Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Most of the patients with limb paralysis caused by stroke and traumatic brain injury are unable to take care of themselves, which not only causes great physical and psychological stress to the patients but also poses a heavy burden on their families and society. The global population is entering the aging phase. The number and proportion of older people is increasing in almost every country in the world. Population aging has the potential to become one of the most important social trends of the 21 st century, and almost all areas of society are affected by it, including labor and financial markets, demand for goods and services, such as housing, transportation, and social security, family structures, and intergenerational relationships. Rehabilitation robotics is a research field that has emerged from this demand.

Objective

Through the analysis of the current situation and development of upper limb rehabilitation robots, several types of upper limb rehabilitation robots with the most widely used structures today are extracted from the representative results, and each robot is analyzed and elaborated in detail. It provides a reference for readers to choose the appropriate upper limb rehabilitation robots.

Methods

We have classified the upper limb rehabilitation robots through several patents, briefly explained and analyzed the robots grouped, summarized the advantages and disadvantages of various robots, and provided an outlook on future development trends.

Results

Through the research and analysis of the degree of freedom and control system of the upper limb rehabilitation robot, it can be seen that certain upper limb rehabilitation robots have large structures and complex systems, and their application scope is limited; most domestic rehabilitation robots have fewer degrees of freedom and can only provide rehabilitation training for single joints or a few degrees of freedom, especially for the shoulder, which has a small spatial range, too low range of motion and amplitude, and a single mode of motion, and cannot complete a wide range of motion for certain joints, as well as a compound motion for multiple joints, thus failing to provide adequate stimulation of the central nerve.

Conclusion

The analysis shows that the existing upper limb rehabilitation robots are poorly adaptable and not well-suited for situations, such as for different patients and different recovery periods of the same patient. The upper limb rehabilitation robot solution needs to be more appropriately designed to meet all requirements in the rehabilitation movement of patients.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121258844230920011357
2023-10-06
2025-07-06
Loading full text...

Full text loading...

References

  1. QuL.Y. Estimation of future population aging trend and its impact on potential economic growth.Shanghai Finance2021082736
    [Google Scholar]
  2. WangL.D. WangJ.H. PengB. XuY.M. China stroke prevention and treatment report 2016.Chinese J. Cerebrovas. Disea.20171404217224
    [Google Scholar]
  3. JiangX.Z. Application of drive joint in rehabilitation robotM.S. thesis, Huazhong University of Science and Technology, Hubei, China2011
    [Google Scholar]
  4. van DokkumL.E.H. WardT. LaffontI. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke.Ann. Phys. Rehabil. Med20155813810.1016/j.rehab.2014.09.016 25614021
    [Google Scholar]
  5. MayrA. QuirbachE. PicelliA. KoflerM. SmaniaN. SaltuariL. Early robot-assisted gait retraining in non-ambulatory patients with stroke: A single blind randomized controlled trial.Eur. J. Phys. Rehabil. Med.2018546819826 29600688
    [Google Scholar]
  6. CerasaA. PignoloL. GramignaV. SerraS. OlivadeseG. RoccaF. PerrottaP. DolceG. QuattroneA. ToninP. Exoskeleton-robot assisted therapy in strokepatients: A lesion mapping study.Front. Neuroinform201812444910.3389/fninf.2018.00044 30065642
    [Google Scholar]
  7. WangF. YuH.L. LiX.W. WangL.L. Research on upper limb exoskeleton rehabilitation robot with wheelchair platform.Chinese J. Rehabilitation Medicine20193407819823
    [Google Scholar]
  8. MengF.C. Research on enhanced learning control method of upper limb rehabilitation robotM.S. thesis, Beijing Institute of Technology, Beijing, China2015
    [Google Scholar]
  9. LvG.M. SunL.N. PengL.G. Development status and key technology analysis of rehabilitation robot technology.J. Harbin Inst. Technol.2004360912241227
    [Google Scholar]
  10. DarioP. GuglielmelliE. LaschiC. Humanoids and personal robots: Design and experiments.J. Robot. Syst.2001181267369010.1002/rob.8106
    [Google Scholar]
  11. Discussion on the development of upper limb rehabilitation robotsFrom: https://zhuanlan.zhihu.com/p/510168376 [Accessed: May. 06, 2022]. Available From: https://zhuanlan.zhihu.com/p/510168376
  12. PanM.Z. Design and research of upper limb rehabilitation robot2018. M. S. thesis, Hubei University of Technology, Hubei, China
    [Google Scholar]
  13. PerryJ. RosenJ. BurnsS. Upper-limb powered exoskeleton designIEEE/ASME Transactions on Mechatronics., vol. 12, , 2007no. 4, pp. 408-41710.1109/TMECH.2007.901934
    [Google Scholar]
  14. NefT. RienerR. ARMin-design of a novel arm rehabilitation robotInternational Conference on Rehabilitation Robotics2005, pp. 57-60 Chicago10.1109/ICORR.2005.1501051
    [Google Scholar]
  15. TurchettiG. VitielloN. TriesteL. RomitiS. GeislerE. MiceraS. Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption.IEEE Rev. Biomed. Eng.2014714315310.1109/RBME.2014.2300234 24803207
    [Google Scholar]
  16. FongJ. CrocherV. OetomoD. An investigation into the reliability of upper-limb robotic exoskeleton measurements for clinical evaluation in neurorehabilitationInternational IEEE/EMBS Conference on Neural Engineering (NER)2015pp. 795-798 Montpellier10.1109/NER.2015.7146743
    [Google Scholar]
  17. Paul DominickE. Biomimetics in the Design of a Robotic Exoskeleton for Upper Limb Therapy.American Institute of Physics20182081118
    [Google Scholar]
  18. DaunoravicieneK. AdomavicieneA. GrigonyteA. GriškevičiusJ. JuoceviciusA. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients.Technol. Health Care201826S253354210.3233/THC‑182500 29843276
    [Google Scholar]
  19. ReinkensmeyerD.J. KahnL.E. AverbuchM. McKenna-ColeA. SchmitB.D. RymerW.Z. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide.J. Rehabil. Res. Dev.2000376653662 11321001
    [Google Scholar]
  20. HoltR. MakowerS. JacksonA. User involvement in developing Rehabilitation Robotic devices an essential requirementInternational Conference on Rehabilitation Robotics2007pp. 196-204 Noordwijk, Netherlands10.1109/ICORR.2007.4428427
    [Google Scholar]
  21. AmirabdollahianF. LoureiroR. GradwellE. CollinC. HarwinW. JohnsonG. Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy.J. Neuroeng. Rehabil.200741410.1186/1743‑0003‑4‑4 17309791
    [Google Scholar]
  22. NefT. MiheljM. RienerR. ARMin: A robot for patient cooperative arm therapy.Med. Biol. Eng. Comput.200745988790010.1007/s11517‑007‑0226‑6 17674069
    [Google Scholar]
  23. MiheljM. NefT. RienerR. ARMin II-7 DoF rehabilitation robot: Mechanics and kinematicsInternational Conference on Robotics and Automation2007pp. 4120-4125 Rome, Italy10.1109/ROBOT.2007.364112
    [Google Scholar]
  24. NefT. GuidaliM. RienerR. ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation.Appl. Bionics Biomech.20096212714210.1155/2009/962956
    [Google Scholar]
  25. KimB. DeshpandeA.D. An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation.Int. J. Robot. Res.201736441443510.1177/0278364917706743
    [Google Scholar]
  26. KimB. DeshpandeA.D. Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythmInternational Conference on Rehabilitation Robotics2015, pp. 538-542, Singapore.10.1109/ICORR.2015.7281255
    [Google Scholar]
  27. W.Q. Chen, Research on elbow rehabilitation robotM. S. thesis, National Cheng Kung University, Taiwan, China2000
    [Google Scholar]
  28. DongX.Q. Improvement and clinical application of elbow nerve rehabilitation robot.Taiwan, ChinaNational Cheng Kung University2002
    [Google Scholar]
  29. LiQ.L. SunL.N. DuZ.J. Analysis and research on the development status of upper limb rehabilitation robot.Mechanical Design2005250913
    [Google Scholar]
  30. LiJ.Q. WangJ. ZhaoH.W. LiuJ.Y. Exoskeleton telerehabilitation system based on virtual reality.Mech. Design &Res.201127043538
    [Google Scholar]
  31. TongJ. Robot control and experimental research on arm rehabilitation training.Heilongjiang, ChinaHarbin Engineering University2007
    [Google Scholar]
  32. HuY.C. Development of hemiplegic upper limb compound motor rehabilitation training robot.Beijing, ChinaTsinghua University2004
    [Google Scholar]
  33. ZhangR.X. Structural design and development of three-degree-of freedom active upper limb rehabilitation robot.Liaoning, ChinaDalian Maritime University2015
    [Google Scholar]
  34. LiZ.H. LiangC. KongW.Z. Design and analysis of a new upper limb rehabilitation robot.China Manufact. Info.201241154751
    [Google Scholar]
  35. ZhaoF. Design of upper limb rehabilitation assisted training robot.Shanxi, ChinaXidian University2014
    [Google Scholar]
  36. NefT. MiheljM. RienerR. ARMi: a robot for patient-cooperative arm therapy.Med. Biol. Eng. Comput.200745887900
    [Google Scholar]
  37. LiY. Design and simulation analysis of upper limb three-degree-of freedom rehabilitation training robot.Sichuan, ChinaSouthwest Jiaotong University2018
    [Google Scholar]
  38. WangJ.C. LeiY. YuH.L. YiJ.H. FangY.F. MengQ.L. Research on a novel intelligent interactive upper limb rehabilitation robot.Chinese J. Rehabili. Medi.2016311213711374
    [Google Scholar]
  39. QianJ.K. LiuY.Q. YaoK. RongZ.Y. Structural design and simulation of three-degree-of-freedom upper limb rehabilitation robot.Sci. Tech. & Innov.2021218688
    [Google Scholar]
  40. GuoY.J. GuoL. LiM.E. Design of intelligent upper limb rehabilitation robot.Electro. Tech. & Software Engg2020186567
    [Google Scholar]
  41. YuH.H. LiX.H. TianS.Y. XuH. Design and analysis of 4-degree-of-freedom upper limb rehabilitation exoskeleton robot.J. Jiamusi Uni.20234101124178
    [Google Scholar]
  42. YeT.M. Research on force-assisted control of five-degree-of-freedom upper limb rehabilitation robot.Heilongjiang, ChinaHarbin Institute of Technology2007
    [Google Scholar]
  43. YangC.Y. Design and motion planning of upper limb rehabilitation robot based on tandem elastic drive.Jiangsu, ChinaJiangsu University2016
    [Google Scholar]
  44. WuJ. Research on upper limb rehabilitation robot and related control problems.HubeiHuazhong University of Science and Technology2012
    [Google Scholar]
  45. WangZ.L. DuanZ.F. LiS. GaoM.R. PangZ.X. Design and analysis of shoulder joint full-drive upper limb rehabilitation robot.Mech. Transm.202246104248
    [Google Scholar]
  46. GuoJ. LiaoT.M. ZhengX.Q. Kinematic calculation and simulation of wearable upper limb rehabilitation robot.Mach. Tool & Hydra.202351037884
    [Google Scholar]
  47. ChenM. ChenB. H. ZhangS. J. ZhangW. C. ZengL. L. A five-degree-of-freedom exoskeleton upper limb rehabilitation robotC.N. Patent 107,296,719B, 2019
    [Google Scholar]
  48. LiuR. S. ZhangR. YeX. T. TangH. J. WangQ. LiuK. A five-degree-of-freedom exoskeleton upper limb rehabilitation robotC.N. Patent 107,362,000B2019
    [Google Scholar]
  49. LiS.S. Research on mechanism design and control of six-degree-of freedom upper limb rehabilitation robot.Hebei, ChinaYanshan University2021
    [Google Scholar]
  50. LaiC.H. Design and dynamic analysis of six-degree-of-freedom upper limb rehabilitation robot.Shanghai, ChinaShanghai Jiao Tong University2018
    [Google Scholar]
  51. HuX.Y. TangL. PanM.Z. HeR.J. DuW.D. Structural design and simulation of six-degree-of-freedom upper limb rehabilitation robot.Zidonghua Yu Yibiao201839124347
    [Google Scholar]
  52. ZhangH. Design of six-degree-of-freedom exoskeleton upper limb rehabilitation robot.Shanghai, ChinaDonghua University2014
    [Google Scholar]
  53. CaoD.F. YangQ.Z. ZhuangJ.Q. YaoB.B. Structural design and kinematic analysis of a six-degree-of-freedom upper limb rehabilitation robot.Chinese J. Engg. Design20132004338343
    [Google Scholar]
  54. LüC. Research on upper limb hemiplegia rehabilitation robot.Shanghai, ChinaShanghai Jiao Tong University2011
    [Google Scholar]
  55. TanZ.X. YuX.L. GaoW.B. Kinematics and workspace simulation analysis of a six-degree-of-freedom upper limb rehabilitation training robot.Machine Tool & Hydraul.201947033236
    [Google Scholar]
  56. LiuZ.H. SunY. TangZ. YuanT. KongF.L. WangS.Z. Design and control of a 7-degree-of-freedom exoskeleton upper limb rehabilitation robot.J. Donghua Uni.20174304535540
    [Google Scholar]
  57. XiaJ.F. Research on structure design and control system of upper limb bionic rehabilitation robot.Guangxi, ChinaGuangxi University of Science and Technology2019
    [Google Scholar]
  58. PanL. Z. WangS. C. DingY. ZhangM. X. TangZ. Q. LiuJ. Z. A seven-degree-of-freedom upper limb rehabilitation robotC.N. Patent 113,332,098B2023
    [Google Scholar]
  59. YanW. X. QianY. ZhaoY. Z. A seven-degree-of-freedom upper limb rehabilitation robotC. N. Patent 209,203,955U2019
    [Google Scholar]
  60. YuJ.W. Design and verification of multi-degree-of-freedom suspension upper limb rehabilitation robot.Chongqing, ChinaChongqing University of Technology2018
    [Google Scholar]
  61. ZhangR.R. Design and implementation of planar upper limb rehabilitation robot system.Shanghai, ChinaShanghai Normal University2020
    [Google Scholar]
  62. GeG.Q. ZhangW.F. LiJ.H. WangH. Structural design and kinematic analysis of a 10-degree-of-freedom exoskeleton rehabilitation robot.Mech.Transmission20224608138145
    [Google Scholar]
  63. HuJ. HouZ. ZhangF. Training strategies for a lower limb rehabilitation robot based on impedance control2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society2012, San Diego, CA, USA
    [Google Scholar]
  64. GuanD.L. WangW.W. LeeK.W. Arm exoskeleton rehabilitation robot with assistive system for patient after strokeIEEE International Conference on Control, Automation and Systems2012, pp.1943-1948 , Jeju, Korea (South)
    [Google Scholar]
  65. PengL. HouZ.G. WangW.Q. Synchronous active interactive control and realization of rehabilitation robot.Acta. Automatica. Sinica.2015411118371846
    [Google Scholar]
  66. PengL. HouZ.G. WangW.Q. Synchronous active interactive control and realization of rehabilitation robot.Acta Automatica Sinica2015411118371846[Available From: https://baike.baidu.com/item/PID%E6%8E%A7%E5%88%B6%E7%B3%BB%E7%BB%9F/21516135?fr=aladdin
    [Google Scholar]
  67. WuJ. WangY.J. HuangJ. New wearable multi-degree-of freedom pneumatic upper limb rehabilitation robot.J. Huazhong Uni. Science and Technology201139S2279282
    [Google Scholar]
  68. DongK. XiaoD. P. XieQ. A kind of upper limb comprehensive assessment and rehabilitation training robotC. N. Patent 209,092,068U2019
    [Google Scholar]
  69. ShenZ. ZhouJ. GaoJ. Fuzzy Logic Based PID Control of a 3 DOF Lower Limb Rehabilitation RobotAnnual International Conference on CYBER Technology in Automation Control and Intelligent Systems2018pp. 818-821 Tianjin, China.10.1109/CYBER.2018.8688089
    [Google Scholar]
  70. Al-WaeliK.H. RamliR. HarisS.M. ZulkoffliZ.B. AmiriM.S. Offline ANN-PID controller tuning on a multi-joints lower limb exoskeleton for gait rehabilitation.IEEE Access2021910736010737410.1109/ACCESS.2021.3101576
    [Google Scholar]
  71. ZhangM.L. Research on desktop upper limb rehabilitation robot and rehabilitation evaluation method.Anhui, ChinaUniversity of Science and Technology of China2022
    [Google Scholar]
  72. DuanQ.Q. Research on control system of upper limb rehabilitation robot.Shanghai, ChinaShanghai Dianji University2022
    [Google Scholar]
  73. DuanQ.Q. Research on control system of upper limb rehabilitation robotShanghai Dianji UniversityShanghai, China2022Available From: https://baike.baidu.com/item/%E6%BB%91%E6%A8%A1%E6%8E%A7%E5%88%B6/2785312?fr=aladdin
    [Google Scholar]
  74. HoganN. Impedance Control: An Approach to ManipulationTrans of Asme J. Dynamic Sys. Measur. & Control198510704481489
    [Google Scholar]
  75. JamwalP.K. HussainS. GhayeshM.H. RogozinaS.V. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot.IEEE Trans. Ind. Electron.20166363638364710.1109/TIE.2016.2521600
    [Google Scholar]
  76. WangQ.Y. QianJ.W. FengZ.G. ShenL.Y. ZhangY.N. Physiological gait planning and experiment of lower limb gait orthosis.Zhongguo Jixie Gongcheng20092008928932
    [Google Scholar]
  77. WangL. LiC.Q. LiuY.Q. ZhangJ.Y. Study on arm rehabilitation robot based on force impedance control.Zhongguo Jixie Gongcheng20081315181522
    [Google Scholar]
  78. RichardsonR. BrownM. BhaktaB. LevesleyM.C. Design and control of a three degree of freedom pneumatic physiotherapy robot.Robotica200321658960410.1017/S0263574703005320
    [Google Scholar]
  79. ChenP. Design of mechanism and control system of upper limb rehabilitation robot.Hebei, ChinaYanshan University2022
    [Google Scholar]
  80. ZhangG. QingcongW.U. Upper limb rehabilitation robot based on barrier Lyapunov function adaptive active interactive training control.Chinese J. Sci. Instr.20232023110 http://kns.cnki.net/kcms/detail/11.2179.TH.20220223.1903.006.html
    [Google Scholar]
  81. QuZ.J. WenH.Y. LiuX.J. SunS.L. ZhaoW.B. LuoW.H. Design of structure and control system of micro-torque feedback adaptive coupling motion control upper limb rehabilitation robotMechanical Res. & App.20213405123128
    [Google Scholar]
/content/journals/eng/10.2174/0118722121258844230920011357
Loading
/content/journals/eng/10.2174/0118722121258844230920011357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test