Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Purpose

The management of acute heart failure (AHF) is crucial and challenging. Regarding the use of inotropes, correct patient selection and time of administration are of the essence. We hypothesize that the early use of Levosimendan favouring hemodynamic stabilization and enables rapid optimization of guideline-directed medical therapy (GDMT) in patients with HF, eventually impacting the patient’s prognosis during the vulnerable phase.

Methods

This prospective, observational study enrolled consecutive patients admitted due to AHF. Propensity score matching (PSM) analysis has been used to homogenize differences between groups. In group 1 (G1), patients were treated with early 24-h Levosimendan infusion followed by in-hospital introduction/up-titration of GDMT. In group 2 (G2), patients were treated with alternative inotropes/vasopressors followed by in-hospital introduction/up-titration of GDMT. The comparison between the two groups has been performed at the 6-month follow-up in terms of cardiovascular (CV) mortality and HF hospitalizations (HFH).

Results

233 patients were included in the present study, and after propensity match adjustments, 176 patients were analysed, 88 patients for each group. No differences in the baseline characteristics have been reported between the groups. At 6 months follow-up, no statistically significant differences were shown in terms of the composite endpoint of CV death and HFH ( 0.445) and CV death ( 0.62). Statistically significant differences between the two groups were reported in terms of HFH ( 0.02). The Kaplan-Meier survival analysis showed that patients in G1 were significantly less hospitalized compared to G2 during the 6 months after the index hospitalization (log-rank 0.03).

Conclusion

Early 24-hour infusion of Levosimendan followed by rapid optimization of HF disease-modifying therapies results in a significant reduction of HFH in the vulnerable post-discharge phase.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611334141241217044516
2025-01-21
2025-05-30
Loading full text...

Full text loading...

References

  1. McDonaghT.A. MetraM. AdamoM. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202142363599372610.1093/eurheartj/ehab368 34447992
    [Google Scholar]
  2. RogerV.L. Epidemiology of heart failure.Circ. Res.2021128101421143410.1161/CIRCRESAHA.121.318172 33983838
    [Google Scholar]
  3. ArrigoM. JessupM. MullensW. Acute heart failure.Nat. Rev. Dis. Primers2020611610.1038/s41572‑020‑0151‑7 32139695
    [Google Scholar]
  4. MetraM. TomasoniD. AdamoM. Worsening of chronic heart failure: Definition, epidemiology, management and prevention. A clinical consensus statement by the heart failure association of the european society of cardiology.Eur. J. Heart Fail.202325677679110.1002/ejhf.2874 37208936
    [Google Scholar]
  5. SeverinoP. ManconeM. D’AmatoA. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score.ESC Heart Fail.202411139039910.1002/ehf2.14594 38011913
    [Google Scholar]
  6. D’AmatoA. ProsperiS. SeverinoP. Current approaches to worsening heart failure: Pathophysiological and molecular insights.Int. J. Mol. Sci.2024253157410.3390/ijms25031574 38338853
    [Google Scholar]
  7. RajL. MaidmanS.D. AdhyaruB.B. Inpatient management of acute decompensated heart failure.Postgrad. Med. J.2020961131334210.1136/postgradmedj‑2019‑136742 31515438
    [Google Scholar]
  8. McDonaghT.A. MetraM. AdamoM. 2023 focused update of the 2021 esc guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202344373627363910.1093/eurheartj/ehad195 37622666
    [Google Scholar]
  9. SeverinoP. D’AmatoA. ProsperiS. Heart failure pharmacological management: Gaps and current perspectives.J. Clin. Med.2023123102010.3390/jcm12031020 36769667
    [Google Scholar]
  10. SeverinoP. D’AmatoA. ProsperiS. Do the current guidelines for heart failure diagnosis and treatment fit with clinical complexity?J. Clin. Med.202211385710.3390/jcm11030857 35160308
    [Google Scholar]
  11. FarmakisD. AgostoniP. BaholliL. A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: An expert panel consensus.Int. J. Cardiol.2019297839010.1016/j.ijcard.2019.09.005 31615650
    [Google Scholar]
  12. KellyJ. ChengJ. MalloyR. LupiK. Comparison of positive inotropic agents in the management of acute decompensated heart failure.J. Cardiovasc. Pharmacol.202075545545910.1097/FJC.0000000000000811 32091426
    [Google Scholar]
  13. CavusogluY. The use of levosimendan in comparison and in combination with dobutamine in the treatment of decompensated heart failure.Expert Opin. Pharmacother.20078566567710.1517/14656566.8.5.665 17376021
    [Google Scholar]
  14. ChenW.C. LinM.H. ChenC.L. Comprehensive comparison of the effect of inotropes on cardiorenal syndrome in patients with advanced heart failure: A network meta-analysis of randomized controlled trials.J. Clin. Med.20211018412010.3390/jcm10184120 34575231
    [Google Scholar]
  15. SchumannJ. HenrichE.C. StroblH. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome.Cochrane Libr.201811CD00966910.1002/14651858.CD009669.pub3 29376560
    [Google Scholar]
  16. GustafssonF. GuarracinoF. SchwingerR.H.G. The inodilator levosimendan as a treatment for acute heart failure in various settings.Eur. Heart J. Suppl.201719Suppl. CC2C710.1093/eurheartj/sux001 29249904
    [Google Scholar]
  17. FedeleF. BrunoN. BrasolinB. CairaC. D’AmbrosiA. ManconeM. Levosimendan improves renal function in acute decompensated heart failure: Possible underlying mechanisms.Eur. J. Heart Fail.201416328128810.1002/ejhf.9 24464960
    [Google Scholar]
  18. YilmazM.B. GrossiniE. Silva CardosoJ.C. Renal effects of levosimendan: A consensus report.Cardiovasc. Drugs Ther.201327658159010.1007/s10557‑013‑6485‑6 23929366
    [Google Scholar]
  19. LeivaditisV. DahmM. PapaporfyriouA. Perioperative application of levosimendan optimizes postoperative renal function and organ perfusion in patients with severe heart failure.J. Cardiovasc. Dev. Dis.202310731210.3390/jcdd10070312 37504568
    [Google Scholar]
  20. HeidenreichP.A. BozkurtB. AguilarD. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines.Circulation202214518e895e103210.1161/CIR.0000000000001063 35363499
    [Google Scholar]
  21. GirerdN. MewtonN. TartièreJ.M. Practical outpatient management of worsening chronic heart failure.Eur. J. Heart Fail.202224575076110.1002/ejhf.2503 35417093
    [Google Scholar]
  22. McDonaldM. ViraniS. ChanM. CCS/CHFS heart failure guidelines update: defining a new pharmacologic standard of care for heart failure with reduced ejection fraction.Can. J. Cardiol.202137453154610.1016/j.cjca.2021.01.017 33827756
    [Google Scholar]
  23. MasipJ. Frank PeacokW. ArrigoM. Acute heart failure in the 2021 ESC heart failure guidelines: A scientific statement from the association for acute cardiovascular care (ACVC) of the european society of cardiology.Eur. Heart J. Acute Cardiovasc. Care202211217318510.1093/ehjacc/zuab122 35040931
    [Google Scholar]
  24. SabbahH.N. Pathophysiology of acute heart failure syndrome: A knowledge gap.Heart Fail. Rev.201722662163910.1007/s10741‑017‑9651‑2 28952056
    [Google Scholar]
  25. JentzerJ.C. HollenbergS.M. Vasopressor and inotrope therapy in cardiac critical care.J. Intensive Care Med.202136884385610.1177/0885066620917630 32281470
    [Google Scholar]
  26. Arfaras-MelainisA. VentoulisI. PolyzogopoulouE. BoultadakisA. ParissisJ. The current and future status of inotropes in heart failure management.Expert Rev. Cardiovasc. Ther.202321857358510.1080/14779072.2023.2237869 37458248
    [Google Scholar]
  27. GreeneS.J. FonarowG.C. VaduganathanM. KhanS.S. ButlerJ. GheorghiadeM. The vulnerable phase after hospitalization for heart failure.Nat. Rev. Cardiol.201512422022910.1038/nrcardio.2015.14 25666406
    [Google Scholar]
  28. ScrutinioD. PassantinoA. GuidaP. Prognostic impact of comorbidities in hospitalized patients with acute exacerbation of chronic heart failure.Eur. J. Intern. Med.201634636710.1016/j.ejim.2016.05.020 27263064
    [Google Scholar]
  29. BhattA.S. AmbrosyA.P. DunningA. The burden of non‐cardiac comorbidities and association with clinical outcomes in an acute heart failure trial – insights from ASCEND‐HF.Eur. J. Heart Fail.20202261022103110.1002/ejhf.1795 32212297
    [Google Scholar]
  30. BerraG. GarinN. StirnemannJ. Outcome in acute heart failure: Prognostic value of acute kidney injury and worsening renal function.J. Card. Fail.201521538239010.1016/j.cardfail.2014.12.015 25576679
    [Google Scholar]
  31. CotterG. DeniauB. DavisonB. Optimization of evidence-based heart failure medications after an acute heart failure admission.JAMA Cardiol.20249211412410.1001/jamacardio.2023.4553 38150260
    [Google Scholar]
  32. FarmakisD DavisonB FountoulakiK Rapid uptitration of guideline-directed medical therapies in acute heart failure with and without atrial fibrillation.JACC Heart Fail2024S2213-177924005100051910.1016/j.jchf.2024.06.010
    [Google Scholar]
  33. LavalleC. MarianiM.V. SeverinoP. Efficacy of modern therapies for heart failure with reduced ejection fraction in specific population subgroups: A systematic review and network meta-analysis.Cardiorenal Med.202414157058010.1159/000541393 39284285
    [Google Scholar]
  34. SeverinoP. D’AmatoA. ProsperiS. Strategy for an early simultaneous introduction of four-pillars of heart failure therapy: Results from a single center experience.Am. J. Cardiovasc. Drugs202424566367110.1007/s40256‑024‑00660‑6 38909334
    [Google Scholar]
  35. MebazaaA. NieminenM.S. PackerM. Levosimendan vs. dobutamine for patients with acute decompensated heart failure: The SURVIVE Randomized Trial.JAMA2007297171883189110.1001/jama.297.17.1883 17473298
    [Google Scholar]
  36. MathewR. Di SantoP. JungR.G. Milrinone as compared with dobutamine in the treatment of cardiogenic shock.N. Engl. J. Med.2021385651652510.1056/NEJMoa2026845 34347952
    [Google Scholar]
  37. BistolaV. Arfaras-MelainisA. PolyzogopoulouE. IkonomidisI. ParissisJ. Inotropes in acute heart failure: From guidelines to practical use: therapeutic options and clinical practice.Card. Fail. Rev.20195313313910.15420/cfr.2019.11.2 31768269
    [Google Scholar]
  38. StonerJ.D.III BolenJ.L. HarrisonD.C. Comparison of dobutamine and dopamine in treatment of severe heart failure.Heart197739553653910.1136/hrt.39.5.536 324501
    [Google Scholar]
  39. PappZ. ÉdesI. FruhwaldS. Levosimendan: Molecular mechanisms and clinical implications.Int. J. Cardiol.20121592828710.1016/j.ijcard.2011.07.022 21784540
    [Google Scholar]
  40. JoergC. Schefold. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management.Nat. Rev. Nephrol.2016121061062310.1038/nrneph.2016.113
    [Google Scholar]
  41. ZannadF. RossignolP. Cardiorenal syndrome revisited.Circulation2018138992994410.1161/CIRCULATIONAHA.117.028814 30354446
    [Google Scholar]
  42. ChanC.C. LeeK.T. HoW.J. ChanY.H. ChuP.H. Levosimendan use in patients with acute heart failure and reduced ejection fraction with or without severe renal dysfunction in critical cardiac care units: A multi-institution database study.Ann. Intensive Care20211112710.1186/s13613‑021‑00810‑y 33555483
    [Google Scholar]
  43. FollathF. ClelandJ.G.F. JustH. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): A randomised double-blind trial.Lancet2002360932819620210.1016/S0140‑6736(02)09455‑2 12133653
    [Google Scholar]
  44. PappZ. AgostoniP. AlvarezJ. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use.J. Cardiovasc. Pharmacol.202076142210.1097/FJC.0000000000000859 32639325
    [Google Scholar]
  45. ZhouS. LiD. ZhangL. LiJ. The anti-inflammatory and haemodynamic effects of levosimendan on advanced heart failure patients: A meta-analysis of published studies.J. Int. Med. Res.20235170300060522114840210.1177/03000605221148402 37490021
    [Google Scholar]
  46. LannemyrL. RickstenS.E. RundqvistB. Differential effects of levosimendan and dobutamine on glomerular filtration rate in patients with heart failure and renal impairment: A randomized double‐blind controlled trial.J. Am. Heart Assoc.2018716e00845510.1161/JAHA.117.008455 30369310
    [Google Scholar]
  47. LongY.X. CuiD.Y. KuangX. Effect of levosimendan on renal function in background of left ventricular dysfunction: A meta-analysis of randomized trials.Expert Opin. Drug Saf.202120111411142010.1080/14740338.2021.1951700 34214005
    [Google Scholar]
  48. ChenH.H. AbouEzzeddineO.F. AnstromK.J. Targeting the kidney in acute heart failure: Can old drugs provide new benefit? Renal optimization strategies evaluation in acute heart failure (ROSE AHF) trial.Circ. Heart Fail.2013651087109410.1161/CIRCHEARTFAILURE.113.000347 24046475
    [Google Scholar]
  49. ter MaatenJ.M. MebazaaA. DavisonB. Early changes in renal function during rapid up‐titration of guideline‐directed medical therapy following an admission for acute heart failure.Eur. J. Heart Fail.202325122230224210.1002/ejhf.3074 37905361
    [Google Scholar]
  50. BeldhuisI.E. LamC.S.P. TestaniJ.M. Evidence-based medical therapy in patients with heart failure with reduced ejection fraction and chronic kidney disease.Circulation2022145969371210.1161/CIRCULATIONAHA.121.052792 35226558
    [Google Scholar]
  51. PatelR.B. FonarowG.C. GreeneS.J. Kidney function and outcomes in patients hospitalized with heart failure.J. Am. Coll. Cardiol.202178433034310.1016/j.jacc.2021.05.002 33989713
    [Google Scholar]
  52. HeinA.M. SciallaJ.J. EdmonstonD. CooperL.B. DeVoreA.D. MentzR.J. Medical management of heart failure with reduced ejection fraction in patients with advanced renal disease.JACC Heart Fail.20197537138210.1016/j.jchf.2019.02.009 31047016
    [Google Scholar]
  53. MasaroneD. KittlesonM.M. MartucciM.L. Levosimendan as a “Bridge to optimization” in patients with advanced heart failure with reduced ejection—a single-center study.J. Clin. Med.20221114422710.3390/jcm11144227 35887992
    [Google Scholar]
  54. BiswasS. MalikA.H. BandyopadhyayD. Meta-analysis comparing the efficacy of dobutamine versus milrinone in acute decompensated heart failure and cardiogenic shock.Curr. Probl. Cardiol.202348810124510.1016/j.cpcardiol.2022.101245 35545181
    [Google Scholar]
  55. RibeiroR.A. RohdeL.E. PolanczykC.A. Levosimendan in acute decompensated heart failure: systematic review and meta-analysis.Arq. Bras. Cardiol.2010
    [Google Scholar]
  56. SasmitaB.R. WangC. XieS. Vasopressors and inotropes in cardiogenic shock patients: An analysis of the MIMIC-IV database.Front. Cardiovasc. Med.202310130083910.3389/fcvm.2023.1300839 38094120
    [Google Scholar]
  57. FernandoS.M. MathewR. SadeghiradB. Inotropes, vasopressors, and mechanical circulatory support for treatment of cardiogenic shock complicating myocardial infarction: a systematic review and network meta-analysis.Can. J. Anaesth.202269121537155310.1007/s12630‑022‑02337‑7
    [Google Scholar]
  58. ShangG. YangX. SongD. Effects of levosimendan on patients with heart failure complicating acute coronary syndrome: A meta-analysis of randomized controlled trials.Am. J. Cardiovasc. Drugs201717645346310.1007/s40256‑017‑0237‑0 28597399
    [Google Scholar]
  59. TomasoniD. FonarowG.C. AdamoM. Sodium-glucose co-transporter 2 inhibitors as an early, first-line therapy in patients with heart failure and reduced ejection fraction.Eur. J. Heart Fail.202224343144110.1002/ejhf.2397 34894038
    [Google Scholar]
  60. McMurrayJ.J.V. PackerM. How should we sequence the treatments for heart failure and a reduced ejection fraction?Circulation2021143987587710.1161/CIRCULATIONAHA.120.052926 33378214
    [Google Scholar]
  61. GreeneS.J. ButlerJ. FonarowG.C. Simultaneous or rapid sequence initiation of quadruple medical therapy for heart failure—optimizing therapy with the need for speed.JAMA Cardiol.20216774374410.1001/jamacardio.2021.0496 33787823
    [Google Scholar]
  62. Al-GobariM. KhatibC.E. PillonF. GueyffierF. β-blockers for the prevention of sudden cardiac death in heart failure patients: A meta-analysis of randomized controlled trials.BMC Cardiovasc. Disord.20131315210.1186/1471‑2261‑13‑52 23848972
    [Google Scholar]
  63. AdamsonP.B. GilbertE.M. Reducing the risk of sudden death in heart failure with beta-blockers.J. Card. Fail.200612973474610.1016/j.cardfail.2006.08.213 17174236
    [Google Scholar]
  64. VoorsA.A. AngermannC.E. TeerlinkJ.R. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial.Nat. Med.202228356857410.1038/s41591‑021‑01659‑1 35228754
    [Google Scholar]
  65. CoxZ.L. CollinsS.P. AaronM. Efficacy and safety of dapagliflozin in acute heart failure: Rationale and design of the DICTATE-AHF trial.Am. Heart J.202123211612410.1016/j.ahj.2020.10.071 33144086
    [Google Scholar]
  66. Ul AminN. SabirF. AminT. SGLT2 inhibitors in acute heart failure: A meta-analysis of randomized controlled trials.Health Care20221012235610.3390/healthcare10122356 36553880
    [Google Scholar]
  67. AdamsonC. DochertyK.F. HeerspinkH.J.L. Initial decline (Dip) in estimated glomerular filtration rate after initiation of dapagliflozin in patients with heart failure and reduced ejection fraction: Insights From DAPA-HF.Circulation2022146643844910.1161/CIRCULATIONAHA.121.058910 35442064
    [Google Scholar]
  68. ProsperiS. D’AmatoA. SeverinoP. Sizing SGLT2 inhibitors up: From a molecular to a morpho-functional point of view.Int. J. Mol. Sci.202324181384810.3390/ijms241813848 37762152
    [Google Scholar]
  69. ZinmanB. WannerC. LachinJ.M. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa1504720 26378978
    [Google Scholar]
  70. NealB. PerkovicV. MahaffeyK.W. Canagliflozin and cardiovascular and renal events in type 2 diabetes.N. Engl. J. Med.2017377764465710.1056/NEJMoa1611925 28605608
    [Google Scholar]
  71. SeverinoP. D’AmatoA. ProsperiS. Sodium-glucose cotransporter 2 inhibitors and heart failure: The best timing for the right patient.Heart Fail. Rev.202128370972110.1007/s10741‑021‑10170‑1 34654997
    [Google Scholar]
  72. KangH. ZhangJ. ZhangX. Effects of sacubitril/valsartan in patients with heart failure and chronic kidney disease: A meta-analysis.Eur. J. Pharmacol.202088417344410.1016/j.ejphar.2020.173444 32739172
    [Google Scholar]
  73. PeikertA. VaduganathanM. Mc CauslandF. Effects of sacubitril/valsartan versus valsartan on renal function in patients with and without diabetes and heart failure with preserved ejection fraction: Insights from PARAGON‐HF.Eur. J. Heart Fail.202224579480310.1002/ejhf.2450 35119183
    [Google Scholar]
  74. MebazaaA. DavisonB. ChioncelO. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): A multinational, open-label, randomised, trial.Lancet2022400103671938195210.1016/S0140‑6736(22)02076‑1 36356631
    [Google Scholar]
  75. BhattA.S. VarshneyA.S. NekouiM. Virtual optimization of guideline-directed medical therapy in hospitalized patients with heart failure with reduced ejection fraction: The IMPLEMENT-HF pilot study.Eur. J. Heart Fail.20212371191120110.1002/ejhf.2163 33768599
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611334141241217044516
Loading
/content/journals/cvp/10.2174/0115701611334141241217044516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test