Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Visual tracking is a crucial component of computer vision systems.

Objective

To deal with the problems of occlusion, pose variation, and illumination in long-time tracking, we propose a new kernel-based multiple instances learning tracker.

Methods

The tracker captures five positive bags, including the occlusion bag, pose bag, illumination bag, scale bag, and object bag, to deal with the appearance changes of an object in a complex environment. A Gaussian kernel function is used to compute the inner product for selecting the powerful weak classifiers, which further improves the efficiency of the tracker. Moreover, the tracking situation is determined by using these five classifiers, and the correlating classifiers are updated.

Results

The experimental results show that the proposed algorithm is robust in terms of occlusion and various appearance changes.

Conclusion

The proposed algorithm preforms well in complex situations. The patented technology will be applied in the future.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121236196230925114428
2023-10-06
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/eng/19/3/ENG-19-3-E061023221824.html?itemId=/content/journals/eng/10.2174/0118722121236196230925114428&mimeType=html&fmt=ahah

References

  1. BinY. JiangY. PeizeS. “Towards grand unification of object tracking”, ECCV.2022Available from: https://arXiv.org/abs/220707078
    [Google Scholar]
  2. GaoJ. LingH. HuW. XingJ. Transfer learning based visual tracking with Gaussian processes regression.Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science FleetD. PajdlaT. Schiele and B. TuytelaarsT. 8691ChamSpringer201410.1007/978‑3‑319‑10578‑9_13
    [Google Scholar]
  3. ZeduC. BinengZ.H. GuorongL. ZhangG. JiR. Siamese box adaptive network for visual tracking., Axriv.2020Available from https://arXiv.org/abs/2003.06761
    [Google Scholar]
  4. RuiC. MartinsP. BatistaJ. Exploiting the circulant structure of tracking-by-detection with kernelsEuropean Conference on Computer Vision2012
    [Google Scholar]
  5. WangN.Y. ShiJ.P. YeungD.Y. JiaJ.Y. Understanding and diagnosing visual tracking systems2015 IEEE International Conference on Computer Vision (ICCV) 2015pp31013109Santiago, Chile10.1109/ICCV.2015.355
    [Google Scholar]
  6. OjalaT. PietikainenM. MAenpaaT. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.IEEE Trans. Pattern Anal. Mach. Intell.200224797198710.1109/TPAMI.2002.1017623
    [Google Scholar]
  7. ZhangK. ZhangL. YangM.H. Real-time compressive tracking.Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science FitzgibbonA. LazebnikS. SatoY. Schmid and C. PeronaP. Berlin, HeidelbergSpringer201210.1007/978‑3‑642‑33712‑3_62
    [Google Scholar]
  8. CaoZ FuC YeJ LiB LiY “SiamAPN++: Siamese attentional aggregation network for real-time UAV tracking”, arXiv.2021Available from https://arXiv.org/abs/2106.08816
    [Google Scholar]
  9. DongZ. LiG. LiaoY. WangF. RenP. QianC. “CentripetalNet: Pursuing high-quality keypoint pairs for object detection”, arXiv.2020Available from: https://arXiv.org/abs/2003.09119
    [Google Scholar]
  10. LiG. ChenX. LiM. LiW. LiS. GuoG. WangH. DengH. One-shot multi-object tracking using CNN-based networks with spatial-channel attention mechanism.Opt. Laser Technol.202215310826710.1016/j.optlastec.2022.108267
    [Google Scholar]
  11. ZhangF. MaS. ZhangY. QiuZ. Perceiving temporal environment for correlation filters in real-time UAV tracking.IEEE Signal Process. Lett.20222961010.1109/LSP.2021.3120943
    [Google Scholar]
  12. HenriquesJ.F. CaseiroR. MartinsP. BatistaJ. High-speed tracking with kernelized correlation filters.IEEE Trans. Pattern Anal. Mach. Intell.201537358359610.1109/TPAMI.2014.2345390 26353263
    [Google Scholar]
  13. DanelljanM. HagerG. KhanF.S. FelsbergM. Discriminative scale space tracking.IEEE Trans. Pattern Anal. Mach. Intell.20173981561157510.1109/TPAMI.2016.2609928 27654137
    [Google Scholar]
  14. NingJ. YangJ. JiangS. Object tracking via dual linear structured svm and explicit feature map, computer vision and pattern recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016pp.42664274Las Vegas, NV, USA10.1109/CVPR.2016.462
    [Google Scholar]
  15. GrabnerH. GrabnerM. BischofH. Real-time tracking via online boosting ChantlerC. Fisher and B. TruccoM. Proceedings of the british machine conferenceBMVA Press20066.16.1010.5244/C.20.6
    [Google Scholar]
  16. GrabnerH. LeistnerC. BischofH. Semi-supervised on-line boosting for robust tracking, European conference on computer vision D. Forsyth, P. Torr, and A. Zisserman, Eds. Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science.Springer-Verlag: Berlin, Heidelberg2008234247
    [Google Scholar]
  17. HareS. SaffariA. TorrP.H.S. Struck: Structured output tracking with kernels IEEE International Conference on Computer Vision2012263270
    [Google Scholar]
  18. ViolaP. PlattJ.C. ZhangC. Multiple instance boosting for object detection.Multiple Instance Boosting for Object Detection. WeissY. Sch and B. PlattJ. MIT Press200518
    [Google Scholar]
  19. BabenkoB. YangMing-Hsuan. BelongieS. Robust object tracking with online multiple instance learning.IEEE Trans. Pattern Anal. Mach. Intell.20113381619163210.1109/TPAMI.2010.226 21173445
    [Google Scholar]
  20. ZhangK. SongH. Real-time visual tracking via online weighted multiple instance learning.Pattern Recognit.201346139741110.1016/j.patcog.2012.07.013
    [Google Scholar]
  21. XuC. TaoW. MengZ. FengZ. Robust visual tracking via online multiple instance learning with Fisher information.Pattern Recognit.201548123917392610.1016/j.patcog.2015.06.004
    [Google Scholar]
  22. LiuJ. LuY. ZhouT. “Instance significance guided multiple instance boosting for robust visual tracking”, arXiv.2015Available from: https://arXiv.org/abs./1501.04378
    [Google Scholar]
  23. HanT. WangL. WenB. The kernel based multiple instances learning algorithm for object tracking.Electronics (Basel)2018769710.3390/electronics7060097
    [Google Scholar]
  24. LiK. HeF. YuH. ChenX. A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning.Front. Comput. Sci.20191351116113510.1007/s11704‑018‑6442‑4
    [Google Scholar]
  25. ZhangH. WangL.J. Object Tracking with the multi-templates regression model based MS algorithm.J Inform Process Syst201814613071317
    [Google Scholar]
/content/journals/eng/10.2174/0118722121236196230925114428
Loading
/content/journals/eng/10.2174/0118722121236196230925114428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test