Skip to content
2000
Volume 11, Issue 1
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Objective: The adaptive growth of blood vessels is important to prevent tissue loss following arterial occlusion. Extravasation of monocytes is essential for this process. The peptidase CD26 targets SDF-1 alpha, a chemokine regulating monocyte trafficking. We hypothesized that blocking SDF-1 alpha inactivation, using a commercially available CD26 inhibitor, accelerates perfusion recovery without detrimental side effects on plaque stability. Methods and Results: Atherosclerosis prone ApoE-/- mice underwent femoral artery ligation and received a CD26 inhibitor or placebo. CD26 inhibition increased short term (7 days) perfusion recovery after both single and daily doses compared to placebo, 36%±2 (p=0.017) and 39%±2 (p=0.008) vs. 29%±3 respectively. Long term (56 days) perfusion recovery increased after daily treatment compared to placebo 83%±3 vs. 60%±2, (p<0.001). CD26 inhibition did not result in increased atherosclerotic plaque instability or inflammatory cell infiltration. CD26 inhibition increased macrophage number around growing collaterals, SDF-1 alpha plasma levels and monocyte expression of the activation marker CD11b and the SDF-1 alpha receptor CXCR-4. Conclusions: CD26 inhibition enhanced perfusion recovery following arterial occlusion via attenuated SDF-1 alpha inactivation and increased monocyte activation. There was no observable aggravation of atherosclerosis and CD26 inhibition could therefore offer a novel approach for therapeutic arteriogenesis in patients.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/157016113804547566
2013-01-01
2025-01-09
Loading full text...

Full text loading...

/content/journals/cvp/10.2174/157016113804547566
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test