Skip to content
2000
image of Nose-to-Brain Targeting of Resveratrol Nanoformulations

Abstract

Resveratrol [RES] is a polyphenolic stilbene with therapeutic potential owing to its antioxidant, anti-inflammatory, neuroprotective, and cardioprotective properties. However, the very poor oral bioavailability, fast metabolism, and extremely low stability under physiological conditions pose a severe detriment to the clinical use of RES. This newly developed field of nanotechnology has led to the formulation of RES into nanoformulations with the goal of overcoming metabolic-pharmacokinetic limitations and enhancing the targeted transport of RES to the central nervous system [CNS]. Among the various routes of administration, the combination of nose-to-brain [N2B] delivery the intranasal [IN] route has recently garnered attention as a straightforward, non-invasive route for transport to the blood-brain barrier [BBB] for greater effects and less harmful systemic side effects by transporting nano-encapsulated RES into the neural tissues. This review critically summarizes the mechanisms and benefits of the N2B route for the delivery of RES nanoformulations, collating data demonstrating increased CNS bioavailability and stability and, consequently, improved therapeutic efficacy in animal models of neurodegenerative diseases. Compared with the more 'traditional' routes of administration, IN administration of RES nanoformulations is less toxic, cost-effective, and efficient in crossing the BBB. Therefore, this route represents a promising approach to the management of CNS disorders. Further optimization of nanoformulation design and clinical protocols is required to translate these promising findings into therapeutic strategies aimed at neuroprotection and disease modification in human CNS pathologies.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611337079250115071933
2025-01-27
2025-06-23
Loading full text...

Full text loading...

References

  1. Kaur A. Tiwari R. Tiwari G. Ramachandran V. Resveratrol: A vital therapeutic agent with multiple health benefits. Drug Res. 2022 72 1 5 17 10.1055/a‑1555‑2919 34412126
    [Google Scholar]
  2. Zhang L.X. Li C.X. Kakar M.U. Khan M.S. Wu P.F. Amir R.M. Dai D.F. Naveed M. Li Q.Y. Saeed M. Shen J.Q. Rajput S.A. Li J.H. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021 143 112164 10.1016/j.biopha.2021.112164 34649335
    [Google Scholar]
  3. Jang J.Y. Im E. Kim N.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A Review. Int. J. Mol. Sci. 2022 23 22 13689 10.3390/ijms232213689 36430164
    [Google Scholar]
  4. Fonseca-Santos B. Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int. J. Pharm. 2020 589 119832 10.1016/j.ijpharm.2020.119832 32877730
    [Google Scholar]
  5. Andrade S. Ramalho M.J. Pereira M.C. Loureiro J.A. Resveratrol brain delivery for neurological disorders prevention and treatment. Front. Pharmacol. 2018 9 1261 10.3389/fphar.2018.01261 30524273
    [Google Scholar]
  6. Granzotto A. Zatta P. Resveratrol and Alzheimer’s disease: Message in a bottle on red wine and cognition. Front. Aging Neurosci. 2014 6 95 10.3389/fnagi.2014.00095 24860502
    [Google Scholar]
  7. Annaji M. Poudel I. Boddu S.H.S. Arnold R.D. Tiwari A.K. Babu R.J. Resveratrol‐loaded nanomedicines for cancer applications. Cancer Rep. 2021 4 3 e1353 10.1002/cnr2.1353 33655717
    [Google Scholar]
  8. Yıldırım M. Sessevmez M. Poyraz S. Düzgüneş N. Recent strategies for cancer therapy: Polymer nanoparticles carrying medicinally important phytochemicals and their cellular targets. Pharmaceutics 2023 15 11 2566 10.3390/pharmaceutics15112566 38004545
    [Google Scholar]
  9. Waheed S. Li Z. Zhang F. Chiarini A. Armato U. Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J. Nanobiotechnology 2022 20 1 395 10.1186/s12951‑022‑01605‑4 36045386
    [Google Scholar]
  10. Bhardwaj A.K. Pandit A.K. Rehalia A. Singh V. Sharma R. A review on nanomaterials for drug delivery systems and application of carbon based nanomaterials. ES Materials & Manufacturing 2023 21 824 10.30919/esmm5f824
    [Google Scholar]
  11. Ghazal S. Akbari A. Hosseini H.A. Sabouri Z. Forouzanfar F. Khatami M. Darroudi M. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. J. Mol. Struct. 2020 1217 128378 10.1016/j.molstruc.2020.128378
    [Google Scholar]
  12. Forouzanfar F. Pourbagher-Shahri A.M. Darroudi M. Sadeghi M. Vafaee F. Moghadam O.F. Mashhad N.M. Ghazavi H. Khorrami M.B. Cerium oxide nanoparticles ameliorate oxidative stress, inflammation, and pain behavior in neuropathic rats. Curr. Neurovasc. Res. 2023 20 1 54 61 10.2174/1567202620666230125104604 36698228
    [Google Scholar]
  13. Ghazal S. Akbari A. Hosseini H.A. Sabouri Z. Forouzanfar F. Khatami M. Darroudi M. Biosynthesis of silver-doped nickel oxide nanoparticles and evaluation of their photocatalytic and cytotoxicity properties. Appl. Phys., A Mater. Sci. Process. 2020 126 6 480 10.1007/s00339‑020‑03664‑6
    [Google Scholar]
  14. Jeevanandam J. Chan Y.S. Danquah M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016 128-129 99 112 10.1016/j.biochi.2016.07.008 27436182
    [Google Scholar]
  15. Rudrapal M. Mishra A.K. Rani L. Sarwa K.K. Zothantluanga J.H. Khan J. Kamal M. Palai S. Bendale A.R. Talele S.G. Pathan V.T. Borse L.B. Neharkar V.S. Sahoo P.K. Nanodelivery of dietary polyphenols for therapeutic applications. Molecules 2022 27 24 8706 10.3390/molecules27248706 36557841
    [Google Scholar]
  16. Bohara R.A. Tabassum N. Singh M.P. Gigli G. Ragusa A. Leporatti S. Recent overview of resveratrol’s beneficial effects and its nano-delivery systems. Molecules 2022 27 16 5154 10.3390/molecules27165154 36014390
    [Google Scholar]
  17. Kisku A. Nishad A. Agrawal S. Paliwal R. Datusalia A.K. Gupta G. Singh S.K. Dua K. Sulakhiya K. Recent developments in intranasal drug delivery of nanomedicines for the treatment of neuropsychiatric disorders. Front. Med. 2024 11 1463976 10.3389/fmed.2024.1463976 39364023
    [Google Scholar]
  18. Gandhi S. Shastri D.H. Shah J. Nair A.B. Jacob S. Nasal delivery to the brain: Harnessing nanoparticles for effective drug transport. Pharmaceutics 2024 16 4 481 10.3390/pharmaceutics16040481 38675142
    [Google Scholar]
  19. Kumar A. Shukla R. Current strategic arsenal and advances in nose to brain nanotheranostics for therapeutic intervention of glioblastoma multiforme. J. Biomater. Sci. Polym. Ed. 2024 1 35 10.1080/09205063.2024.2396721 39250527
    [Google Scholar]
  20. Khunt D. Salave S. Rana D. Benival D. Gayakvad B. Prajapati B.G. Nose to brain delivery for the treatment of Alzheimer’s disease. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Elsevier 2024 61 71 10.1016/B978‑0‑443‑13205‑6.00001‑7
    [Google Scholar]
  21. Wen P. Ren C. Research progress on intranasal treatment for Parkinson's disease. Neuroprotection 2024 2 79 99 10.1002/nep3.42
    [Google Scholar]
  22. Zhang Y.J. Lee J.Y. Igarashi K.M. Circuit dynamics of the olfactory pathway during olfactory learning. Front. Neural Circuits 2024 18 1437575 10.3389/fncir.2024.1437575 39036422
    [Google Scholar]
  23. Libreros-Jiménez H.M. Manzo J. Rojas-Durán F. Aranda-Abreu G.E. García-Hernández L.I. Coria-Ávila G.A. Herrera-Covarrubias D. Pérez-Estudillo C.A. Toledo-Cárdenas M.R. Hernández-Aguilar M.E. On the cranial nerves. NeuroSci 2023 5 1 8 38 10.3390/neurosci5010002 39483811
    [Google Scholar]
  24. Akpinar Adscheid S. Türeli A.E. Günday-Türeli N. Schneider M. Nanotechnological approaches for efficient N2B delivery: From small-molecule drugs to biopharmaceuticals. Beilstein J. Nanotechnol. 2024 15 1 1400 1414 10.3762/bjnano.15.113 39559726
    [Google Scholar]
  25. Ogawa K. Kato N. Kawakami S. Recent strategies for targeted brain drug delivery. Chem. Pharm. Bull. 2020 68 7 567 582 10.1248/cpb.c20‑00041 32611994
    [Google Scholar]
  26. Lee D. Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics 2021 13 12 2049 10.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  27. Khan A.R. Liu M. Khan M.W. Zhai G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release 2017 268 364 389 10.1016/j.jconrel.2017.09.001 28887135
    [Google Scholar]
  28. Fortuna A. Alves G. Serralheiro A. Sousa J. Falcão A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur. J. Pharm. Biopharm. 2014 88 1 8 27 10.1016/j.ejpb.2014.03.004 24681294
    [Google Scholar]
  29. Rajput A. Pingale P. Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: Facets, aspects, and prospects. Front. Pharmacol. 2022 13 979682 10.3389/fphar.2022.979682 36176429
    [Google Scholar]
  30. Singh A. Maheshwari S. Yadav J.P. Varshney A.P. Singh S. Prajapati B.G. A review on tau targeting biomimetics nano formulations: Novel approach for targeting alzheimer’s diseases. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 3 294 303 10.2174/0118715249289120240321065936 38646682
    [Google Scholar]
  31. Kanojia N. Thapa K. Kaur G. Sharma A. Puri V. Verma N. Update on therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer’s and Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2023 79 104074 10.1016/j.jddst.2022.104074
    [Google Scholar]
  32. Teli D. Satasia R. Patel V. Nair R. Khatri R. Gala D. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals. Clin. Tradit. Med. Pharmacol. 2024 200139
    [Google Scholar]
  33. Ghosh A. Majie A. Karmakar V. Chatterjee K. Chakraborty S. Pandey M. Jain N. Roy Sarkar S. Nair A.B. Gorain B. In-depth mechanism, challenges, and opportunities of delivering therapeutics in brain using intranasal route. AAPS PharmSciTech 2024 25 5 96 10.1208/s12249‑024‑02810‑0 38710855
    [Google Scholar]
  34. Gawarkar-Patil P. Mahajan B. Pawar A. Dhapte-Pawar V. Cubosomes: Evolving platform for intranasal drug delivery of neurotherapeutics. Fut. J. Pharm. Sci. 2024 10 1 91 10.1186/s43094‑024‑00665‑7
    [Google Scholar]
  35. Islam S.U. Shehzad A. Ahmed M.B. Lee Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020 25 8 1929 10.3390/molecules25081929 32326318
    [Google Scholar]
  36. Sabouni N. Marzouni H.Z. Palizban S. Meidaninikjeh S. Kesharwani P. Jamialahmadi T. Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target. 2023 31 3 243 260 10.1080/1061186X.2022.2141755 36305097
    [Google Scholar]
  37. Guo Z.H. Khattak S. Rauf M.A. Ansari M.A. Alomary M.N. Razak S. Yang C.Y. Wu D.D. Ji X.Y. Role of nanomedicine-based therapeutics in the treatment of CNS disorders. Molecules 2023 28 3 1283 10.3390/molecules28031283 36770950
    [Google Scholar]
  38. Chen Y. Zhang C. Huang Y. Ma Y. Song Q. Chen H. Jiang G. Gao X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv. Drug Deliv. Rev. 2024 207 115196 10.1016/j.addr.2024.115196 38336090
    [Google Scholar]
  39. Lee J. Han Y. Wang W. Jo H. Kim H. Kim S. Yang K.M. Kim S.J. Dhanasekaran D.N. Song Y.S. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules 2021 11 8 1107 10.3390/biom11081107 34439774
    [Google Scholar]
  40. Haunschild R. Marx W. On health effects of resveratrol in wine. Int. J. Environ. Res. Public Health 2022 19 5 3110 10.3390/ijerph19053110 35270803
    [Google Scholar]
  41. El-Sayed S.A.E.S. El-Alfy E.S. Sayed-Ahmed M.Z. Mohanta U.K. Alqahtani S.S. Alam N. Ahmad S. Ali M.S. Igarashi I. Rizk M.A. Evaluating the inhibitory effect of resveratrol on the multiplication of several Babesia species and Theileria equi on in vitro cultures, and Babesia microti in mice. Front. Pharmacol. 2023 14 1192999 10.3389/fphar.2023.1192999 37324476
    [Google Scholar]
  42. Ren B. Kwah M.X.Y. Liu C. Ma Z. Shanmugam M.K. Ding L. Xiang X. Ho P.C.L. Wang L. Ong P.S. Goh B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021 515 63 72 10.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  43. Riccio B.V.F. Spósito L. Carvalho G.C. Ferrari P.C. Chorilli M. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body. Arch. Pharm. 2020 353 12 2000146 10.1002/ardp.202000146 32886393
    [Google Scholar]
  44. Weiskirchen S. Weiskirchen R. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr. 2016 7 4 706 718 10.3945/an.115.011627 27422505
    [Google Scholar]
  45. Yang Y. Sun Y. Gu T. Yan Y. Guo J. Zhang X. Pang H. Chen J. The metabolic characteristics and bioavailability of resveratrol based on metabolic enzymes. Nutr. Rev. 2024 nuae161 10.1093/nutrit/nuae161 39520710
    [Google Scholar]
  46. Pecyna P. Wargula J. Murias M. Kucinska M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules 2020 10 8 1111 10.3390/biom10081111 32726968
    [Google Scholar]
  47. Pandey K.B. Rizvi S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem. 2011 4 3 293 298 10.1016/j.arabjc.2010.06.049
    [Google Scholar]
  48. Amri A. Chaumeil J.C. Sfar S. Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release 2012 158 2 182 193 10.1016/j.jconrel.2011.09.083 21978644
    [Google Scholar]
  49. Vázquez B.E.R. Rodríguez-Beas C. Iñiguez-Palomares R.A. Santacruz-Ortega H. Mendoza-Cruz R. Bazán-Díaz L.S. Soberanes Y. Rodríguez-León E. Navarro R.E. Spectroscopic analysis and nuclear magnetic resonance for silver nanoparticles synthesized with trans-resveratrol and cis-resveratrol. Colloid Polym. Sci. 2022 300 5 465 475 10.1007/s00396‑022‑04957‑3
    [Google Scholar]
  50. Wijekoon C. Netticadan T. Siow Y.L. Sabra A. Yu L. Raj P. Prashar S. Potential associations among bioactive molecules, antioxidant activity and resveratrol production in Vitis vinifera fruits of North America. Molecules 2022 27 2 336 10.3390/molecules27020336 35056651
    [Google Scholar]
  51. Wang S. Du Q. Meng X. Zhang Y. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food Funct. 2022 13 19 9734 9753 10.1039/D2FO01552H 36134531
    [Google Scholar]
  52. Venkat R. Verma E. Daimary U.D. Kumar A. Girisa S. Dutta U. Ahn K.S. Kunnumakkara A.B. The journey of resveratrol from vineyards to clinics. Cancer Invest. 2023 41 2 183 220 10.1080/07357907.2022.2115057 35993769
    [Google Scholar]
  53. Gowd V. Kanika Jori C. Chaudhary A.A. Rudayni H.A. Rashid S. Khan R. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J. Nutr. Biochem. 2022 109 109101 10.1016/j.jnutbio.2022.109101 35777588
    [Google Scholar]
  54. Adedokun K.A. Imodoye S.O. Bello I.O. Lanihun A-A. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. Phytochemistry, Computational Tools and Databases in Drug Discovery. Elsevier 2023 393 455 10.1016/B978‑0‑323‑90593‑0.00017‑4
    [Google Scholar]
  55. Bano S. Ahmed F. Khan F. Chaudhary S.C. Samim M. Enhancement of the cancer inhibitory effect of the bioactive food component resveratrol by nanoparticle based delivery. Food Funct. 2020 11 4 3213 3226 10.1039/C9FO02445J 32215382
    [Google Scholar]
  56. Ge Y. Zhou M. Chen C. Wu X. Wang X. Role of AMPK mediated pathways in autophagy and aging. Biochimie 2022 195 100 113 10.1016/j.biochi.2021.11.008 34838647
    [Google Scholar]
  57. Sorrenti V. Benedetti F. Buriani A. Fortinguerra S. Caudullo G. Davinelli S. Zella D. Scapagnini G. Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: Focus on mTOR and AMPK signaling networks. Pharmaceuticals 2022 15 8 912 10.3390/ph15080912 35893737
    [Google Scholar]
  58. Haq I.U. Imran M. Nadeem M. Tufail T. Gondal T.A. Mubarak M.S. Piperine: A review of its biological effects. Phytother. Res. 2021 35 2 680 700 10.1002/ptr.6855 32929825
    [Google Scholar]
  59. Sharifi-Rad J. Quispe C. Durazzo A. Lucarini M. Souto E.B. Santini A. Imran M. Moussa A.Y. Mostafa N.M. El-Shazly M. Sener B. Schoebitz M. Martorell M. Dey A. Calina D. Cruz-Martins N. Resveratrol’ biotechnological applications: Enlightening its antimicrobial and antioxidant properties. J. Herb. Med. 2022 32 100550 10.1016/j.hermed.2022.100550
    [Google Scholar]
  60. Chen X. Chen Y. Liu Y. Zou L. McClements D.J. Liu W. A review of recent progress in improving the bioavailability of nutraceutical‐loaded emulsions after oral intake. Compr. Rev. Food Sci. Food Saf. 2022 21 5 3963 4001 10.1111/1541‑4337.13017 35912644
    [Google Scholar]
  61. Meng T. Xiao D. Muhammed A. Deng J. Chen L. He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021 26 1 229 10.3390/molecules26010229 33466247
    [Google Scholar]
  62. Summerlin N. Soo E. Thakur S. Qu Z. Jambhrunkar S. Popat A. Resveratrol nanoformulations: Challenges and opportunities. Int. J. Pharm. 2015 479 2 282 290 10.1016/j.ijpharm.2015.01.003 25572692
    [Google Scholar]
  63. Song G. Sumit B. Guangyi Y. Arijita D. Ming H. Oral bioavailability challenges of natural products used in cancer chemoprevention. Huaxue Jinzhan 2013 25 09 1553
    [Google Scholar]
  64. Cottart C.H. Nivet-Antoine V. Laguillier-Morizot C. Beaudeux J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010 54 1 7 16 10.1002/mnfr.200900437 20013887
    [Google Scholar]
  65. Liu Y. Liang Y. Yuhong J. Xin P. Han J.L. Du Y. Yu X. Zhu R. Zhang M. Chen W. Ma Y. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des. Devel. Ther. 2024 18 1469 1495 10.2147/DDDT.S447496 38707615
    [Google Scholar]
  66. Kumari N.U. Pardhi E. Chary P.S. Mehra N.K. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther. Deliv. 2024 15 4 279 303 10.4155/tde‑2023‑0092 38374774
    [Google Scholar]
  67. Priyadarshini S. Bora S. Kulhari H. Lipid-based nanocarriers for the delivery of phytoconstituents. Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals. Springer 2024 125 167 10.1007/978‑981‑99‑5314‑1_5
    [Google Scholar]
  68. Patil M. Hussain A. Altamimi M.A. Ashique S. Haider N. Faruk A. Khuroo T. Sherikar A. Siddique M.U.M. Ansari A. Barbhuiya T.K. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer. Adv. Cancer Biol. Metastasis. 2023 7 100103 10.1016/j.adcanc.2023.100103
    [Google Scholar]
  69. Saleem Z. Rehman K. Hamid Akash M.S. Role of drug delivery system in improving the bioavailability of resveratrol. Curr. Pharm. Des. 2022 28 20 1632 1642 10.2174/1381612828666220705113514 35792129
    [Google Scholar]
  70. Deshmukh M. Synthesize and characterize the lipoid s-75 conjugated chitosan-based micelles for improving biopharmaceutical parameters of resveratrol. Asian J. Pharm. 2024 18 3 10.22377/ajp.v18i3.5645
    [Google Scholar]
  71. Jøraholmen M.W. Johannessen M. Gravningen K. Puolakkainen M. Acharya G. Basnet P. Škalko-Basnet N. Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection. Pharmaceutics 2020 12 12 1203 10.3390/pharmaceutics12121203 33322392
    [Google Scholar]
  72. Kaasgaard T. Andresen T.L. Liposomal cancer therapy: Exploiting tumor characteristics. Expert Opin. Drug Deliv. 2010 7 2 225 243 10.1517/17425240903427940 20095944
    [Google Scholar]
  73. Jøraholmen M.W. Škalko-Basnet N. Acharya G. Basnet P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur. J. Pharm. Sci. 2015 79 112 121 10.1016/j.ejps.2015.09.007 26360840
    [Google Scholar]
  74. Masjedi M. Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J. Drug Deliv. Sci. Technol. 2021 61 102234 10.1016/j.jddst.2020.102234
    [Google Scholar]
  75. Machado N.D. Gutiérrez G. Matos M. Fernández M.A. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes. Foods 2021 10 5 988 10.3390/foods10050988 33946473
    [Google Scholar]
  76. Malekian F. Shamsian A. Kodam S.P. Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J. Physiol. 2022 35570717
    [Google Scholar]
  77. Kalluri R. The biology and function of exosomes in cancer. J. Clin. Invest. 2016 126 4 1208 1215 10.1172/JCI81135 27035812
    [Google Scholar]
  78. Bang C. Thum T. Exosomes: New players in cell–cell communication. Int. J. Biochem. Cell Biol. 2012 44 11 2060 2064 10.1016/j.biocel.2012.08.007 22903023
    [Google Scholar]
  79. Huo L. Du X. Li X. Liu S. Xu Y. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases. Front. Neurosci. 2021 15 738442 10.3389/fnins.2021.738442 34531720
    [Google Scholar]
  80. González-Sarrías A. Iglesias-Aguirre C.E. Cortés-Martín A. Vallejo F. Cattivelli A. del Pozo-Acebo L. Del Saz A. López de las Hazas M.C. Dávalos A. Espín J.C. Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity. Int. J. Mol. Sci. 2022 23 5 2860 10.3390/ijms23052860 35270004
    [Google Scholar]
  81. Fan Y. Li Y. Huang S. Xu H. Li H. Liu B. Resveratrol-primed exosomes strongly promote the recovery of motor function in SCI rats by activating autophagy and inhibiting apoptosis via the PI3K signaling pathway. Neurosci. Lett. 2020 736 135262 10.1016/j.neulet.2020.135262 32682847
    [Google Scholar]
  82. Pandey P. Verma M. Lakhanpal S. Pandey S. Kumar M.R. Bhat M. Sharma S. Alam M.W. Khan F. An updated review summarizing the anticancer potential of poly(Lactic‐ co ‐Glycolic Acid) ( PLGA ) based curcumin, Epigallocatechin Gallate, and resveratrol nanocarriers. Biopolymers 2024 e23637 10.1002/bip.23637 39417679
    [Google Scholar]
  83. Santos A.C. Pereira I. Pereira-Silva M. Ferreira L. Caldas M. Magalhães M. Figueiras A. Ribeiro A.J. Veiga F. Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends Food Sci. Technol. 2019 91 483 497 10.1016/j.tifs.2019.07.048
    [Google Scholar]
  84. Pei J. Palanisamy C.P. Natarajan P.M. Umapathy V.R. Roy J.R. Srinivasan G.P. Panagal M. Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer’s disease: A comprehensive review. Ageing Res. Rev. 2024 99 102393 10.1016/j.arr.2024.102393 38925479
    [Google Scholar]
  85. Elmowafy M. Shalaby K. Elkomy M.H. Alsaidan O.A. Gomaa H.A.M. Abdelgawad M.A. Mostafa E.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
  86. Ranjan S. Dinda S.C. Preparation, characterization and evaluation of resveratrol loaded pegylated PLGA nanoparticles. J. Young Pharm. 2023 15 3 456 464 10.5530/jyp.2023.15.61
    [Google Scholar]
  87. Akanda M. Mithu M.D.S.H. Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Technol. 2023 86 104709 10.1016/j.jddst.2023.104709
    [Google Scholar]
  88. Khishvand M.A. Yeganeh E.M. Zarei M. Soleimani M. Mohammadi M. Mahjub R. Development, statistical optimization, and characterization of resveratrol‐containing solid lipid nanoparticles (SLNs) and determination of the efficacy in reducing neurodegenerative symptoms related to Alzheimer’s disease: In vitro and in vivo study. BioMed Res. Int. 2024 2024 1 7877265 10.1155/2024/7877265 39376256
    [Google Scholar]
  89. Shrotriya S.N. Ranpise N.S. Vidhate B.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv. Transl. Res. 2017 7 1 37 52 10.1007/s13346‑016‑0350‑7 27981502
    [Google Scholar]
  90. Pandita D. Kumar S. Poonia N. Lather V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014 62 1165 1174 10.1016/j.foodres.2014.05.059
    [Google Scholar]
  91. Rigon R. Fachinetti N. Severino P. Santana M. Chorilli M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules 2016 21 1 116 10.3390/molecules21010116 26805794
    [Google Scholar]
  92. Singh A. Ahmad I. Ahmad S. Iqbal Z. Ahmad F.J. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: Nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev. Ind. Pharm. 2016 42 9 1524 1536 10.3109/03639045.2016.1151032 26902951
    [Google Scholar]
  93. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  94. Park S. Cha S.H. Cho I. Park S. Park Y. Cho S. Park Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C 2016 58 1160 1169 10.1016/j.msec.2015.09.068 26478416
    [Google Scholar]
  95. Xiang S. Zhang K. Yang G. Gao D. Zeng C. He M. Mitochondria-targeted and resveratrol-loaded dual-function titanium disulfide nanosheets for photothermal-triggered tumor chemotherapy. Nanoscale Res. Lett. 2019 14 1 211 10.1186/s11671‑019‑3044‑5 31227943
    [Google Scholar]
  96. Yang T. Ren H. Zhang W. Rong L. Zhang D. Resveratrol-coated gold nanoflowers for CT imaging and apoptosis/photothermal synergistic therapy of malignant melanoma. ACS Omega 2023 8 38 34629 34639 10.1021/acsomega.3c03538 37779940
    [Google Scholar]
  97. Chen Z. Świsłocka R. Choińska R. Marszałek K. Dąbrowska A. Lewandowski W. Lewandowska H. Exploring the correlation between the molecular structure and biological activities of metal–phenolic compound complexes: Research and description of the role of metal ions in improving the antioxidant activities of phenolic compounds. Int. J. Mol. Sci. 2024 25 21 11775 10.3390/ijms252111775 39519325
    [Google Scholar]
  98. Al-Thani A.N. Jan A.G. Abbas M. Geetha M. Sadasivuni K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 352 122899 10.1016/j.lfs.2024.122899 38992574
    [Google Scholar]
  99. Sell M. Lopes A.R. Escudeiro M. Esteves B. Monteiro A.R. Trindade T. Cruz-Lopes L. Application of nanoparticles in cancer treatment: A concise review. Nanomaterials 2023 13 21 2887 10.3390/nano13212887 37947732
    [Google Scholar]
  100. Ahmad A. Imran M. Sharma N. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics 2022 14 11 2463 10.3390/pharmaceutics14112463 36432653
    [Google Scholar]
  101. Jamalipour Soufi G. Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020 22 9 2662 2687 10.1039/D0GC00734J
    [Google Scholar]
  102. Jacob S. Kather F.S. Boddu S.H.S. Shah J. Nair A.B. Innovations in nanoemulsion technology: Enhancing drug delivery for oral, parenteral, and ophthalmic applications. Pharmaceutics 2024 16 10 1333 10.3390/pharmaceutics16101333 39458662
    [Google Scholar]
  103. Singh Y. Meher J.G. Raval K. Khan F.A. Chaurasia M. Jain N.K. Chourasia M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017 252 28 49 10.1016/j.jconrel.2017.03.008 28279798
    [Google Scholar]
  104. Eissa S.M. Elsayed M.S. Gawish A.M. Elzorkany H.E. Sabet S. Resveratrol-loaded cumin seed oil nanoemulsion ameliorates neurodegeneration in mice by inhibiting apoptosis, inflammation, and oxidative DNA damage. Nanomed. J. 2024 11 4
    [Google Scholar]
  105. Song Y. Zhang J. Zhu L. Zhang H. Wu G. Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: A review. Food Funct. 2024 15 17 8629 8643 10.1039/D3FO03892K 39140384
    [Google Scholar]
  106. Nene S. Devabattula G. Vambhurkar G. Tryphena K.P. Singh P.K. Khatri D.K. High mobility group box 1 cytokine targeted topical delivery of resveratrol embedded nanoemulgel for the management of atopic dermatitis. Drug Deliv. Transl. Res. 2024 1 24 38509343
    [Google Scholar]
  107. Locatelli F.M. Kawano T. Iwata H. Aoyama B. Eguchi S. Nishigaki A. Yamanaka D. Tateiwa H. Shigematsu-Locatelli M. Yokoyama M. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J. Pharmacol. Sci. 2018 137 4 395 402 10.1016/j.jphs.2018.08.006 30196020
    [Google Scholar]
  108. Jasmina H. Džana O. Alisa E. Edina V. Ognjenka R. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods. CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering Springer, Singapore, 15 March 2017, pp 317–322. 10.1007/978‑981‑10‑4166‑2_48
    [Google Scholar]
  109. Safaya M. Rotliwala Y.C. Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique. Mater. Today Proc. 2020 27 454 459 10.1016/j.matpr.2019.11.267
    [Google Scholar]
  110. Lu L. Liu Y. Zhang Z. Gou X. Jiang J. Zhang J. Yao Q. Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system. Biol. Pharm. Bull. 2015 38 10 1658 1662 10.1248/bpb.b15‑00371 26424027
    [Google Scholar]
  111. dos Santos R.G. Colloidal and Self-Assembly Systems. Fundamentals of Surface Thermodynamics: Phase Behavior and Its Related Properties. Springer 2024 11 32 10.1007/978‑3‑031‑52466‑0_2
    [Google Scholar]
  112. Wang S. Chen R. Morott J. Repka M.A. Wang Y. Chen M. mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin. Drug Deliv. 2015 12 3 361 373 10.1517/17425247.2014.951634 25392124
    [Google Scholar]
  113. Jadhav P. Bothiraja C. Pawar A. Resveratrol-piperine loaded mixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity. RSC Advances 2016 6 114 112795 112805 10.1039/C6RA24595A
    [Google Scholar]
  114. Sutton D. Nasongkla N. Blanco E. Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 2007 24 6 1029 1046 10.1007/s11095‑006‑9223‑y 17385025
    [Google Scholar]
  115. Prajapati S.K. Jain A. Dendrimers for advanced drug delivery. Advanced Biopolymeric Systems for Drug Delivery Springer 2020 339 360
    [Google Scholar]
  116. Kececiler-Emir C. Ilhan-Ayisigi E. Celen-Erden C. Nalbantsoy A. Yesil-Celiktas O. Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity. Plant Foods Hum. Nutr. 2021 76 2 219 225 10.1007/s11130‑021‑00897‑5 33950366
    [Google Scholar]
  117. Chauhan A.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann. N. Y. Acad. Sci. 2015 1348 1 134 140 10.1111/nyas.12816 26173478
    [Google Scholar]
  118. Singh M.K. Singh S. Patil U.K. Chauhan A.S. Poly(amidoamine) dendrimers a ‘soft polymer’ for topical application of resveratrol: Ex-vivo & in-vivo study. J. Drug Deliv. Sci. Technol. 2024 97 105792 10.1016/j.jddst.2024.105792
    [Google Scholar]
  119. Zhang X. Li Z. Gao J. Wang Z. Gao X. Liu N. Li M. Zhang H. Zheng A. Preparation of nanocrystals for insoluble drugs by top-down nanotechnology with improved solubility and bioavailability. Molecules 2020 25 5 1080 10.3390/molecules25051080 32121076
    [Google Scholar]
  120. Sinico C. Pireddu R. Pini E. Valenti D. Caddeo C. Fadda A.M. Lai F. Enhancing topical delivery of resveratrol through a nanosizing approach. Planta Med. 2017 83 5 476 481 27220078
    [Google Scholar]
  121. Lai F. Schlich M. Pireddu R. Fadda A.M. Sinico C. Nanocrystals as effective delivery systems of poorly water-soluble natural molecules. Curr. Med. Chem. 2019 26 24 4657 4680 10.2174/0929867326666181213095809 30543163
    [Google Scholar]
  122. Gigliobianco M.R. Casadidio C. Censi R. Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018 10 3 134 10.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  123. Singh S.K. Makadia V. Sharma S. Rashid M. Shahi S. Mishra P.R. Wahajuddin M. Gayen J.R. Preparation and in-vitro/in-vivo characterization of trans-resveratrol nanocrystals for oral administration. Drug Deliv. Transl. Res. 2017 7 3 395 407 10.1007/s13346‑017‑0362‑y 28194730
    [Google Scholar]
  124. Vivero-Lopez M. Muras A. Silva D. Serro A.P. Otero A. Concheiro A. Alvarez-Lorenzo C. Resveratrol-loaded hydrogel contact lenses with antioxidant and antibiofilm performance. Pharmaceutics 2021 13 4 532 10.3390/pharmaceutics13040532 33920327
    [Google Scholar]
  125. Selvi S.S. Hasköylü M.E. Genç S. Toksoy Öner E. Synthesis and characterization of levan hydrogels and their use for resveratrol release. J. Bioact. Compat. Polym. 2021 36 6 464 480 10.1177/08839115211055725
    [Google Scholar]
  126. Zhao C-C. Zhu L. Wu Z. Yang R. Xu N. Liang L. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation. Regen. Biomater. 2020 7 1 99 107 32440361
    [Google Scholar]
  127. Zhu W. Dong Y. Xu P. Pan Q. Jia K. Jin P. Zhou M. Xu Y. Guo R. Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022 154 212 230 10.1016/j.actbio.2022.10.038 36309190
    [Google Scholar]
  128. Li X. Su X. Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2018 6 29 4714 4730 10.1039/C8TB01078A 32254299
    [Google Scholar]
  129. Jacob S. Nair A.B. Shah J. Sreeharsha N. Gupta S. Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 2021 13 3 357 10.3390/pharmaceutics13030357 33800402
    [Google Scholar]
  130. Thambi T. Li Y. Lee D.S. Injectable hydrogels for sustained release of therapeutic agents. J. Control. Release 2017 267 57 66 10.1016/j.jconrel.2017.08.006 28827094
    [Google Scholar]
  131. Radeva L. Yordanov Y. Spassova I. Kovacheva D. Tibi I.P.E. Zaharieva M.M. Kaleva M. Najdenski H. Petrov P.D. Tzankova V. Yoncheva K. Incorporation of resveratrol-hydroxypropyl-β-cyclodextrin complexes into hydrogel formulation for wound treatment. Gels 2024 10 5 346 10.3390/gels10050346 38786263
    [Google Scholar]
  132. Chaudhary A Shambhakar S. Nanotechnology in drug delivery: Overcoming poor solubility challenges through nanoformulations. Curr. Nanomed. 2024 14 3 200 211
    [Google Scholar]
  133. Thirumal D. Sindhu R.K. Goyal S. Sehgal A. Kumar A. Babu M.A. Kumar P. Pathology and treatment of psoriasis using nanoformulations. Biomedicines 2023 11 6 1589 10.3390/biomedicines11061589 37371684
    [Google Scholar]
  134. Sarfraz M. Arafat M. Zaidi S.H.H. Eltaib L. Siddique M.I. Kamal M. Ali A. Asdaq S.M.B. Khan A. Aaghaz S. Alshammari M.S. Imran M. Resveratrol-laden nano-systems in the cancer environment: Views and reviews. Cancers 2023 15 18 4499 10.3390/cancers15184499 37760469
    [Google Scholar]
  135. Caldas A.R. Catita J. Machado R. Ribeiro A. Cerqueira F. Horta B. Medeiros R. Lúcio M. Lopes C.M. Omega-3-and resveratrol-loaded lipid nanosystems for potential use as topical formulations in autoimmune, inflammatory, and cancerous skin diseases. Pharmaceutics 2021 13 8 1202 10.3390/pharmaceutics13081202 34452163
    [Google Scholar]
  136. Lombardo R. Musumeci T. Carbone C. Pignatello R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm. Dev. Technol. 2021 26 8 824 845 10.1080/10837450.2021.1950186 34218736
    [Google Scholar]
  137. Emad N.A. Ahmed B. Alhalmi A. Alzobaidi N. Al-Kubati S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102642 10.1016/j.jddst.2021.102642
    [Google Scholar]
  138. Keller L.A. Merkel O. Popp A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2022 12 4 735 757 10.1007/s13346‑020‑00891‑5 33491126
    [Google Scholar]
  139. Pardeshi C.V. Belgamwar V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013 10 7 957 972 10.1517/17425247.2013.790887 23586809
    [Google Scholar]
  140. Savale S. Mahajan H. Nose to brain: A versatile mode of drug delivery system. Asian J Biomater Res. 2017 3 1 16 38
    [Google Scholar]
  141. Trevaskis N.L. Kaminskas L.M. Porter C.J.H. From sewer to saviour — Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015 14 11 781 803 10.1038/nrd4608 26471369
    [Google Scholar]
  142. Crowe T.P. Greenlee M.H.W. Kanthasamy A.G. Hsu W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 195 44 52 10.1016/j.lfs.2017.12.025 29277310
    [Google Scholar]
  143. Battaglia L. Panciani P.P. Muntoni E. Capucchio M.T. Biasibetti E. De Bonis P. Mioletti S. Fontanella M. Swaminathan S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv. 2018 15 4 369 378 10.1080/17425247.2018.1429401 29338427
    [Google Scholar]
  144. Bonferoni M.C. Rossi S. Sandri G. Ferrari F. Gavini E. Rassu G. Giunchedi P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019 11 2 84 10.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  145. Musumeci T. Bonaccorso A. Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics 2019 11 3 118 10.3390/pharmaceutics11030118 30871237
    [Google Scholar]
  146. Lee J. Kim H.J. Normal aging induces changes in the brain and neurodegeneration progress: Review of the structural, biochemical, metabolic, cellular, and molecular changes. Front. Aging Neurosci. 2022 14 931536 10.3389/fnagi.2022.931536 35847660
    [Google Scholar]
  147. Kondo K. Kikuta S. Ueha R. Suzukawa K. Yamasoba T. Age-related olfactory dysfunction: Epidemiology, pathophysiology, and clinical management. Front. Aging Neurosci. 2020 12 208 10.3389/fnagi.2020.00208 32733233
    [Google Scholar]
  148. Sanaeifar F. Pourranjbar S. Pourranjbar M. Ramezani S. Mehr S.R. Wadan A.H.S. Khazeifard F. Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration. Exp. Gerontol. 2024 195 112539 10.1016/j.exger.2024.112539 39116955
    [Google Scholar]
  149. Chung S. Peters J.M. Detyniecki K. Tatum W. Rabinowicz A.L. Carrazana E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2023 21 100581 10.1016/j.ebr.2022.100581 36636458
    [Google Scholar]
  150. Bahadur S. Jha M.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J. Drug Deliv. Sci. Technol. 2022 78 103932 10.1016/j.jddst.2022.103932
    [Google Scholar]
  151. Mignani S. Shi X. Karpus A. Majoral J.P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur. J. Med. Chem. 2021 209 112905 10.1016/j.ejmech.2020.112905 33069435
    [Google Scholar]
  152. Bava B. Sharma K. Yadav V. Intranasal drug delivery system: A review. Res. J. Sci. Technol. 2024 16 1 51 58 10.52711/2349‑2988.2024.00009
    [Google Scholar]
  153. Alagusundaram M. Chengaiah B. Gnanaprakash K. Ramkanth S. Chetty C.M. Dhachinamoorthi D. Nasal drug delivery system-an overview. Int J Res Pharm Sci. 2010 1 4 454 465
    [Google Scholar]
  154. Bharadwaj V.N. Tzabazis A.Z. Klukinov M. Manering N.A. Yeomans D.C. Intranasal administration for pain: Oxytocin and other polypeptides. Pharmaceutics 2021 13 7 1088 10.3390/pharmaceutics13071088 34371778
    [Google Scholar]
  155. Shrewsbury S.B. The upper nasal space: Option for systemic drug delivery, mucosal vaccines and “nose-to-brain”. Pharmaceutics 2023 15 6 1720 10.3390/pharmaceutics15061720 37376168
    [Google Scholar]
  156. Vanpariya F. Shiroya M. Malaviya M. Emulgel: A review. Int. J. Sci. Res. 2021 10 847
    [Google Scholar]
  157. Anand K. Ray S. Rahman M. Shaharyar A. Bhowmik R. Bera R. Karmakar S. Nano-emulgel: Emerging as a smarter topical lipidic emulsion-based nanocarrier for skin healthcare applications. Recent Patents Anti-Infect. Drug Disc. 2019 14 1 16 35 10.2174/1574891X14666190717111531 31333141
    [Google Scholar]
  158. Mandal S Vishvakarma P. Nanoemulgel: A smarter topical lipidic emulsion-based nanocarrier. Ind. J. Pharm. Edu. Res. 2023 57 3s s481 s498 10.5530/ijper.57.3s.56
    [Google Scholar]
  159. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Nanosized nasal emulgel of resveratrol: Preparation, optimization, in vitro evaluation and in vivo pharmacokinetic study. Drug Dev. Ind. Pharm. 2019 45 10 1624 1634 10.1080/03639045.2019.1648500 31353967
    [Google Scholar]
  160. Alyoussef A. El-Gogary R.I. Ahmed R.F. Ahmed Farid O.A.H. Bakeer R.M. Nasr M. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J. Drug Deliv. Sci. Technol. 2021 62 102360 10.1016/j.jddst.2021.102360
    [Google Scholar]
  161. Ojha B. Jain V.K. Gupta S. Talegaonkar S. Jain K. Nanoemulgel: A promising novel formulation for treatment of skin ailments. Polym. Bull. 2022 79 7 4441 4465 10.1007/s00289‑021‑03729‑3
    [Google Scholar]
  162. Donthi M.R. Munnangi S.R. Krishna K.V. Saha R.N. Singhvi G. Dubey S.K. Nanoemulgel: A novel nano carrier as a tool for topical drug delivery. Pharmaceutics 2023 15 1 164 10.3390/pharmaceutics15010164 36678794
    [Google Scholar]
  163. Verma A Jain A Tiwari A Jain SK Emulgels: Application potential in drug delivery. Functional Biopolymers 2018 343 371 10.1007/978‑3‑319‑66417‑0_11
    [Google Scholar]
  164. Gupta P.K. Bhandari N. Shah H. Khanchandani V. Keerthana R. Nagarajan V. An update on nanoemulsions using nanosized liquid in liquid colloidal systems. Nanoemulsions: Prop. Fabric. Appl. 2019 1 1 1 14
    [Google Scholar]
  165. Leong T.S.H. Wooster T.J. Kentish S.E. Ashokkumar M. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 2009 16 6 721 727 10.1016/j.ultsonch.2009.02.008 19321375
    [Google Scholar]
  166. Bernardi D.S. Pereira T.A. Maciel N.R. Bortoloto J. Viera G.S. Oliveira G.C. Rocha-Filho P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J. Nanobiotechnology 2011 9 1 44 10.1186/1477‑3155‑9‑44 21952107
    [Google Scholar]
  167. Malvey S. Rao J.V. Arumugam K.M. Transdermal drug delivery system: A mini review. Pharma Innov. 2019 8 181 197
    [Google Scholar]
  168. Al-Bukhaiti W. Noman A. Wang H. Emulsions: Micro and nano-emulsions and their applications in industries—A mini-review. Int. J. Agric. Innov. Res. 2018 7 69 73
    [Google Scholar]
  169. Weiss J. Gaysinsky S. Davidson M. McClements J. Nanostructured encapsulation systems: Food antimicrobials. Global issues in food science and technology. Elsevier 2009 425 479 10.1016/B978‑0‑12‑374124‑0.00024‑7
    [Google Scholar]
  170. Srikanth D. Gopi D. Sunil C. Michael K. Rawson A. Proteins as fat replacers in the food industry. Fat Mimetics for Food Applications Wiley 2023 133 154 10.1002/9781119780045.ch8
    [Google Scholar]
  171. Bot A Flöter E Karbstein-Schuchmann HP Ribeiro HS Emulsilll. Product design and engineering: Formulation of gels and pastes. Wiley 2013 10.1002/9783527654741.ch11
    [Google Scholar]
  172. Wang Y.H. Wan Z.L. Yang X.Q. Wang J.M. Guo J. Lin Y. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocoll. 2016 54 40 48 10.1016/j.foodhyd.2015.09.020
    [Google Scholar]
  173. Martins S. Sarmento B. Ferreira D.C. Souto E.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int. J. Nanomedicine 2007 2 4 595 607 18203427
    [Google Scholar]
  174. Binks B.P. Yin D. Pickering emulsions stabilized by hydrophilic nanoparticles: In situ surface modification by oil. Soft Matter 2016 12 32 6858 6867 10.1039/C6SM01214K 27452321
    [Google Scholar]
  175. Pangeni R. Sharma S. Mustafa G. Ali J. Baboota S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014 25 48 485102 10.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  176. Kotta S. Mubarak Aldawsari H. Badr-Eldin S.M. Alhakamy N.A. Md S. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem. 2021 357 129721 10.1016/j.foodchem.2021.129721 33866243
    [Google Scholar]
  177. Nirale P. Paul A. Yadav K.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci. 2020 245 117394 10.1016/j.lfs.2020.117394 32017870
    [Google Scholar]
  178. Nouri Z. Barfar A. Perseh S. Motasadizadeh H. Maghsoudian S. Fatahi Y. Nouri K. Yektakasmaei M.P. Dinarvand R. Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J. Nanobiotechnology 2024 22 1 463 10.1186/s12951‑024‑02681‑4 39095888
    [Google Scholar]
  179. Liu J. Liu J. Mu W. Ma Q. Zhai X. Jin B. Liu Y. Zhang N. Delivery strategy to enhance the therapeutic efficacy of Liver Fibrosis via Nanoparticle Drug Delivery systems. ACS Nano 2024 18 32 20861 20885 10.1021/acsnano.4c02380 39082637
    [Google Scholar]
  180. Biglione C. Neumann-Tran T.M.P. Kanwal S. Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. J. Polym. Sci. 2021 59 22 2665 2703 10.1002/pol.20210508
    [Google Scholar]
  181. Hou S. Bai L. Lu D. Duan H. Interfacial colloidal self-assembly for functional materials. Acc. Chem. Res. 2023 56 7 740 751 10.1021/acs.accounts.2c00705 36920352
    [Google Scholar]
  182. Li Y. Li X. Wei L. Ye J. Advancements in mitochondrial-targeted nanotherapeutics: Overcoming biological obstacles and optimizing drug delivery. Front. Immunol. 2024 15 1451989 10.3389/fimmu.2024.1451989 39483479
    [Google Scholar]
  183. de Oca-Ávalos J.M.M. Candal R.J. Herrera M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017 16 1 6 10.1016/j.cofs.2017.06.003
    [Google Scholar]
  184. Karthik P. Ezhilarasi P.N. Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit. Rev. Food Sci. Nutr. 2017 57 7 1435 1450 10.1080/10408398.2015.1006767 26114624
    [Google Scholar]
  185. Mariyate J. Bera A. A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. J. Mol. Liq. 2022 353 118791 10.1016/j.molliq.2022.118791
    [Google Scholar]
  186. Syed H.K. Peh K.K. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram. Acta Pol. Pharm. 2014 71 2 301 309 25272651
    [Google Scholar]
  187. Ganta S. Talekar M. Singh A. Coleman T.P. Amiji M.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014 15 3 694 708 10.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  188. Roy A. Nishchaya K. Rai V.K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin. Drug Deliv. 2022 19 3 303 319 10.1080/17425247.2022.2045944 35196938
    [Google Scholar]
  189. Lémery E. Briançon S. Chevalier Y. Bordes C. Oddos T. Gohier A. Bolzinger M-A. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf. A Physicochem. Eng. Asp. 2015 469 166 179 10.1016/j.colsurfa.2015.01.019
    [Google Scholar]
  190. Pahwa R Pal S Saroha K Waliyan P Kumar M. Transferosomes: Unique vesicular carriers for effective transdermal delivery. J. Appl. Pharm. Sci. 2021 11 5 001 008
    [Google Scholar]
  191. Rasheed M.S. Ansari S.F. Shahzadi I. Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model. Sci. Rep. 2022 12 1 19813 10.1038/s41598‑022‑23103‑1 36396950
    [Google Scholar]
  192. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  193. Anusha V. Transferosomes-A novel vesicular system. Res. J. Pharm. Dos. Forms Technol. 2014 6 4 286
    [Google Scholar]
  194. Sasikala A. Transferosomes a new transformation in research: A review. J. Sci. Res. Rep. 2021 27 9 56 105 10.9734/jsrr/2021/v27i930437
    [Google Scholar]
  195. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  196. AL Shuwaili A.H. Rasool B.K.A. Abdulrasool A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm. 2016 102 101 114 10.1016/j.ejpb.2016.02.013 26925505
    [Google Scholar]
  197. Madhumitha V. Sangeetha S. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin. Res. J. Pharm. Technol. 2020 13 5 2493 2501 10.5958/0974‑360X.2020.00445.X
    [Google Scholar]
  198. Chaurasiya P. Ganju E. Upmanyu N. Ray S.K. Jain P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019 9 1 279 285 10.22270/jddt.v9i1.2198
    [Google Scholar]
  199. Pirvu C.D. Hlevca C. Ortan A. Prisada R. Elastic vesicles as drugs carriers through the skin. Farmacia 2010 58 2 128 135
    [Google Scholar]
  200. Kumar A. Transferosome: A recent approach for transdermal drug delivery. J. Drug Deliv. Ther. 2018 8 5-s 100 104 10.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  201. Sachan R. Parashar T. Soniya S.V. Singh G. Tyagi S. Patel C. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Dev. Pharm. Life Sci. 2013 2 2 309 316
    [Google Scholar]
  202. Kulkarni P. Yadav J. Vaidya K. Gandhi P. Transferosomes: An emerging tool for transdermal drug delivery. Int. J. Pharm. Sci. Res. 2011 2 4 735
    [Google Scholar]
  203. Pawar A.Y. Transfersome: A novel technique which improves transdermal permeability. Asian J. Pharm. 2016 10 04
    [Google Scholar]
  204. Modi C. Bharadia P. Transfersomes: New dominants for transdermal drug delivery. Am J Pharm Tech Res. 2012 2 3 71 91
    [Google Scholar]
  205. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: In vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J. Drug Target. 2019 27 10 1127 1134 10.1080/1061186X.2019.1608553 31094230
    [Google Scholar]
  206. Matharoo N. Mohd H. Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1918 10.1002/wnan.1918 37527953
    [Google Scholar]
  207. Sapkota R. Dash A.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery. Ther. Deliv. 2021 12 2 145 158 10.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  208. Chuang S.Y. Lin C.H. Huang T.H. Fang J.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials 2018 8 1 42 10.3390/nano8010042 29342965
    [Google Scholar]
  209. Elmowafy M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B Biointerfaces 2021 203 111748 10.1016/j.colsurfb.2021.111748 33853001
    [Google Scholar]
  210. Shrestha H. Bala R. Arora S. Lipid‐based drug delivery systems. J. Pharm. 2014 2014 1 801820 26556202
    [Google Scholar]
  211. Kumbhar A.B. Rakde A.K. Chaudhari P. In situ gel forming injectable drug delivery system. Int. J. Pharm. Sci. Res. 2013 4 2 597
    [Google Scholar]
  212. Liow S.S. Dou Q. Kai D. Karim A.A. Zhang K. Xu F. Loh X.J. Thermogels: In situ gelling biomaterial. ACS Biomater. Sci. Eng. 2016 2 3 295 316 10.1021/acsbiomaterials.5b00515 33429534
    [Google Scholar]
  213. Kolawole O.M. Cook M.T. In situ gelling drug delivery systems for topical drug delivery. Eur. J. Pharm. Biopharm. 2023 184 36 49 10.1016/j.ejpb.2023.01.007 36642283
    [Google Scholar]
  214. Kouchak M. In situ gelling systems for drug delivery. Brieflands 2014 10.17795/jjnpp‑20126
    [Google Scholar]
  215. Mohanty D. Bakshi V. Simharaju N. Haque M.A. Sahoo C.K. A review on in situ gel: A novel drug delivery system. Int. J. Pharm. Sci. Rev. Res. 2018 50 1 175 181
    [Google Scholar]
  216. Kaur P. Garg T. Rath G. Goyal A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotechnol. 2016 44 4 1167 1176 25749276
    [Google Scholar]
  217. Aiwale BV Chaudhari BP Velhal AB Redasani VK A review on in situ gel of gastro retentive drug delivery system. Asian J. Res. Pharm. Sci. 2022 12 4 314 320 10.52711/2231‑5659.2022.00054
    [Google Scholar]
  218. HB N. In-situ gel: New trends in controlled and sustained drug delivery system. Int. J. Pharm. Tech. Res. 2010 2 2 1398 1408
    [Google Scholar]
  219. Madan M. Bajaj A. Lewis S. Udupa N. Baig J.A. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci. 2009 71 3 242 251 10.4103/0250‑474X.56015 20490289
    [Google Scholar]
  220. Devasani S.R. Dev A. Rathod S. Deshmukh G. An overview of in situ gelling systems. Pharmaceut Biolog Evaluat. 2016 3 1 60 69
    [Google Scholar]
  221. Hao J. Zhao J. Zhang S. Tong T. Zhuang Q. Jin K. Chen W. Tang H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf. B Biointerfaces 2016 147 376 386 10.1016/j.colsurfb.2016.08.011 27566226
    [Google Scholar]
  222. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech 2019 20 5 181 10.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  223. Rajput A.P. Butani S.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J. Drug Deliv. Sci. Technol. 2019 51 214 223 10.1016/j.jddst.2019.01.040
    [Google Scholar]
  224. Garg A. Agrawal R. Singh Chauhan C. Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int. J. Pharm. 2024 652 123819 10.1016/j.ijpharm.2024.123819 38242256
    [Google Scholar]
  225. Racaniello G.F. Silvestri T. Pistone M. D’Amico V. Arduino I. Denora N. Lopedota A.A. Innovative pharmaceutical techniques for Paediatric dosage forms: A systematic review on 3D printing, prilling/vibration and microfluidic platform. J. Pharm. Sci. 2024 113 7 1726 1748 10.1016/j.xphs.2024.04.001 38582283
    [Google Scholar]
  226. Hatami H. Mojahedian M.M. Kesharwani P. Sahebkar A. Advancing personalized medicine with 3D printed combination drug therapies: A comprehensive review of application in various conditions. Eur. Polym. J. 2024 215 113245 10.1016/j.eurpolymj.2024.113245
    [Google Scholar]
  227. Desai N. Rana D. Salave S. Gupta R. Patel P. Karunakaran B. Sharma A. Giri J. Benival D. Kommineni N. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 2023 15 4 1313 10.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  228. Alquisiras-Burgos I. González-Herrera I.G. Alcalá-Alcalá S. Aguilera P. Nose-to brain delivery of resveratrol, a non-invasive method for the treatment of cerebral ischemia. Drugs and Drug Candidates 2024 3 1 102 125 10.3390/ddc3010007
    [Google Scholar]
  229. Markowicz-Piasecka M. Darłak P. Markiewicz A. Sikora J. Kumar Adla S. Bagina S. Huttunen K.M. Current approaches to facilitate improved drug delivery to the central nervous system. Eur. J. Pharm. Biopharm. 2022 181 249 262 10.1016/j.ejpb.2022.11.003 36372271
    [Google Scholar]
  230. Misra S.K. Pathak K. Nose-to-brain targeting via nanoemulsion: Significance and evidence. Colloids and Interfaces 2023 7 1 23 10.3390/colloids7010023
    [Google Scholar]
  231. Cunha S. Forbes B. Sousa Lobo J.M. Silva A.C. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int. J. Nanomedicine 2021 16 4373 4390 10.2147/IJN.S305851 34234432
    [Google Scholar]
  232. Pires P.C. Paiva-Santos A.C. Veiga F. Liposome-derived nanosystems for the treatment of behavioral and neurodegenerative diseases: The promise of niosomes, transfersomes, and ethosomes for increased brain drug bioavailability. Pharmaceuticals 2023 16 10 1424 10.3390/ph16101424 37895895
    [Google Scholar]
  233. AbouElhassan K.M. Sarhan H.A. Hussein A.K. Taye A. Ahmed Y.M. Safwat M.A. Brain targeting of citicoline sodium via hyaluronic acid-decorated novel nano-transbilosomes for mitigation of Alzheimer’s disease in a rat model: formulation, optimization, in vitro and in vivo assessment. Int. J. Nanomedicine 2022 17 6347 6376 10.2147/IJN.S381353 36540376
    [Google Scholar]
  234. Wani S.N. Singh S. Sharma N. Zahoor I. Grewal S. Gupta S. Transferosome-based intranasal drug delivery systems for the management of schizophrenia: A futuristic approach. Bionanoscience 2023 1 19
    [Google Scholar]
  235. Shaito A. Posadino A.M. Younes N. Hasan H. Halabi S. Alhababi D. Al-Mohannadi A. Abdel-Rahman W.M. Eid A.H. Nasrallah G.K. Pintus G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020 21 6 2084 10.3390/ijms21062084 32197410
    [Google Scholar]
  236. Salehi B. Mishra A.P. Nigam M. Sener B. Kilic M. Sharifi-Rad M. Fokou P.V.T. Martins N. Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611337079250115071933
Loading
/content/journals/cvp/10.2174/0115701611337079250115071933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test