
  59. ManW.W. ZhangW.H. ZhengY.W. DengS.E. Influence of lubricant dragging characteristics on the smoothness of high-speed angular contact ball bearing cage motion.Bearing201713137
    [Google Scholar]
  60. GaydamakaA. KlitnoiV. DobrotvorskiyS. BasovaY. MatosD. MachadoJ. A systematic approach for energy-efficient design of rolling bearing cages.Appl. Sci. (Basel)2023132114410.3390/app13021144
    [Google Scholar]
  61. FanJ. HanQ.L. LiuC. LiuC. Analysis of the causes of axle box bearing cage wear in high-speed locomotives.Bearing201963237
    [Google Scholar]
  62. YanK. YanB. LiB.Q. HongJ. Investigation of bearing inner ring-cage thermal characteristics based on CdTe quantum dots fluorescence thermometry.Appl. Therm. Eng.201711427928610.1016/j.applthermaleng.2016.11.205
    [Google Scholar]
  63. JoshiA. MarbleS. SadeghiF. Bearing cage temperature measurement using radio telemetry.Proc. Inst. Mech. Eng., Part J J. Eng. Tribol.2001215547148110.1243/1350650011543709
    [Google Scholar]
  64. YeZ.H. LiW. QuX.J. XiongZ.G. Analysis of the effect of elliptical pocket hole on the dynamic performance of high-speed ball bearing cage.Mechanic des Manuf201665187191
    [Google Scholar]
  65. ZhangL.Y. XiaoS.H. LiQ. Effect of cage pocket hole shape on the stability of angular contact ball bearings.Lubrication and Sealing.2017424046
    [Google Scholar]
  66. SunX. DengS.E. ChenG.D. ZhangW.H. Stability analysis of cylindrical roller bearing cage under elastic support.Journal of Aerodynamics.201833487496
    [Google Scholar]
  67. SunC.Y. MaX.M. TangQ. GeS.D. LiuL.Y. Simulation analysis of cage clearance of high precision ball bearings.Bearing2016514
    [Google Scholar]
  68. DengS. LuY. ZhangW. SunX. LuZ. Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway.Chin. J. Aeronauti.201831235136210.1016/j.cja.2017.07.001
    [Google Scholar]
  69. ZhangW.H. HuY.S. DengS.E. XuJ. HuY.L. Study on vibration characteristics of high-speed cylindrical roller bearing cage.Vibration & Shock.2019388594
    [Google Scholar]
  70. ChoeB. LeeJ. JeonD. LeeY. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part I: Effects of cage guidance and pocket clearances.Mech. Syst. Signal Process.201911554556910.1016/j.ymssp.2018.06.018
    [Google Scholar]
  71. ChoeB. KwakW. JeonD. LeeY. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part II: Effects of cage mass imbalance.Mech. Syst. Signal Process.2019116253910.1016/j.ymssp.2018.06.034
    [Google Scholar]
  72. ZengG. BianQ. ZhaoC.J. YinY.F. FengY.J. Stability and vibration characteristics analysis of angular contact ball bearing cage with variable parameters.J. Eng. Des.202027735743
    [Google Scholar]
  73. RyuS. ChoeB. LeeJ. LeeY. Correlation between friction coefficient and sound characteristics for cage instability of cryogenic deep groove ball bearingsProceedings of the 9th IF To MM International Conference on Rotor Dynamics2015211921193110.1007/978‑3‑319‑06590‑8_159
    [Google Scholar]
  74. SathyanK. GopinathK. LeeS.H. HsuH.Y. Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems.Tribol. Trans.201255450351110.1080/10402004.2012.675118
    [Google Scholar]
  75. HuangJ.X. XiaoS.H. Stability analysis of rolling bearing cage under vibration conditions.Electromech Eng Technol20215043295
    [Google Scholar]
  76. CuiL. SuY. RenD.Y. XuW.Z. Analysis of the factors influencing the dynamic performance of high-speed cylindrical roller bearing cages.Machine Tools & Hydraulics.2021491723
    [Google Scholar]
  77. LaiY.L. WuL.H. Analysis of cage motion characteristics under different guidance methods.Mechan Res Appl2020337376
    [Google Scholar]
  78. TianK.W. QiuM. TangY.B. PangX.X. Effect of guidance method on dynamic performance of high-speed cylindrical roller bearing cage.Mechanical Transmission.2022469399
    [Google Scholar]
  79. LiuW.T. ZhangX. WangS.R. ZhangY. WangG.Q. Study on the effect of cage combination guidance on rolling bearing vibration reduction.Vibration and Shock.2020392433
    [Google Scholar]
  80. FanR.R. YaoT.Q. LiuX.B. XiongT. Stability analysis of angular contact ball bearing cage.Mechanical Design and Research.2017337681
    [Google Scholar]
  81. DarenA. Bearing cage with oil circulation meansE. P. Patent 2835545B12019
    [Google Scholar]
  82. KazuhiroT. Angular ball bearing cageE. P. Patent 2988010A12019
    [Google Scholar]
  83. LiuY.B. HanX.Y. SangD.Y. DengZ.H. A kind of cylindrical roller bearing and its cageC. N. Patent 111765171A,2020
    [Google Scholar]
  84. LiuC.Y. SongT.Y. YuS. WenQ. TaoZ. YueC. A kind of spherical roller bearing cage and its bearingC. N. Patent 215567341U2022
    [Google Scholar]
  85. YangL. WangZ.X. CuiM.J. An eccentric circular structure rolling bearing cage and deep groove ball bearingC. N. Patent 111894986A2020
    [Google Scholar]
  86. WuW. WeiC.H. HouX.N. GaoX. LuoJ.L. YuanS.H. A kind of high speed and low noise new energy automobile bearing cage
    [Google Scholar]
  87. TUNG PEI IND Co.Ltd., "High speed ball bearing and associated ball cageD. E. Patent 202018105816U12018
    [Google Scholar]
  88. ItoT. Roller bearing and retainer for roller bearingJ. P. Patent 2019152289A2019
    [Google Scholar]
  89. UenoH. Ball bearing and ball bearing cageU. S. Patent 20200332835A12020
    [Google Scholar]
  90. YamaguchiY. Double row conical roller bearingJ. P. Patent 2020148320A2020
    [Google Scholar]
  91. ZhanL.W. BiM.L. LiZ.H. SunD. GongP. HanS. YuQ.J. WangW.X. WangS. AiQ.M. LiuJ.L. TongR. CaoN.N. LiH.T. LiuM. WangL.Y. A non-contact measurement method for aerospace bearing cage slippage rateC. N. Patent 110514443A2019
    [Google Scholar]
  92. MaL.M. JiangB. XiaoL.F. GuoQ.T. LuN.Y. GengH.L. Online measurement and prediction method of bearing cage slippage rate under variable working conditions based on vibration signalC. N. Patent 115130499A2022
    [Google Scholar]
  93. NiuL.K. LiG.Y. LanY. WuB. XiongX.Y. NiuY.N. A high-speed ball bearing cage stability prediction methodC. N. Patent 110083854B2022
    [Google Scholar]
  94. LanY. NiuL.K. LiG.Y. NiuC.G. WuB. XiongX.Y. A method for predicting the stability of angular contact ball bearing cagesC. N. Patent 109635468A2019
    [Google Scholar]
  95. LiuW.J. ZhuM.L. ZhangL.L. WangJ.G. WangS.F. Stability analysis and test method of high precision bearing cage.Vibration and Shock.202241102107
    [Google Scholar]
  96. LiuJ. ShiZ.F. XuY.J. LiX.B. Rolling bearing cage impact strain and speed information acquisition and processing method and systemC. N. Patent 115876468A2023
    [Google Scholar]
  97. SchwarzS. GrillenbergerH. TremmelS. WartzackS. Prediction of rolling bearing cage dynamics using dynamics simulations and machine learning algorithms.Tribol. Trans.202165225241
    [Google Scholar]
  98. AbeleE. HollandL. NehrbassA. Image acquisition and image processing algorithms for movement analysis of bearing cages.J. Tribol.201613817
    [Google Scholar]
  99. ChenX.Y. WangL.Q. ZhangT. WangZ.L. Mating bearing differential cage dynamic characteristics test equipmentC. N. Patent 106840672A2017
    [Google Scholar]
  100. TuW.B. YangB.M. LuoY. WangH. LiangJ. YangJ.W. ZhangG.Y. YuanX.W. ZhaiZ.J. ZhangP.H. An experimental rig for simulating cylindrical roller bearing cage slippageC. N. Patent 215910096U2022
    [Google Scholar]
  101. WangX. HouY. SunS.G. LiQ. LiuZ.M. Rolling bearing cage slippage research experimental systemC. N. Patent 110108488B2020
    [Google Scholar]
  102. ZhangZ.C. TieX.Y. ZhangZ.Y. XieP.F. ZhuC.F. WangY.M. GuoS.S. YangL. A device for bearing slippage rate testing and a testing system using the deviceC. N. Patent 111999059A2020
    [Google Scholar]
  103. ZengG. ZhaoC.J. LiuB.Y. ZhangY.T. JiaY.K. ZhangD.Z. XiaoZ.G. A test device and test method for sliding rate of high-speed rolling bearing cageC. N. Patent 111413092A2020
    [Google Scholar]
  104. SelvarajA. MarappanR. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing.Int. Adv. Mf. Tech.201153635644
    [Google Scholar]
  105. YangC.H. LuY.F. ZhengY.L. NangK.G. YangH.Z. A high precision rolling bearing cage stability testing device and methodC. N. Patent 109781413A2019
    [Google Scholar]
  106. ZhaoC.Z. BainQ. ZengG. LiuB.Y. QiaoZ.P. LiuH. A cantilever type test device for measuring the trajectory of the center of mass of a cage under combined loadC. N. Patent 113820131A2021
    [Google Scholar]
/content/journals/eng/10.2174/0118722121270932230926034136
Loading
/content/journals/eng/10.2174/0118722121270932230926034136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test