Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

China is rich in mineral resources with a complete range of types. Currently, 163 kinds of minerals have been found, and 149 kinds of minerals with Proven reserves, including 7 kinds of energy minerals, 54 kinds of metal minerals, and 86 kinds of non-metallic minerals. Ore particles can undergo various collisions during mining and transportation.

Objective

Because particle collision behavior can greatly affect particle size and particle properties during the final application, it can also lead to the generation of a large amount of dust during processing and transportation, seriously affecting environmental quality. Therefore, exploring the collision performance of particle collisions is very important.

Methods

The patent of test bench can compensate for the shortcomings of existing particle collision measurement technologies, by measuring the motion trajectory after collision between particles, as well as the collision force between particles and metal plates, as well as the motion trajectory after collision.

Results

The test bench has the advantages of a simple structure, a small footprint, diverse functions, and stable operation.

Conclusion

This test bench can be used for measuring the collision force and post-collision motion trajectory of block particles and has broad practicality and strong innovation.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121257004231122093121
2023-12-04
2025-07-06
Loading full text...

Full text loading...

References

  1. MaX.J. Rubble impact test platform with protective action.C.N. Patent 2168995332021
    [Google Scholar]
  2. DongX.W. LiZ.L. DuM.C. SunZ.C. FengL. Pressure spring type microparticle impact experimental system.C.N. Patent 1092117062018
    [Google Scholar]
  3. YaoS.L. YuK.H. XinS.H. GaoX.Z. HeX.X. WangJ.Q. Pneumatic micro-particle emission experimental device.C.N. Patent 1114871522020
    [Google Scholar]
  4. ShenX.Y. Test method of mechanical structure collision resistance performance simulation experiment platform.C.N. Patent 1069591972017
    [Google Scholar]
  5. LiY. TangZ.J. SuX.H. A kind of experimental provision and test method of simulated impeller blade and particles collision.C.N. Patent 1101742292019
    [Google Scholar]
  6. SurowiecR. StadlerJ.E.J. Stone impact simulator.U.S. Patent 20172418802016
    [Google Scholar]
  7. LinJ.Z. FanZ.C. WangW.F. WangZ.J. A kind of experimental rig for simulating slungshot impact.C.N. Patent 1072901542017
    [Google Scholar]
  8. DingM.H. Simulation nitrogen oxygen sensor probe flying stone collision test device.C.N. Patent 2174040302022
    [Google Scholar]
  9. WangD.P. LiW. ZhangH.Y. FanX.M. LiuB.Y. YaoL.L. Rolling stone impact measurement method.C.N. Patent 1148182942022
    [Google Scholar]
  10. YuB. YiW. ZhaoH.B. A kind of rolling stone impact force computational methods suitable for rotation function.C.N. Patent 1072920092017
    [Google Scholar]
  11. ZangM.Y. ZouC.Q. ChenL. High-efficiency simulation evaluation method and system for stone impact resistance of automobile coating.C.N. Patent 1140214062021
    [Google Scholar]
  12. PangH.Q. Multi-particle impact crushing experiment platform.C.N. Patent 1132187882021
    [Google Scholar]
  13. WuY.Z. FuY.K. HeJ. HaoD.Y. Multifunctional test bench for impact load testing of mining support material and test method.W.O. Patent 20221659902021
    [Google Scholar]
  14. XuT.H. Plastic product impact test bench.C.N. Patent 2139330502020
    [Google Scholar]
  15. QinB.T. HouJ. ZhouQ. WangF. LiX.L. WangZ.R. DingY.W. Experiment system and method for liquid drop-particle collision coalescence test.C.N. Patent 1100067922019
    [Google Scholar]
  16. GuB.C. GanJ.H. SuF. WangY. ZhaoZ.Y. Neural network-based particle system and surface geometric model collision stress calculation method.C.N. Patent 1144922082022
    [Google Scholar]
  17. WangS.L. Particle collision granulator.C.N. Patent 2116601972019
    [Google Scholar]
  18. NiuZ.Y. LiH.C. ZengR. LiuH.Y. LiuJ. HuangF.J.X. Device and method for detecting impact crushing characteristic of particle material.C.N. Patent 1139331852021
    [Google Scholar]
  19. JinT.Y. SiG.Z. Method and apparatus for predicting debris through fast collision analysis.K.R. Patent 1022668642019
    [Google Scholar]
  20. ZhouS.L. Non-mechanical contact pearl grain reducing mechanism.C.N. Patent 1104653892019
    [Google Scholar]
  21. LiY. JiL.Y. WangY.P. ZhuZ.C. LiX.J. Experimental provision for particle-wall collision experiment in resisting medium.C.N. Patent 2060022812016
    [Google Scholar]
  22. LiuY.P. YaoW.L. WangS.Q. HaoX. GuoM.M. Multifunctional complex multiphase dimensional collision experiment instrument.C.N. Patent 1111031132020
    [Google Scholar]
  23. PanY.D. WengJ.P. QianJ. TianY.L. Method for analyzing and calculating movement of wood fiber particles when collision occurs between wood fiber particles and solid wall surface in gas-solid two-phase flow field.C.N. Patent 1087605852018
    [Google Scholar]
  24. CongH.C. WangY.T. LiW.T. ZhongX.K. QianL.J. ZhuG.D. Liquid drop collision generating device.C.N. Patent 2104347192019
    [Google Scholar]
  25. HuangP.F. ZhouH. ZhangF. MengZ.J. ZhangY.Z. LiuZ.X. DongG.Q. It is a kind of can motor-driven flying mesh capture target knock-on displacement and impact force calculation method.C.N. Patent 1090633072018
    [Google Scholar]
  26. ChenD.L. LiuJ. A kind of artificial slabstone falling ball impact test table apparatus.C.N. Patent 2062920232016
    [Google Scholar]
  27. YangJ. LuS.H. ZhuY.S. Whole vehicle and uneven road surface collision impact test bench and test method.C.N. Patent 1123623632021
    [Google Scholar]
  28. SongY.D. JiaX. HuX.T. WuN. WanY.W. Centrifugal force simulation test device used in high-speed hard object impact test.C.N. Patent 1089313492018
    [Google Scholar]
  29. ZhaoY.Q. WangY.M. LiC.J. ZhangY. ZhangZ.S. DongJ.H. LiS. LiM.H. ZhaoY.X. LiY. XieY. GuoS. Steel ball impact testing device for simulating road stone impact.C.N. Patent 1153892192022
    [Google Scholar]
  30. TuW.B. DongY.F. ZhangH. Flying stone impact simulation test device for automobile condenser.C.N. Patent 2170334422021
    [Google Scholar]
  31. OhM. ParkS.B. Wet-type dust-collecting air-purifying device having water particle collision dispersion structure.W.O. Patent 20191901672019
    [Google Scholar]
  32. PradeepG. ZhangR. ChenH. Temperature coupling algorithm for hybrid thermal lattice Boltzmann method.J.P. Patent 20190537522018
    [Google Scholar]
  33. ZhuC. YaS.Y. Device for measuring dust by different particle size in chimney.K.R. Patent 1021581422019
    [Google Scholar]
  34. BaiJ. Electronic device, collision data processing method and related products.W.O. Patent 20191410852018
    [Google Scholar]
  35. KipushovS.V. ShlyakovA.V. SeredkinS.E. Impact test stand.R.U. Patent 26557002017
    [Google Scholar]
  36. ZhuM.J. ShenZ.X. LiD.X. CuiY.H. Apparatus for drop weight test and control method thereof.KR1022895262019
    [Google Scholar]
  37. ZhaoL. Test Bench.W.O. Patent 20172063302016
    [Google Scholar]
  38. SongD.H. Sled on sled type side impact test apparatus for a child restraint system.K.R. Patent 1019462982017
    [Google Scholar]
  39. WangH.Z. AnC. FengC. ZhangX.N. LiZ.Y. YiZ.F. Collision test system and method for railway vehicle.W.O. Patent 20200824082018
    [Google Scholar]
  40. XuQ. WuX.S. XuJ. LiZ.Y. System and method for use in freezing and coating after the impact of micron-sized droplets onto spherical surfaces.W.O. Patent 20191285572018
    [Google Scholar]
  41. CherkasovY.N. RogozaA.V. RakityanskijV.V. RukovitsynI.G. Relay attachment device on vibration table and shock table.R.U. Patent 27239842020
    [Google Scholar]
  42. BatesM.A. HaferS.A. JarsaeterM. JostM. LibeautD.M. RaczkowskiA.F. Side-impact crash structure for a vehicle seat.U.S. Patent 113188682020
    [Google Scholar]
  43. ChoiW.J. ParkP.K. Crash test device of seat back for vehicle.KR202001449242019
    [Google Scholar]
  44. AlhusbanF. ClarkB. Apparatus and method for evaluating physical strength or robustness of solid pharmaceutical dosage forms based on an impact strike test.W.O. Patent 20222170432022
    [Google Scholar]
  45. PiaoE.Y. PiaoY.C. Device for drop test.KR1023674442020
    [Google Scholar]
  46. PattonD.A. MohammadiR. HalldinP. KleivenS. McIntoshA.S. Radial and oblique impact testing of alpine helmets onto snow surfaces.Appl. Sci.2023136345510.3390/app13063455
    [Google Scholar]
  47. PawlakA. DziedzicR. KasprowiczM. StopyraW. KuźnickaB. ChlebusE. SchobB. ZoppC. KrollL. KordassR. BohlenJ. Properties of medium-manganese steel processed by laser powder bed fusion: The effect of microstructure in as-built and intercritically annealed state on energy absorption during tensile and impact tests.Mater. Sci. Eng. A202387014485910.1016/j.msea.2023.144859
    [Google Scholar]
  48. HofmannD.C. BordeenithikasemP. ZhuY. LiuY. ConradN.J. DavisB.A. ChristiansenE.L. ShakouriA. MohammadiS. Design, fabrication, and hypervelocity impact testing of screen-printed flexible micrometeoroid and orbital debris impact sensors for long-duration spacecraft health monitoring.Aerosp. Sci. Technol.202313910837210.1016/j.ast.2023.108372
    [Google Scholar]
  49. TominM. TörökD. PászthyT. KmettyÁ. Deformation analysis in impact testing of functionally graded foams by the image processing of high-speed camera recordings.Polym. Test.202312210801410.1016/j.polymertesting.2023.108014
    [Google Scholar]
  50. ShinS. JinA. YooS. LeeS. KimC. HeoS. KangN. Wheel impact test by deep learning: Prediction of location and magnitude of maximum stress.Struct. Multidiscipl. Optim.20236612410.1007/s00158‑022‑03485‑6
    [Google Scholar]
  51. YanS. ChenX. ZhaoY. Analysis of multiple impact tests’ damage to three-dimensional four-directional braided composites.Sci. Eng. Compos. Mater.202229124226410.1515/secm‑2022‑0023
    [Google Scholar]
  52. YangD. LiJ. ZhengK. DuC. LiuS. Impact-crush separation characteristics of coal and gangue.Int. J. Coal Prep. Util.201838312713410.1080/19392699.2016.1207634
    [Google Scholar]
  53. YangD. LiJ. DuC. ZhengK. LiuS. Particle size distribution of coal and gangue after impact-crush separation.J. Cent. South Univ.20172461252126210.1007/s11771‑017‑3529‑2
    [Google Scholar]
  54. LiJ. YangD. DuC. Evaluation of an underground separation device of coal and gangue.Int. J. Coal Prep. Util.201333418819310.1080/19392699.2013.783576
    [Google Scholar]
  55. YanhuiL. Al-BukhaitiK. ShichunZ. AbasH. NanX. LangY. YuY.X. DaguangH. Numerical study on existing RC circular section members under unequal impact collision.Sci. Rep.20221211479310.1038/s41598‑022‑19144‑136042277
    [Google Scholar]
  56. KushimotoK. SuzukiK. IshiharaS. SodaR. OzakiK. KanoJ. Analysis of the particle collision behavior in spiral jet milling.Adv. Powder Technol.202334510399310.1016/j.apt.2023.103993
    [Google Scholar]
  57. ChanT.T.K. NgC.S. KrugD. Bubble–particle collisions in turbulence: Insights from point-particle simulations.J. Fluid Mech.2023959A610.1017/jfm.2023.119
    [Google Scholar]
  58. LiY. ZhaoX. LinZ. ZhangG. Particle collision study based on a rotational boundary condition.J. Mar. Sci. Eng.202311349010.3390/jmse11030490
    [Google Scholar]
  59. YangL. SongC. AiL. LiuF. LiC. ZhuD. GuoC. Collision characteristics and breakage evolution of particles in fluidizing processes.Fuel Process. Technol.202324310765410.1016/j.fuproc.2023.107654
    [Google Scholar]
  60. WangJ. JuanM. YangS. ZhangD. ZhangZ. JinJ. YuT. Experimental investigation of the vibration reduction of the pipeline system with a particle impact damper under random excitation.Appl. Sci.202313161810.3390/app13010618
    [Google Scholar]
  61. YuK. LiuJ. XuX. YaoS. HouN. YueZ. Dust transport investigation in ribbed cooling duct integrating temperature-dependent elastic-plastic particle collision model.Particul. Sci. Technol.2023411425210.1080/02726351.2022.2044419
    [Google Scholar]
  62. IlgP. Simulating the flow of interacting ferrofluids with multiparticle collision dynamics.Phys. Rev. E2022106606460510.1103/PhysRevE.106.06460536671097
    [Google Scholar]
  63. JiaoH. ChenW. WuA. YuY. RuanZ. HonakerR. ChenX. YuJ. Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell.Int. J. Miner. Metall. Mater.202229122126213510.1007/s12613‑021‑2402‑3
    [Google Scholar]
  64. WangZ. ZhaoY. LiuM. ShenH. FangQ. YaoJ. Investigation of the effects of small flow rate and particle impact on high temperature CO2 corrosion of N80 steel.Corros. Sci.202220911073510.1016/j.corsci.2022.110735
    [Google Scholar]
  65. IslamovaA. TkachenkoP. ShlegelN. KuznetsovG. Effect of liquid properties on the characteristics of collisions between droplets and solid particles.Appl. Sci.202212211074710.3390/app122110747
    [Google Scholar]
  66. RunstedtlerA. DuchesneM.A. A method to predict particle collision speeds in fluidized beds.Chem. Eng. Sci.202226411815710.1016/j.ces.2022.118157
    [Google Scholar]
  67. ShaoL. LiuD. MaJ. ChenX. Experimental characterization of the effect of liquid viscosity on collisions between a multi-component droplet and a heated particle.Chem. Eng. Sci.202226111796810.1016/j.ces.2022.117968
    [Google Scholar]
  68. ZhangL. WangL.G. WangY. HeY. ChenX. Validation of a particle impact breakage model incorporating impact number effect.Particuology2023759610810.1016/j.partic.2022.05.017
    [Google Scholar]
  69. GietzenE. KarimiS. GoelN. ShiraziS.A. KellerM. OtanicarT. Experimental investigation of low velocity and high temperature solid particle impact erosion wear.Wear2022506-50720444110.1016/j.wear.2022.204441
    [Google Scholar]
  70. SharmaS. GandhiB.K. Experimental study on erosion of hydro-turbine grade steels due to solid particle impact.Tribology - Materials, Surfaces & Interfaces202216321122510.1080/17515831.2021.2005995
    [Google Scholar]
  71. LiuW. JiangW. ZhangH. LiuX. LiuH. ZhengW. ZhaoW. DEM simulations of spherical particle–particle collisions.Can. J. Chem. Eng.2023101298499510.1002/cjce.24389
    [Google Scholar]
  72. SchulzD. WoschnyN. SchmidtE. Kruggel-EmdenH. Modelling of the detachment of adhesive dust particles during bulk solid particle impact to enhance dust detachment functions.Powder Technol.202240011723810.1016/j.powtec.2022.117238
    [Google Scholar]
  73. JiangF. LiuY. WangH. QiG. NkomazanaP. LiX. Effect of particle characteristics on particle collision behaviors and heat transfer performance in a down-flow circulating fluidized bed evaporator.Powder Technol.202239911695410.1016/j.powtec.2021.10.062
    [Google Scholar]
  74. SundayC. MurdochN. WilhelmA. DrilleauM. ZhangY. TardivelS. MichelP. The influence of gravity on granular impacts.Astron. Astrophys.2022658A11810.1051/0004‑6361/202142098
    [Google Scholar]
  75. WangA. HoqueM.M. EvansG. MitraS. Effect of turbulence dispersion on bubble-particle collision efficiency.Miner. Eng.202217710737410.1016/j.mineng.2021.107374
    [Google Scholar]
  76. WhitakerS.M. BonsJ.P. An improved particle impact model by accounting for rate of strain and stochastic rebound.J. Turbomach.2023145101101010.1115/1.4055498
    [Google Scholar]
  77. WeersM. HansenL. SchulzD. BenkerB. WollmannA. KykalC. Kruggel-EmdenH. WeberA.P. Development of a model for the separation characteristics of a deflector wheel classifier including particle collision and rebound behavior.Minerals202212448010.3390/min12040480
    [Google Scholar]
  78. RalaiarisoaV. DupontP. MoctarA.O.E. Naaim-BouvetF. OgerL. ValanceA. Particle impact on a cohesive granular media.Phys. Rev. E2022105505490210.1103/PhysRevE.105.05490235706299
    [Google Scholar]
  79. JiangF. XuD. LiR. QiG. LiX. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator.Chin. J. Chem. Eng.202246405210.1016/j.cjche.2021.06.005
    [Google Scholar]
  80. MoritaT. MiyataniA. TakesueS. KumagaiM. KomotoriJ. Effects of particle collision treatments on fatigue strength of Ti–6Al–4V alloy with polishing marks.Mater. Trans.20216291298130310.2320/matertrans.MT‑Z2021004
    [Google Scholar]
/content/journals/eng/10.2174/0118722121257004231122093121
Loading
/content/journals/eng/10.2174/0118722121257004231122093121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test