Skip to content
2000
image of Enhanced Computer-Aided Digital Imaging Technique for Predictions in Breast Cancer

Abstract

Background

Breast cancer (BRCA) is the most frequently diagnosed cancer in women, with a rise in occurrences and fatalities. The field of BRCA prediction and diagnosis has witnessed significant advancements in recent years, particularly emphasizing enhanced computer-aided digital imaging techniques, and has emerged as a powerful ally in the prediction of BRCA through histopathology image analysis. A number of approaches have been suggested in recent years for the categorization of histopathology BRCA images into benign and malignant as it examines the images at cellular level. The histopathology slides must be manually analysed which is time consuming and tiresome and is prone to human error. Additionally, different laboratories occasionally have different interpretation of these images.

Methods

This paper focuses on implementing a framework for Computer-Aided digital imaging technique that can serve as a decision support. With recent advancements in computing power the analysis of BRCA histopathology image samples has become easier. Stain normalization (SN), segmentation, feature extraction and classification are the steps to categorize the cancer into benign and malignant. Nuclei segmentation is a crucial step that needs to be taken into account in order to establish malignancy. These are considered essential for early diagnosis of BRCA. A unique method proposed for BRCA prediction is put forward. To maximize the prediction accuracy, the suggested method is integrated with machine learning (ML) techniques and clinical data is used to evaluate the suggested approach.

Results

This strategy is adaptable to many cancer types and imaging techniques. The suggested technique is applied to clinical data and is integrated with logistic regression and K-Nearest Neighbor resulting in accuracy of 92.10% and 86.89% respectively for BRCA histopathology images.

Conclusion

The objective of this work is to validate the proposed model which takes input as feature pattern for a given label. For the collected clinical samples, the model is able to classify the input as benign or malignant. The proposed model worked efficiently for different BC datasets and performed classification task successfully. Integrating mathematical model (MM) with ML model for interpreting histopathology BRCA is a potential area of research in the field of digital pathology.

Loading

Article metrics loading...

/content/journals/eeng/10.2174/0123520965282930240417113057
2024-11-04
2025-01-20
Loading full text...

Full text loading...

References

  1. Das A. Nair M.S. Peter S.D. Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: A review. J. Digit. Imaging 2020 33 5 1091 1121 10.1007/s10278‑019‑00295‑z 31989390
    [Google Scholar]
  2. Demir C Yener B. Automated cancer diagnosis based on histopathological images: A systematic survey. Comp. Sci. Med. 2005
    [Google Scholar]
  3. Young B. Woodford P. O’Dowd G. Wheater’s Functional Histology E-Book: A Text and Colour Atlas. Elsevier Health Sciences 2013
    [Google Scholar]
  4. Lee K. Lockhart J.H. Xie M. Chaudhary R. Slebos R.J.C. Flores E.R. Chung C.H. Tan A.C. Deep learning of histopathology images at the single cell level. Front. Artif. Intell. 2021 4 754641 10.3389/frai.2021.754641 34568816
    [Google Scholar]
  5. Rączkowska A. Możejko M. Zambonelli J. Szczurek E. ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning. Sci. Rep. 2019 9 1 14347 10.1038/s41598‑019‑50587‑1 31586139
    [Google Scholar]
  6. Hameed Z. Zahia S. Garcia-Zapirain B. Javier Aguirre J. María Vanegas A. Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 2020 20 16 4373 10.3390/s20164373 32764398
    [Google Scholar]
  7. Khairi S. Bakar M. Alias M. Bakar S. Liong C.Y. Rosli N. Farid M. Deep learning on histopathology images for breast cancer classification: A bibliometric analysis. Healthcare 2021 10 1 10 10.3390/healthcare10010010 35052174
    [Google Scholar]
  8. Qiao M. Liu C. Li Z. Zhou J. Xiao Q. Zhou S. Chang C. Gu Y. Guo Y. Wang Y. Breast tumor classification based on mri-us images by disentangling modality features. IEEE J. Biomed. Health Inform. 2022 26 7 3059 3067 10.1109/JBHI.2022.3140236 34982706
    [Google Scholar]
  9. Zhang Z. Chen P. McGough M. Xing F. Wang C. Bui M. Xie Y. Sapkota M. Cui L. Dhillon J. Ahmad N. Khalil F.K. Dickinson S.I. Shi X. Liu F. Su H. Cai J. Yang L. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 2019 1 5 236 245 10.1038/s42256‑019‑0052‑1
    [Google Scholar]
  10. Munien Chanaleä Viriri Serestina Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with efficientnets. Comput. Intell. Neurosci. 2021 2021 5580914 10.1155/2021/5580914
    [Google Scholar]
  11. Ruifrok A.C. Johnston D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 2001 23 4 291 299 11531144
    [Google Scholar]
  12. Reinhard E. Adhikhmin M. Gooch B. Shirley P. Color transfer between images. IEEE Comput. Graph. Appl. 2001 21 4 34 41 10.1109/38.946629
    [Google Scholar]
  13. Macenko M. Niethammer M. Marron J.S. Borland D. Woosley J.T. Guan X. Schmitt C. Thomas N.E. A method for normalizing histology slides for quantitative analysis. IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107 1110 2009 10.1109/ISBI.2009.5193250
    [Google Scholar]
  14. Vahadane A. Peng T. Sethi A. Albarqouni S. Wang L. Baust M. Steiger K. Schlitter A.M. Esposito I. Navab N. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 2016 35 8 1962 1971 10.1109/TMI.2016.2529665 27164577
    [Google Scholar]
  15. Tam A. Barker J. Rubin D. A method for normalizing pathology images to improve feature extraction for quantitative pathology. Med. Phys. 2016 43 1 528 537 10.1118/1.4939130 26745946
    [Google Scholar]
  16. Khan A.M. Rajpoot N. Treanor D. Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 2014 61 6 1729 1738 10.1109/TBME.2014.2303294 24845283
    [Google Scholar]
  17. Kowal M. Filipczuk P. Obuchowicz A. Korbicz J. Monczak R. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 2013 43 10 1563 1572 10.1016/j.compbiomed.2013.08.003 24034748
    [Google Scholar]
  18. Veta M van Diest PJ Kornegoor R Huisman A Viergever MA Pluim JP Automatic nuclei segmentation in h&e stained breast cancer histopathology images. PLoS One 2013 8 7 e70221 10.1371/journal.pone.0070221
    [Google Scholar]
  19. Fatakdawala H. Jun Xu Basavanhally A. Bhanot G. Ganesan S. Feldman M. Tomaszewski J.E. Madabhushi A. Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans. Biomed. Eng. 2010 57 7 1676 1689 10.1109/TBME.2010.2041232 20172780
    [Google Scholar]
  20. Komura D. Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018 16 34 42 10.1016/j.csbj.2018.01.001 30275936
    [Google Scholar]
  21. Yassin N.I.R. Omran S. El Houby E.M.F. Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Programs Biomed. 2018 156 25 45 10.1016/j.cmpb.2017.12.012 29428074
    [Google Scholar]
  22. Abdullah-Al N. Yinan K. Involvement of machine learning for breast cancer image classification: A survey. Comput. Math. Methods. Med. 2017 3781951 2017 10.1155/2017/3781951
    [Google Scholar]
  23. Nagdeote S. Prabhu S. A review on computer-assisted techniques to analyze histopathological images of the breast. 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, pp.1-6, 2023 10.1109/PIECON56912.2023.10085880
    [Google Scholar]
  24. Kumar A. Prateek M. Localization of Nuclei in Breast Cancer Using Whole Slide Imaging System Supported by Morphological Features and Shape Formulas. Cancer Manag. Res. 2020 12 4573 4583 10.2147/CMAR.S248166 32606950
    [Google Scholar]
  25. Smith E. Trefftz C. DeVries B. A divide-and-conquer algorithm for computing voronoi diagrams. IEEE Int. Conf. Electro.Inf. Technol. 2020 10.1109/EIT48999.2020.9208270
    [Google Scholar]
  26. Levet F. Optimizing Voronoi-based quantifications for reaching interactive analysis of 3D localizations in the million range. Front. Bioinform. 2023 3 1249291 10.3389/fbinf.2023.1249291
    [Google Scholar]
  27. Nazir N. Sarwar A. Saini B.S. Shams R. A robust deep learning approach for accurate segmentation of cytoplasm and nucleus in noisy pap smear images. Computation 2023 11 10 195 10.3390/computation11100195
    [Google Scholar]
  28. Timo S. Simon H. Jan D. A method for optimized placement of bus stop based on voronoi diagrams. Proceedings of the 55th Hawaii International Conference on System Sciences 2022
    [Google Scholar]
  29. Jones T.R. Carpenter A. Golland P. Voronoi-Based Segmentation of Cells on Image Manifolds. Computer Vision for Biomedical Image Applications. CVBIA 2005. Liu Y. Jiang T. Zhang C. Lecture Notes in Computer Science 3765 Berlin, Heidelberg Springer 2005 10.1007/11569541_54
    [Google Scholar]
  30. Yu W.M. Lee H.K. Hariharan S. Bu W.Y. Ahmed S. Level set segmentation of cellular images based on topological dependence. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science SpringerLink Berlin, Heidelberg 5358 2008 10.1007/978‑3‑540‑89639‑5_52
    [Google Scholar]
  31. Yu W. Lee H.K. Hariharan S. Bu W. Ahmed S. Quantitative neurite outgrowth measurement based on image segmentation with topological dependence. Cytometry A 2009 75A 4 289 297 10.1002/cyto.a.20664 18951464
    [Google Scholar]
  32. Yu W. Lee H.K. Hariharan S. Bu W. Ahmed S. Evolving generalized Voronoi diagrams for accurate cellular image segmentation. Cytometry A 2010 77A 4 379 386 10.1002/cyto.a.20876 20169588
    [Google Scholar]
  33. Rashmi R. Prasad K. Udupa C.B.K. Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review. J. Med. Syst. 2022 46 1 7 10.1007/s10916‑021‑01786‑9 34860316
    [Google Scholar]
  34. Nagdeote S. Prabhu S. A model to perform prediction based on feature extraction of histopathological images of the breast. Multimed Tools Appl 2023 10.1007/s11042‑023‑16245‑5
    [Google Scholar]
  35. Kumar R. Srivastava R. Srivastava S. Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J. Med. Eng. 2015 2015 1 14 10.1155/2015/457906 27006938
    [Google Scholar]
  36. Kumar N. Verma R. Sharma S. Bhargava S. Vahadane A. Sethi A. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 2017 36 7 1550 1560 10.1109/TMI.2017.2677499 28287963
    [Google Scholar]
  37. Novitasari D.C.R. Lubab A. Sawiji A. Asyhar A.H. Application of feature extraction for breast cancer using one order statistic, GLCM, GLRLM, and GLDM. Adv. Sci. Technol. Engin. Syst. J. 2019 4 4 115 120 10.25046/aj040413
    [Google Scholar]
  38. Roy S.D. Das S. Kar D. Schwenker F. Sarkar R. Computer aided breast cancer detection using ensembling of texture and statistical image features. Sensors 2021 21 11 3628 10.3390/s21113628 34071029
    [Google Scholar]
  39. Fukuma K. Prasath V.B.S. Kawanaka H. Aronow B.J. Takase H. A study on nuclei segmentation, feature extraction and disease stage classification for human brain histopathological images. Procedia Comput. Sci. 2016 96 1202 1210 10.1016/j.procs.2016.08.164
    [Google Scholar]
  40. Carvalho, Rafael Dantas de, Alessandro Santana Martins, Leandro Alves Neves and Marcelo Zanchetta do Nascimento. “Analysis of Features for Breast Cancer Recognition in Different Magnifications of Histopathological Images.” 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) 2020 39 44
  41. Shaharuddin Salleh, and Rozi Mahmud. Siti Salmah Yasiran AIP Conference Proceedings 1750 Haralick Texture And Invariant Moments Features For Breast Cancer Classification 2016 020022
    [Google Scholar]
  42. Esener I. A new feature ensemble with a multistage classification scheme for breast cancer diagnosis. J. healthc. eng. 2017 3895164 2017
    [Google Scholar]
  43. Tang Y. Qi S. Zhu L. Zhuo X. Zhang Y. Fan M. Obstacle avoidance motion in mobile robotics. Xitong Fangzhen Xuebao 2024 36 1
    [Google Scholar]
  44. Hu K. Chen Z. Kang H. Tang Y. 3D vision technologies for a self-developed structural external crack damage recognition robot. Autom. Construct. 2024 159 105262 10.1016/j.autcon.2023.105262
    [Google Scholar]
  45. Wu Zihao Tang Yunchao Hong Bo Liang Bingqiang Liu Yuping Enhanced precision in dam crack width measurement: Leveraging advanced lightweight network identification for pixel-level accuracy. Int. J. Intell. Syst. 2023 9940881 2023
    [Google Scholar]
  46. Idrees M. Alnahdi A. Jeelani M. Mathematical modeling of breast cancer based on the caputo–fabrizio fractal-fractional derivative. Fractal Fract. 2023 7 11 805 10.3390/fractalfract7110805
    [Google Scholar]
  47. Yan R. Zhang F. Rao X. Lv Z. Li J. Zhang L. Liang S. Li Y. Ren F. Zheng C. Liang J. Richer fusion network for breast cancer classification based on multimodal data. BMC Med. Inform. Decis. Mak. 2021 21 S1 1 134 10.1186/s12911‑020‑01340‑6 33888098
    [Google Scholar]
  48. OPhir N. Miriam E. Bunimovich-Mendrazitsky S. Analysis of a breast cancer mathematical model by a new method to find an optimal protocol For HER2-Positive Cancer. Biosystems 2020 197 104191 10.1016/j.biosystems.2020.104191
    [Google Scholar]
  49. Botesteanu D.A. Lipkowitz S. Lee J.M. Levy D. Mathematical models of breast and ovarian cancers. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016 8 4 337 362 10.1002/wsbm.1343 27259061
    [Google Scholar]
  50. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  51. Jarrett A.M. Shah A. Bloom M.J. McKenna M.T. Hormuth D.A. II Yankeelov T.E. Sorace A.G. Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer. Sci. Rep. 2019 9 1 12830 10.1038/s41598‑019‑49073‑5 31492947
    [Google Scholar]
  52. Zagami P. Carey L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022 8 1 95 10.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  53. Hao Y. Qiao S. Zhang L. Xu T. Bai Y. Hu H. Zhang W. Zhang G. Breast cancer histopathological images recognition based on low dimensional three-channel features. Front. Oncol. 2021 11 657560 10.3389/fonc.2021.657560 34195073
    [Google Scholar]
  54. Shallu S Mehra R Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images : A comparative insight. J. Digit. Imaging. 33 3 632 654 2020 10.1007/s10278‑019‑00307‑y
    [Google Scholar]
  55. Li J. Shi J. Su H. Gao L. Breast cancer histopathological image recognition based on pyramid gray level co-occurrence matrix and incremental broad learning. Electronics 2022 11 15 2322 10.3390/electronics11152322
    [Google Scholar]
/content/journals/eeng/10.2174/0123520965282930240417113057
Loading
/content/journals/eeng/10.2174/0123520965282930240417113057
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: segmentation ; clinical data ; BRCA ; Stain normalization ; features ; stain transfer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test