Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2213-1116
  • E-ISSN: 2213-1132

Abstract

Picture categorization is a fundamental task in vision recognition that aims to understand and label an image in its entirety. While object detection works with the categorization and placement of many elements inside an image, image classification often pertains to photographs containing a single object. The development of sophisticated parallel computers in tandem with the introduction of contemporary remote sensors has fundamentally changed the picture categorization theory. Various algorithms have been created to recognise objects of interest in pictures and then categorise them and practise. In recent years, a number of authors have offered a range of classification strategies. However, there are not many studies or comparisons of classification techniques in soft computing settings. These days, the use of soft computing techniques has improved the performance of classification methods. This work explores the use of soft computing for image classification for various applications. The study explores further details regarding new applications and various classification technique types. To promote greater study in this field, important problems and viable fixes for applications based on soft computing are also covered. As a result, researchers will find this survey study useful in implementing an optimal categorization method for multiple applications.

Loading

Article metrics loading...

/content/journals/eeng/10.2174/0123520965282357231123093259
2025-01-01
2024-12-26
Loading full text...

Full text loading...

References

  1. KumarS. SaxenaR. SinghK. Fractional fourier transform and fractional-order calculus-based image edge detection.Circuits Syst. Signal Process.20173641493151310.1007/s00034‑016‑0364‑x
    [Google Scholar]
  2. BhinderP. JindalN. SinghK. An improved robust image-adaptive watermarking with two watermarks using statistical decoder.Multimedia Tools Appl.2020791-218321710.1007/s11042‑019‑07941‑2
    [Google Scholar]
  3. JindalNeeru SinghKulbir Image retrieval algorithm based on discrete fractional transforms.J. Electr. Eng.201364425025510.2478/jee‑2013‑0036
    [Google Scholar]
  4. KaurH. JindalN. Deep convolutional neural network for graphics forgery detection in video.Wirel. Pers. Commun.202011231763178110.1007/s11277‑020‑07126‑3
    [Google Scholar]
  5. MehmoodM. ShahzadA. ZafarB. ShabbirA. AliN. Remote sensing image classification: A comprehensive review and applications.Math. Probl. Eng.2022202212410.1155/2022/5880959
    [Google Scholar]
  6. XiaZ. WangX. ZhangL. QinZ. SunX. RenK. A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing.IEEE Trans. Inf. Forensics Security201611112594260810.1109/TIFS.2016.2590944
    [Google Scholar]
  7. SudarshanP. BhardwajV. "Real-time driver drowsiness detection and assistance system using machine learning and IoT", 2023 8th International Conference on Communication and Electronics Systems (ICCES),202310.1109/ICCES57224.2023.10192831
    [Google Scholar]
  8. KansalI. "Digital image processing and IoT in smart health care-A review", 2022 International Conference on Emerging Smart Computing and Informatics (ESCI)202210.1109/ESCI53509.2022.9758227
    [Google Scholar]
  9. BhinderP. SinghK. JindalN. Image-adaptive watermarking using maximum likelihood decoder for medical images.Multimedia Tools Appl.2018778103031032810.1007/s11042‑018‑5635‑z
    [Google Scholar]
  10. YadavN. SinghK. Robust image-adaptive watermarking using an adjustable dynamic strength factor.Signal Image Video Process.2015971531154210.1007/s11760‑013‑0607‑2
    [Google Scholar]
  11. De DiegoI.M. RedondoA.R. FernándezR.R. NavarroJ. MoguerzaJ.M. General performance score for classification problems.Appl. Intell.20225210120491206310.1007/s10489‑021‑03041‑7
    [Google Scholar]
  12. NaserM.Z. AmirH. Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences.Architecture, Structures and Construction2021119
    [Google Scholar]
  13. BotchkarevAlexei "A new typology design of performance metrics to measure errors in machine learning regression algorithms", arXiv201910.28945/4184
    [Google Scholar]
  14. SharmaP. GoelS. "Real-Time Facial Detection Using MATLAB (Utilizing VJ Method)", Modern Electronics Devices and Communication Systems: Select Proceedings of MEDCOM 2021202331532210.1007/978‑981‑19‑6383‑4_25
    [Google Scholar]
  15. SharmaP. Automated Plant Health Assessment Through Detection of Diseased Leaflets.Emergent Converging Technologies and Biomedical Systems. ETBS 2022. Lecture Notes in Electrical Engineering. JainS. MarriwalaN. TripathiC.C. KumarD. SingaporeSpringer2023104010.1007/978‑981‑99‑2271‑0_47
    [Google Scholar]
  16. AnandA. SinghA.K. LvZ. BhatnagarG. Compression-then-encryption-based secure watermarking technique for smart healthcare system.IEEE Multimed.202027413314310.1109/MMUL.2020.2993269
    [Google Scholar]
  17. SinghA.K. KumarC. Encryption-then-compression-based copyright protection scheme for E-governance.IT Prof.2020222455210.1109/MITP.2019.2961898
    [Google Scholar]
  18. SinghA. KumarB. SinghG. MohanA. Digital image watermarking: concepts and applications Medical Image Watermarking.BerlinSpringer2017112
    [Google Scholar]
  19. AnandA. SinghA.K. An improved DWT-SVD domain watermarking for medical information security.Comput. Commun.2020152728010.1016/j.comcom.2020.01.038
    [Google Scholar]
  20. SinghO.P. SinghA.K. SrivastavaG. KumarN. Image watermarking using soft computing techniques: A comprehensive survey.Multimedia Tools Appl.20218020303673039810.1007/s11042‑020‑09606‑x
    [Google Scholar]
  21. RaiA. SinghH.V. SVM based robust watermarking for enhanced medical image security.Multimedia Tools Appl.20177618186051861810.1007/s11042‑016‑4215‑3
    [Google Scholar]
  22. RamlyS. AljunidS.A. Shaker HussainH. SVM-SS watermarking model for medical images.Commun. Comput. Inf. Sci.201119437238610.1007/978‑3‑642‑22603‑8_34
    [Google Scholar]
  23. PengH. WangJ. WangW. Image watermarking method in multiwavelet domain based on support vector machines.J. Syst. Softw.20108381470147710.1016/j.jss.2010.03.006
    [Google Scholar]
  24. WangX.Y. MiaoE.N. YangH.Y. A new SVM-based image watermarking using Gaussian–Hermite moments.Appl. Soft Comput.201212288790310.1016/j.asoc.2011.10.003
    [Google Scholar]
  25. YuP.T. TsaiH.H. LinJ.S. Digital watermarking based on neural networks for color images.Signal Processing200181366367110.1016/S0165‑1684(00)00239‑5
    [Google Scholar]
  26. ZearA. SinghA.K. KumarP. A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine.Multimedia Tools Appl.20187744863488210.1007/s11042‑016‑3862‑8
    [Google Scholar]
  27. ZearA. SinghA.K. KumarP. Robust watermarking technique using back propagation neural network: a security protection mechanism for social applications.Int. J. Inform. Comput. Secur.201791/2203510.1504/IJICS.2017.082837
    [Google Scholar]
  28. AslantasV. A singular-value decomposition-based image watermarking using genetic algorithm.AEU Int. J. Electron. Commun.200862538639410.1016/j.aeue.2007.02.010
    [Google Scholar]
  29. HorngS.J. RosiyadiD. FanP. WangX. KhanM.K. An adaptive watermarking scheme for e-government document images.Multimedia Tools Appl.20147233085310310.1007/s11042‑013‑1579‑5
    [Google Scholar]
  30. NaheedT. UsmanI. KhanT.M. DarA.H. ShafiqueM.F. Intelligent reversible watermarking technique in medical images using GA and PSO.Optik20141251125152525
    [Google Scholar]
  31. GongeS.S. GhatolA. Combination of fuzzy logic digital image watermarking and advanced encryption technique for security and authentication of cheque image.Advances in Intelligent Systems and Computing20186838410110.1007/978‑3‑319‑68385‑0_8
    [Google Scholar]
  32. DharJ. IslamM. UllahM. A fuzzy logic based contrast and edge sensitive digital image watermarking techniqueSN Appl. Sci.201917
    [Google Scholar]
  33. HashimN. HamidJ.R.A. Multi level image segmentation for urban land cover classifications.IOP Conf. Ser. Earth Environ. Sci.2021767101202410.1088/1755‑1315/767/1/012024
    [Google Scholar]
  34. LvZ.Y. ShiW. ZhangX. BenediktssonJ.A. Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.20181151520153210.1109/JSTARS.2018.2803784
    [Google Scholar]
  35. NguyenD.D. NgoL.T. PhamL.T. PedryczW. Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms.Fuzzy Sets Syst.2015279173910.1016/j.fss.2015.01.020
    [Google Scholar]
  36. ZhangX. WangG. Stud pose detection based on photometric stereo and lightweight yolov4.Journal of Artificial Intelligence and Technology2022213237
    [Google Scholar]
  37. SajidM. AliN. DarS.H. Data augmentation-assisted makeup-invariant face recognition.Math. Probl. Eng.2018201811010.1155/2018/2850632
    [Google Scholar]
  38. SaqlainM. RubabS. KhanM.M. AliN. AliS. Hybrid approach for shelf monitoring and planogram compliance (hyb-smpc) in retails using deep learning and computer vision.Math. Probl. in Eng.2022202211810.1155/2022/4916818
    [Google Scholar]
  39. KantakumarL.N. NeelamsettiP. Multi-temporal land use classification using hybrid approach.Egypt. J. Remote Sens. Space Sci.201518228929510.1016/j.ejrs.2015.09.003
    [Google Scholar]
  40. QayyumA. Saeed MalikA. SaadN.M. IqbalM. AbdullahM.F. RasheedW. AbdullahT.A.B.R. Bin JafaarM.Y. Image classification based on sparse-coded features using sparse coding technique for aerial imagery: A hybrid dictionary approach.Neural Comput. Appl.20193183587360710.1007/s00521‑017‑3300‑5
    [Google Scholar]
  41. ZhangC. PanX. LiH. GardinerA. SargentI. HareJ. AtkinsonP.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification.ISPRS J. Photogramm. Remote Sens.201814013314410.1016/j.isprsjprs.2017.07.014
    [Google Scholar]
  42. NijhawanR. SharmaH. SahniH. BatraA. "A deep learning hybrid cnn framework approach for vegetation cover mapping using deep features", Proceedings of the 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)Jaipur, India201719219610.1109/SITIS.2017.41
    [Google Scholar]
  43. PrasadS.V.S. SavithriT.S. Murali KrishnaI. Comparison of accuracy measures for rs image classification using svm and ann classifiers.Iran. J. Electr. Comput. Eng.201773118010.11591/ijece.v7i3.pp1180‑1187
    [Google Scholar]
  44. YangM.D. HuangK.S. KuoY-H. TsaiH. LinL-M. Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery.Remote Sens.20179658310.3390/rs9060583
    [Google Scholar]
  45. AlimjanG. SunT. LiangY. JumahunH. GuanY. A new technique for remote sensing image classification based on combinatorial algorithm of svm and knn.Int. J. Pattern Recognit. Artif. Intell.2018327185901210.1142/S0218001418590127
    [Google Scholar]
  46. AkshyaJ. PriyadarsiniP.L.K. "A hybrid machine learning approach for classifying aerial images of flood-hit areas", Proceedings of the International Conference on Computational Intelligence in Data Science (ICCIDS)Chennai, India20191510.1109/ICCIDS.2019.8862138
    [Google Scholar]
  47. HuaY. MouL. ZhuX.X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification.ISPRS J. Photogramm. Remote Sens.201914918819910.1016/j.isprsjprs.2019.01.015 31007387
    [Google Scholar]
  48. SchuegrafP. BittnerK. Automatic building footprint extraction from multi-resolution remote sensing images using a hybrid fcn.ISPRS Int. J. Geoinf.20198419110.3390/ijgi8040191
    [Google Scholar]
  49. Subba RaoS. Copyright: Its implications for electronic information.Online Inf. Rev.200327426427510.1108/14684520310489050
    [Google Scholar]
  50. LiuY. TangS. LiuR. ZhangL. MaZ. Secure and robust digital image watermarking scheme using logistic and RSA encryption.Expert Syst. Appl.2018979510510.1016/j.eswa.2017.12.003
    [Google Scholar]
  51. NikolicM. TubaE. TubaM. "Edge detection in medical ultrasound images using adjusted Canny edge detection algorithm", In Proceedings of the 2016 24th Telecommunications Forum (TELFOR)Belgrade, Serbia 20161410.1109/TELFOR.2016.7818878
    [Google Scholar]
  52. Al-EmranM. MalikS.I. Al-KabiM.N. A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges.Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications.Berlin/Heidelberg, GermanySpringer International Publishing202019720910.1007/978‑3‑030‑24513‑9_12
    [Google Scholar]
  53. FouziaR. RoopalakshmiJ.A. RathodA.S. SupriyaK. "D"river Drowsiness Detection System Based on Visual Features", 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)Coimbatore, India20181344134710.1109/ICICCT.2018.8473203
    [Google Scholar]
  54. BougardC. EspiéS. LarnaudieB. MoussayS. DavenneD. Effects of time of day and sleep deprivation on motorcycle-driving performance.PLoS One201276e3973510.1371/journal.pone.0039735 22761881
    [Google Scholar]
  55. PhilipP. SagaspeP. MooreN. TaillardJ. CharlesA. GuilleminaultC. BioulacB. Fatigue, sleep restriction and driving performance.Accid. Anal. Prev.200537347347810.1016/j.aap.2004.07.007 15784201
    [Google Scholar]
  56. GrigorieT.L. EduI.R. AdochieiF.C. "Inertial positioning precision improvement through sensors denoising by using wavelet functions tuned with DTF method", 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)Corfu, Greece20151610.1109/IISA.2015.7388108
    [Google Scholar]
  57. "Alert System for Driver’s Drowsiness Using Image Processing", 2019 International Conference on Vision Towards EmergingTrends in Communication and Networking (ViTECoN) Vellore, India201915
    [Google Scholar]
  58. AttarodiG. Matla NikooeiS. Jafarnia DabanlooN. PourmasoumiP. TarehA. Detection of Driver’s Drowsiness Using New Features Extracted From HRV Signal2018 Computing in Cardiology Conference (CinC)Maastricht, Netherlands 20181410.22489/CinC.2018.014
    [Google Scholar]
  59. BorulkarN. PandeyP. DavdaC. ChettiarJ. "Drowsiness detection and monitoring the sleeping pattern using brainwaves technology and IoT", 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics, and Cloud) (I-SMAC)201810.1109/I‑SMAC.2018.8653772
    [Google Scholar]
  60. GundluruN. RajputD.S. LakshmannaK. KaluriR. ShorfuzzamanM. UddinM. Rahman KhanM.A. Enhancement of detection of diabetic retinopathy using harris hawks optimization with deep learning model.Comput. Intell. Neurosci.2022202211310.1155/2022/8512469 35665292
    [Google Scholar]
  61. PalveA. PatelH. "Towards securing real time data in IoMT environment", Proceedings of the International Conference on Communication Systems and Network Technologies (CSNT)2018Bhopal, India10.1109/CSNT.2018.8820213
    [Google Scholar]
  62. LakshmannaK. KaluriR. GundluruN. AlzamilZ.S. RajputD.S. KhanA.A. HaqM.A. AlhussenA. A review on deep learning techniques for IoT data.Electronics20221110160410.3390/electronics11101604
    [Google Scholar]
  63. RajputD.S. ReddyT.S.K. RajuD.N. Investigation on Deep Learning Approach for Big Data.Deep. Learn. Neural Netw. Concepts Methodol. Tools Appl.2020111016102910.4018/978‑1‑7998‑0414‑7.ch056
    [Google Scholar]
  64. LakshmanaprabuS. MohantyS.N. ShankarK. ArunkumarN. RamirezG. Optimal deep learning model for classification of lung cancer on CT images.Future Gener. Comput. Syst.20199237438210.1016/j.future.2018.10.009
    [Google Scholar]
  65. CoudrayN. OcampoP.S. SakellaropoulosT. NarulaN. SnuderlM. FenyöD. MoreiraA.L. RazavianN. TsirigosA. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.Nat. Med.201824101559156710.1038/s41591‑018‑0177‑5 30224757
    [Google Scholar]
  66. TanT.Y. ZhangL. LimC.P. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models.Appl. Soft Comput.20198410572510.1016/j.asoc.2019.105725
    [Google Scholar]
  67. El-GamalF.E.Z.A. ElmogyM. AtwanA. Current trends in medical image registration and fusion.Egyptian Informatics Journal20161719912410.1016/j.eij.2015.09.002
    [Google Scholar]
  68. LiuY. ChenX. ChengJ. PengH. "A medical image fusion method based on convolutional neural networks", 2017 20th International Conference on Information Fusion (Fusion)201710.23919/ICIF.2017.8009769
    [Google Scholar]
  69. SharifM. AminJ. RazaM. YasminM. SatapathyS.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor.Pattern Recognit. Lett.202012915015710.1016/j.patrec.2019.11.017
    [Google Scholar]
  70. SabaT. Sameh MohamedA. El-AffendiM. AminJ. SharifM. Brain tumor detection using fusion of hand crafted and deep learning features.Cogn. Syst. Res.20205922123010.1016/j.cogsys.2019.09.007
    [Google Scholar]
  71. WangY. "Double-uncertainty weighted method for semi-supervised learning", Medical Image Computing and Computer Assisted Intervention– MICCAI 23rd International ConferenceLima, Peru202054255110.1007/978‑3‑030‑59710‑8_53
    [Google Scholar]
  72. PoschK. PilzJ. Correlated parameters to accurately measure uncertainty in deep neural networks.IEEE Trans. Neural Netw. Learn. Syst.20213231037105110.1109/TNNLS.2020.2980004 32310784
    [Google Scholar]
  73. AlaaA. Van Der SchaarM. "Discriminative jackknife: Quantifying uncertainty in deep learning via higher-order influence functions", Proc.Int. Conf. Mach. Learn.2020165174
    [Google Scholar]
  74. AbdarM. FahamiM.A. RundoL. RadevaP. FrangiA.F. AcharyaU.R. KhosraviA. LamH-K. JungA. NahavandiS. Hercules: Deep hierarchical attentive multilevel fusion model with uncertainty quantification for medical image classification.IEEE Trans. Industr. Inform.202319127428510.1109/TII.2022.3168887
    [Google Scholar]
  75. LoizidouK. SkouroumouniG. NikolaouC. PitrisC. Automatic breast mass segmentation and classification using subtraction of temporally sequential digital mammograms.IEEE J. Transl. Eng. Health Med.20221011110.1109/JTEHM.2022.3219891 36519002
    [Google Scholar]
  76. FurrerD.U. DimidukD.M. CottonJ.D. WardC.H. Making the case for a model-based definition of engineering materials.Integr. Mater. Manuf. Innov.201763249263[CrossRef]10.1007/s40192‑017‑0102‑7
    [Google Scholar]
  77. FriedmanJ. HastieT. TibshiraniR. The Elements of Statistical LearningSpringer Series in Statistics New York.New York, NY, USASpringer20011
    [Google Scholar]
  78. MorganD. JacobsR. Opportunities and challenges for machine learning in materials science.Annu. Rev. Mater. Res.20205017110310.1146/annurev‑matsci‑070218‑010015
    [Google Scholar]
  79. VillarsP. CenzualK. Pearson’s Crystal Data®: Crystal structure database for inorganic compounds.Materials Park, OH, USAASM International2007
    [Google Scholar]
  80. SaalJ.E. KirklinS. AykolM. MeredigB. WolvertonC. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD).J. Miner. Met. Mater. Soc.2013651115011509[CrossRef]10.1007/s11837‑013‑0755‑4
    [Google Scholar]
  81. SalvadorC.A.F. ZornioB.F. MirandaC.R. Discovery of low-modulus Ti-Nb-Zr alloys based on machine learning and first-principles calculations.ACS Appl. Mater. Interfaces20201251568505686110.1021/acsami.0c18506 33296178
    [Google Scholar]
  82. FurmanchukA. AgrawalA. ChoudharyA. Predictive analytics for crystalline materials: bulk modulus.RSC Advances2016697952469525110.1039/C6RA19284J
    [Google Scholar]
  83. KanagarajB. KiranT. A. N, K. Al Jabri, and J. S, “Development and strength assessment of eco-friendly geopolymer concrete made with natural and recycled aggregates”.Constr. Innov.202323352454510.1108/CI‑08‑2021‑0157
    [Google Scholar]
  84. Guzmán-TorresJ.A. Domínguez-MotaF.J. Alonso-GuzmánE.M. A multi-layer approach to classify the risk of corrosion in concrete specimens that contain different additives.Case Studies in Construction Materials202115e0071910.1016/j.cscm.2021.e00719
    [Google Scholar]
  85. FrydrychKarol Materials informatics for mechanical deformation: A review of applications and challenges.Materials20211419576410.3390/ma14195764
    [Google Scholar]
  86. ZouQ. CaoY. LiQ. MaoQ. WangS. CrackTree: Automatic crack detection from pavement images.Pattern Recognit. Lett.201233322723810.1016/j.patrec.2011.11.004
    [Google Scholar]
  87. NishikawaT. YoshidaJ. SugiyamaT. FujinoY. Concrete crack detection by multiple sequential image filtering.Comput. Aided Civ. Infrastruct. Eng.2012271294710.1111/j.1467‑8667.2011.00716.x
    [Google Scholar]
  88. PaulyL. PeelH. LuoS. HoggD. FuentesD.H.A.R. "Deeper networks for pavement crack detection", Proceedings of the 34th ISARC479485Taipei, Taiwan
    [Google Scholar]
  89. YingL. SalariE. Beamlet transform-based technique for pavement crack detection and classification.Comput. Aided Civ. Infrastruct. Eng.201025857258010.1111/j.1467‑8667.2010.00674.x
    [Google Scholar]
  90. YangF. ZhangL. YuS. ProkhorovD. MeiX. LingH. Feature pyramid and hierarchical boosting network for pavement crack detection.IEEE Trans. Intell. Transp. Syst.20202141525153510.1109/TITS.2019.2910595
    [Google Scholar]
  91. ShanB. ZhengS. OuJ. A stereovision-based crack width detection approach for concrete surface assessment.KSCE J. Civ. Eng.201620280381210.1007/s12205‑015‑0461‑6
    [Google Scholar]
  92. KochC. GeorgievaK. KasireddyV. AkinciB. FieguthP. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure.Adv. Eng. Inform.201529219621010.1016/j.aei.2015.01.008
    [Google Scholar]
  93. OlsonM. WynerA.J. BerkR. "Modern neural networks generalize on small data sets", Proceedings of the 32nd International Conference on Neural Information Processing Systems 2018201836233632
    [Google Scholar]
  94. YooH.S. KimY.S. Development of a crack recognition algorithm from non-routed pavement images using artificial neural network and binary logistic regression.KSCE J. Civ. Eng.20162041151116210.1007/s12205‑015‑1645‑9
    [Google Scholar]
  95. MohanA. PoobalS. Crack detection using image processing: A critical review and analysis.Alex. Eng. J.201857278779810.1016/j.aej.2017.01.020
    [Google Scholar]
  96. BudianskyB. O’connellR.J. Elastic moduli of a cracked solid.Int. J. Solids Struct.1976122819710.1016/0020‑7683(76)90044‑5
    [Google Scholar]
  97. AboudiJ. Stiffness reduction of cracked solids.Eng. Fract. Mech.198726563765010.1016/0013‑7944(87)90129‑9
    [Google Scholar]
  98. DhitalD. LeeJ.R. A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation.Exp. Mech.20125281111112210.1007/s11340‑011‑9567‑z
    [Google Scholar]
  99. ShanQ. DewhurstR.J. Surface-breaking fatigue crack detection using laser ultrasound.Appl. Phys. Lett.1993622126492651[CrossRef]10.1063/1.109274
    [Google Scholar]
  100. RameshT.R. Predictive analysis of heart diseases with machine learning approaches.Malays. J. Comput. Sci.2022•••132148
    [Google Scholar]
  101. LilhoreU.K. PoongodiM. KaurA. SimaiyaS. AlgarniA.D. ElmannaiH. VijayakumarV. TunzeG.B. HamdiM. Hybrid model for detection of cervical cancer using causal analysis and machine learning techniques.Comput. Math. Methods Med.2022202211710.1155/2022/4688327 35572826
    [Google Scholar]
  102. LiangW. LiangY. JiaJ. MiAMix: Enhancing image classification through a multi-stage augmented mixied sample data augmentation methodarXiv2023
    [Google Scholar]
  103. YangJiancheng MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classificationarXiv202310.1038/s41597‑022‑01721‑8
    [Google Scholar]
  104. BaileyD.G. Design for embedded image processing on FPGAs.John Wiley & Sons202310.1002/9781119819820
    [Google Scholar]
  105. GulzarYonis article-title image classification model based on MobileNetV2 with deep transfer learning technique.Sustainability2023153190610.3390/su15031906
    [Google Scholar]
  106. NarayanV. "FuzzyNet: Medical Image Classification based on GLCM Texture Feature", 2023 International Conference on Artificial Intelligence and Smart Communication (AISC)202310.1109/AISC56616.2023.10085348
    [Google Scholar]
  107. NingX. TianW. HeF. BaiX. SunL. LiW. Hyper-sausage coverage function neuron model and learning algorithm for image classification.Pattern Recognit.202313610921610.1016/j.patcog.2022.109216
    [Google Scholar]
  108. ZhangZ. DingY. ZhaoX. SiyeL. YangN. CaiY. ZhanY. Multireceptive field: An adaptive path aggregation graph neural framework for hyperspectral image classification.Expert Syst. Appl.202321711950810.1016/j.eswa.2023.119508
    [Google Scholar]
  109. YaoD. Zhi-liZ. Xiao-fengZ. WeiC. FangH. Yao-mingC. CaiW-W. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification.Defence Technology20232316417610.1016/j.dt.2022.02.007
    [Google Scholar]
  110. ArcoJ.E. OrtizA. RamírezJ. Martínez-MurciaF.J. ZhangY-D. GórrizJ.M. Uncertainty-driven ensembles of multi-scale deep architectures for image classification.Inf. Fusion202389536510.1016/j.inffus.2022.08.010
    [Google Scholar]
  111. RoyS.K. DeriaA. HongD. RastiB. PlazaA. ChanussotJ. Multimodal fusion transformer for remote sensing image classification.IEEE Trans. Geosci. Remote Sens.20236112010.1109/TGRS.2023.3286826
    [Google Scholar]
  112. YangY. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition202310.1109/CVPR52729.2023.01839
    [Google Scholar]
  113. DingY. ZhangZ. ZhaoX. HongD. CaiW. YangN. WangB. Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification.Expert Syst. Appl.202322311985810.1016/j.eswa.2023.119858
    [Google Scholar]
  114. GuptaK. BajajV. Deep learning models-based CT-scan image classification for automated screening of COVID-19.Biomed. Signal Process. Control20238010426810.1016/j.bspc.2022.104268 36267466
    [Google Scholar]
  115. LiuH. ZhangC. DengY. XieB. LiuT. ZhangZ. LiY-F. TransIFC: Invariant cues-aware feature concentration learning for efficient fine-grained bird image classification.IEEE Trans. Multimed.202311410.1109/TMM.2023.3238548
    [Google Scholar]
  116. ChenG. ChenQ. LongS. ZhuW. YuanZ. WuY. Quantum convolutional neural network for image classification.Pattern Anal. Appl.202326265566710.1007/s10044‑022‑01113‑z
    [Google Scholar]
  117. ZhangY. ZhangM. LiW. WangS. TaoR. Language-aware domain generalization network for cross-scene hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.20236111210.1109/TGRS.2022.3233885
    [Google Scholar]
  118. ZhangQ. XuY. ZhangJ. TaoD. Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond.Int. J. Comput. Vis.202313151141116210.1007/s11263‑022‑01739‑w
    [Google Scholar]
/content/journals/eeng/10.2174/0123520965282357231123093259
Loading
/content/journals/eeng/10.2174/0123520965282357231123093259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test