Skip to content
2000
image of Comparison of Clinical Outcomes between Newly Diagnosed and
Pre-Existing Diabetes Mellitus Patients after Acute Coronary Syndrome

Abstract

Aims

This study aimed to evaluate clinical outcomes, including recurrent acute coronary syndrome (ACS) and mortality, in ACS patients with varying HbA1c levels, addressing the controversy over optimal targets in those with newly diagnosed and pre-existing diabetes mellitus (DM).

Methods

From January 2005 to December 2019, a total of 33,990 patients were identified with ACS in the Chang Gung Research Database based on their medical history. After excluding patients without DM and baseline or subsequent HbA1C data, a cohort of 11,870 DM patients was divided into two groups: one consisting of 6,089 patients with newly diagnosed DM and the other comprising 5,781 patients with pre-existing DM.

Results

During the three-year follow-up, the pre-existing DM group experienced worse clinical outcomes, such as increased rates of re-ACS, major bleeding, cardiovascular (CV) events, and all-cause mortality. Optimal HbA1c levels for mitigating re-ACS and/or CV mortality and all-cause mortality appeared to differ between the two DM cohorts. Re-ACS and CV mortality reached their highest at an HbA1c of 6.8% for all DM patients, 6.6% for newly diagnosed, and 6.7% for pre-existing cases. The greatest all-cause mortality risk was at an HbA1c of 7.4% for all DM patients, 7.0% in newly diagnosed, and 8.2% in pre-existing patients.

Conclusion

Upon comparing newly diagnosed DM patients with those with pre-existing DM, a poorer prognosis was observed in the latter group, attributed to older age and a higher burden of comorbidities. Throughout the follow-up period, maintaining consistently low HbA1c levels did not reduce the incidence of re-ACS nor enhance survival rates.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611322555250219111038
2025-02-24
2025-04-15
Loading full text...

Full text loading...

References

  1. Bommer C. Sagalova V. Heesemann E. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018 41 5 963 970 10.2337/dc17‑1962 29475843
    [Google Scholar]
  2. Khan M.A.B. Hashim M.J. King J.K. Govender R.D. Mustafa H. Al Kaabi J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2019 10 1 107 111 10.2991/jegh.k.191028.001 32175717
    [Google Scholar]
  3. Liu X. Zhang L. Chen W. Trends in economic burden of type 2 diabetes in China: Based on longitudinal claim data. Front. Public Health 2023 11 1062903 10.3389/fpubh.2023.1062903 37143967
    [Google Scholar]
  4. Ruze R. Liu T. Zou X. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. (Lausanne) 2023 14 1161521 10.3389/fendo.2023.1161521 37152942
    [Google Scholar]
  5. He K.J. Wang H. Xu J. Gong G. Liu X. Guan H. Global burden of type 2 diabetes mellitus from 1990 to 2021, with projections of prevalence to 2044: A systematic analysis across SDI levels for the global burden of disease study 2021. Front. Endocrinol. (Lausanne) 2024 15 1501690 10.3389/fendo.2024.1501690 39583961
    [Google Scholar]
  6. Leon B.M. Maddox T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015 6 13 1246 1258 10.4239/wjd.v6.i13.1246 26468341
    [Google Scholar]
  7. Galicia-Garcia U. Benito-Vicente A. Jebari S. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  8. Chen S. Shen Y. Liu Y.H. Impact of glycemic control on the association of endothelial dysfunction and coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2021 20 1 64 10.1186/s12933‑021‑01257‑y 33714276
    [Google Scholar]
  9. Borén J. Öörni K. Catapano A.L. The link between diabetes and cardiovascular disease. Atherosclerosis 2024 394 117607 10.1016/j.atherosclerosis.2024.117607 38824007
    [Google Scholar]
  10. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010 33 Suppl. 1 s62 s69 10.2337/dc10‑S062 20042775
    [Google Scholar]
  11. Banday M.Z. Sameer A.S. Nissar S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020 10 4 174 188 10.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  12. Liu Y. Yang Y. Zhu J. Tan H. Liang Y. Li J. Prognostic significance of hemoglobin A1c level in patients hospitalized with coronary artery disease. A systematic review and meta-analysis. Cardiovasc. Diabetol. 2011 10 1 98 10.1186/1475‑2840‑10‑98 22074110
    [Google Scholar]
  13. Pan W. Lu H. Lian B. Liao P. Guo L. Zhang M. Prognostic value of HbA1c for in-hospital and short-term mortality in patients with acute coronary syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2019 18 1 169 10.1186/s12933‑019‑0970‑6 31829179
    [Google Scholar]
  14. Ray K.K. Seshasai S.R.K. Wijesuriya S. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. Lancet 2009 373 9677 1765 1772 10.1016/S0140‑6736(09)60697‑8 19465231
    [Google Scholar]
  15. Zhang Y. Hu G. Yuan Z. Chen L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS One 2012 7 8 e42551 10.1371/journal.pone.0042551 22912709
    [Google Scholar]
  16. Hemmingsen B Lund SS Gluud C Intensive glycaemic control for patients with type 2 diabetes: Systematic review with metaanalysis and trial sequential analysis of randomised clinical trials. BMJ 2011 343(nov24 1): d6898. 10.1136/bmj.d6898 22115901
  17. Cosentino F. Grant P.J. Aboyans V. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020 41 2 255 323 10.1093/eurheartj/ehz486 31497854
    [Google Scholar]
  18. American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021 44 Suppl. 1 S73 S84 10.2337/dc21‑S006 33298417
    [Google Scholar]
  19. Lee W.C. Fang Y.N. Chen T.Y. The relationship of conduction disorder and prognosis in patients with acute coronary syndrome. Int. J. Clin. Pract. 2022 2022 1 7 10.1155/2022/9676434 36340965
    [Google Scholar]
  20. Lee W.C. Tsai Y.H. Hsieh Y.Y. Clinical outcomes based on the attainment of low-density lipoprotein cholesterol targets in patients with acute coronary syndrome in real-world practice. Int. J. Clin. Pract. 2022 2022 1 9 10.1155/2022/2292379
    [Google Scholar]
  21. Lee W.C. Fang C.Y. Tsai Y.H. Comparison of clinical outcomes between ticagrelor and clopidogrel in east-asian patients with acute coronary syndrome: Large cohort study. Am. J. Cardiovasc. Drugs 2023 23 5 573 581 10.1007/s40256‑023‑00603‑7 37610643
    [Google Scholar]
  22. Lee W.C. Wu P.J. Tsai Y.H. Impact of coexisting risk factors on outcomes in patients with acute coronary syndrome: A real-world analysis using the Taiwan Chang Gung research database. Med. Sci. Monit. 2023 29 e941258 10.12659/MSM.941258 37537861
    [Google Scholar]
  23. Lee JM Wu EL Tarini B Herman WH Yoon E Diagnosis of diabetes using hemoglobin A1c: Should recommendations in adults be extrapolated to adolescents? J Pediatr 2011 158 6 947-952.e1-3 10.1016/j.jpeds.2010.11.026 21195416
  24. Sacks D.B. Arnold M. Bakris G.L. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2023 46 10 e151 e199 10.2337/dci23‑0036 37471273
    [Google Scholar]
  25. Urban P. Mehran R. Colleran R. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: A consensus document from the Academic Research Consortium for High Bleeding Risk. Eur. Heart J. 2019 40 31 2632 2653 10.1093/eurheartj/ehz372 31116395
    [Google Scholar]
  26. Mullen L. Meah M.N. Elamin A. Risk of major bleeding with potent antiplatelet agents after an acute coronary event: A comparison of ticagrelor and clopidogrel in 5116 consecutive patients in clinical practice. J. Am. Heart Assoc. 2021 10 8 e019467 10.1161/JAHA.120.019467 33834845
    [Google Scholar]
  27. Lee J. Kim M.J. Kim M. Validation of academic research consortium for high bleeding risk definition in east-asian patients. JACC: Asia 2023 3 3 390 399 10.1016/j.jacasi.2022.11.012 37323862
    [Google Scholar]
  28. Schmitt V.H. Hobohm L. Münzel T. Wenzel P. Gori T. Keller K. Impact of diabetes mellitus on mortality rates and outcomes in myocardial infarction. Diabetes Metab. 2021 47 4 101211 10.1016/j.diabet.2020.11.003 33259948
    [Google Scholar]
  29. Cui J. Liu Y. Li Y. Xu F. Liu Y. Type 2 diabetes and myocardial infarction: Recent clinical evidence and perspective. Front. Cardiovasc. Med. 2021 8 644189 10.3389/fcvm.2021.644189 33718461
    [Google Scholar]
  30. Steen D.L. Khan I. Andrade K. Koumas A. Giugliano R.P. Event rates and risk factors for recurrent cardiovascular events and mortality in a contemporary post acute coronary syndrome population representing 239 234 patients during 2005 to 2018 in the United States. J. Am. Heart Assoc. 2022 11 9 e022198 10.1161/JAHA.121.022198 35475346
    [Google Scholar]
  31. Babes E.E. Bustea C. Behl T. Acute coronary syndromes in diabetic patients, outcome, revascularization, and antithrombotic therapy. Biomed. Pharmacother. 2022 148 112772 10.1016/j.biopha.2022.112772 35245735
    [Google Scholar]
  32. Stampouloglou P.K. Anastasiou A. Bletsa E. Diabetes mellitus in acute coronary syndrome. Life (Basel) 2023 13 11 2226 10.3390/life13112226 38004366
    [Google Scholar]
  33. Moore D.J. Gregory J.M. Kumah-Crystal Y.A. Simmons J.H. Mitigating micro-and macro-vascular complications of diabetes beginning in adolescence. Vasc. Health Risk Manag. 2009 5 1015 1031 19997571
    [Google Scholar]
  34. Xiong R. He L. Du X. Dong J.Z. Ma C.S. Impact of diabetes mellitus and hemoglobin A1c level on outcomes among Chinese patients with acute coronary syndrome. Clin. Cardiol. 2020 43 7 723 731 10.1002/clc.23373 32427378
    [Google Scholar]
  35. Eckel R.H. Bornfeldt K.E. Goldberg I.J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021 33 8 1519 1545 10.1016/j.cmet.2021.07.001 34289375
    [Google Scholar]
  36. Guan H. Tian J. Wang Y. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: A comprehensive review. Eur. J. Med. Res. 2024 29 1 152 10.1186/s40001‑024‑01739‑1 38438934
    [Google Scholar]
  37. Skyler J.S. Bergenstal R. Bonow R.O. Intensive glycemic control and the prevention of cardiovascular events: Implications of the ACCORD, ADVANCE, and VA diabetes trials: A position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care 2009 32 1 187 192 10.2337/dc08‑9026 19092168
    [Google Scholar]
  38. Monami M. Adalsteinsson J.E. Desideri C.M. Ragghianti B. Dicembrini I. Mannucci E. Fasting and post-prandial glucose and diabetic complication. A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2013 23 7 591 598 10.1016/j.numecd.2013.03.007 23711419
    [Google Scholar]
  39. Byrne R.A. Rossello X. Coughlan J.J. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023 44 38 3720 3826 10.1093/eurheartj/ehad191 37622654
    [Google Scholar]
  40. ElSayed N.A. Aleppo G. Bannuru R.R. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2024. Diabetes Care 2024 47 Suppl. 1 S111 S125 10.2337/dc24‑S006 38078586
    [Google Scholar]
  41. Wang Y.C. Wang C. Shih P.W. Tang P.L. Analysis of the relationship between lifestyle habits and glycosylated hemoglobin control based on data from a Health Management Plan. Nutr. Res. Pract. 2020 14 3 218 229 10.4162/nrp.2020.14.3.218 32528629
    [Google Scholar]
  42. Rodríguez-Gutiérrez R. Millan-Alanis J.M. Barrera F.J. McCoy R.G. Value of patient-centered glycemic control in patients with type 2 diabetes. Curr. Diab. Rep. 2021 21 12 63 10.1007/s11892‑021‑01433‑0 34902079
    [Google Scholar]
  43. Buehler A.M. Cavalcanti A.B. Berwanger O. Effect of tight blood glucose control versus conventional control in patients with type 2 diabetes mellitus: A systematic review with meta-analysis of randomized controlled trials. Cardiovasc. Ther. 2013 31 3 147 160 10.1111/j.1755‑5922.2011.00308.x 22212499
    [Google Scholar]
  44. Perlmuter L.C. Flanagan B.P. Shah P.H. Singh S.P. Glycemic control and hypoglycemia: Is the loser the winner? Diabetes Care 2008 31 10 2072 2076 10.2337/dc08‑1441 18820231
    [Google Scholar]
  45. Nakhleh A. Shehadeh N. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. World J. Diabetes 2021 12 12 2036 2049 10.4239/wjd.v12.i12.2036 35047118
    [Google Scholar]
  46. Mannucci E. Dicembrini I. Lauria A. Pozzilli P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care 2013 36 Suppl. 2 S259 S263 10.2337/dcS13‑2018 23882055
    [Google Scholar]
  47. Funamizu T. Iwata H. Nishida Y. Increased risk of cardiovascular mortality by strict glycemic control (pre-procedural HbA1c < 6.5%) in Japanese medically-treated diabetic patients following percutaneous coronary intervention: A 10-year follow-up study. Cardiovasc. Diabetol. 2020 19 1 21 10.1186/s12933‑020‑00996‑8 32070335
    [Google Scholar]
  48. Choi I.J. Choo E.H. Kim H.J. J-curve relationship between long term glycemic control and mortality in diabetic patients with acute myocardial infarction undergoing percutaneous coronary intervention. Cardiovasc. Diabetol. 2021 20 1 234 10.1186/s12933‑021‑01428‑x 34911555
    [Google Scholar]
  49. Tian F. Chen L. Qian Z.M. Ranking age-specific modifiable risk factors for cardiovascular disease and mortality: Evidence from a population-based longitudinal study. EClinicalMedicine 2023 64 102230 10.1016/j.eclinm.2023.102230 37936651
    [Google Scholar]
  50. Jyotsna F. Ahmed A. Kumar K. Exploring the complex connection between diabetes and cardiovascular disease: Analyzing approaches to mitigate cardiovascular risk in patients with diabetes. Cureus 2023 15 8 e43882 10.7759/cureus.43882 37746454
    [Google Scholar]
  51. Zinman B. Wanner C. Lachin J.M. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015 373 22 2117 2128 10.1056/NEJMoa1504720 26378978
    [Google Scholar]
  52. Neal B. Perkovic V. Mahaffey K.W. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017 377 7 644 657 10.1056/NEJMoa1611925 28605608
    [Google Scholar]
  53. McMurray J.J.V. Solomon S.D. Inzucchi S.E. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019 381 21 1995 2008 10.1056/NEJMoa1911303 31535829
    [Google Scholar]
  54. Wiviott S.D. Raz I. Bonaca M.P. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019 380 4 347 357 10.1056/NEJMoa1812389 30415602
    [Google Scholar]
  55. Zelniker T.A. Wiviott S.D. Raz I. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019 393 10166 31 39 10.1016/S0140‑6736(18)32590‑X 30424892
    [Google Scholar]
  56. Kyriakos G. Quiles-Sanchez L.V. Garmpi A. SGLT2 inhibitors and cardiovascular outcomes: Do they differ or there is a class effect? New insights from the EMPA-REG OUTCOME trial and the CVD-REAL study. Curr. Cardiol. Rev. 2021 16 4 258 265 10.2174/1573403X15666190730094215 31362691
    [Google Scholar]
  57. Cannon C.P. Pratley R. Dagogo-Jack S. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 2020 383 15 1425 1435 10.1056/NEJMoa2004967 32966714
    [Google Scholar]
  58. Packer M. Anker S.D. Butler J. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020 383 15 1413 1424 10.1056/NEJMoa2022190 32865377
    [Google Scholar]
  59. Anker S.D. Butler J. Filippatos G. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021 385 16 1451 1461 10.1056/NEJMoa2107038 34449189
    [Google Scholar]
  60. Usman M.S. Siddiqi T.J. Anker S.D. Effect of SGLT2 inhibitors on cardiovascular outcomes across various patient populations. J. Am. Coll. Cardiol. 2023 81 25 2377 2387 10.1016/j.jacc.2023.04.034 37344038
    [Google Scholar]
  61. Davies M.J. Aronne L.J. Caterson I.D. Thomsen A.B. Jacobsen P.B. Marso S.P. Liraglutide and cardiovascular outcomes in adults with overweight or obesity: Apost hoc analysis from SCALE randomized controlled trials. Diabetes Obes. Metab. 2018 20 3 734 739 10.1111/dom.13125 28950422
    [Google Scholar]
  62. Bethel M.A. Patel R.A. Merrill P. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: A meta-analysis. Lancet Diabetes Endocrinol. 2018 6 2 105 113 10.1016/S2213‑8587(17)30412‑6 29221659
    [Google Scholar]
  63. Ussher J.R. Drucker D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023 20 7 463 474 10.1038/s41569‑023‑00849‑3 36977782
    [Google Scholar]
  64. Lincoff A.M. Brown-Frandsen K. Colhoun H.M. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 2023 389 24 2221 2232 10.1056/NEJMoa2307563 37952131
    [Google Scholar]
  65. Rivera F.B. Cruz L.L.A. Magalong J.V. Cardiovascular and renal outcomes of glucagon-like peptide 1 receptor agonists among patients with and without type 2 diabetes mellitus: A meta-analysis of randomized placebo-controlled trials. American Journal of Preventive Cardiology 2024 18 100679 10.1016/j.ajpc.2024.100679 38779187
    [Google Scholar]
  66. Liu T. Fan Z. Xiao B. He C. Wang S. Association of sodium-glucose cotransporter 2 inhibitors with risk of major adverse cardiovascular events in type 2 diabetes patients with acute coronary syndrome: A propensity score matched analysis. Cardiovasc. Diabetol. 2024 23 1 106 10.1186/s12933‑024‑02200‑7 38528542
    [Google Scholar]
  67. Karakasis P. Fragakis N. Kouskouras K. Karamitsos T. Patoulias D. Rizzo M. Sodium-glucose cotransporter-2 inhibitors in patients with acute coronary syndrome: A modern cinderella? Clin. Ther. 2024 46 11 841 850 10.1016/j.clinthera.2024.06.010 38991865
    [Google Scholar]
  68. del Olmo García M.I. Merino-Torres J.F. GLP 1 receptor agonists, glycemic variability, oxidative stress and acute coronary syndrome. Med. Hypotheses 2020 136 109504 10.1016/j.mehy.2019.109504 31794876
    [Google Scholar]
  69. Yandrapalli S. Aronow W.S. Cardiovascular benefits of the newer medications for treating type 2 diabetes mellitus. J. Thorac. Dis. 2017 9 7 2124 2134 10.21037/jtd.2017.06.70 28840014
    [Google Scholar]
  70. Brown J.M. Everett B.M. Cardioprotective diabetes drugs: What cardiologists need to know. Cardiovasc. Endocrinol. Metab. 2019 8 4 96 105 10.1097/XCE.0000000000000181 31942550
    [Google Scholar]
  71. Rojas-Velázquez J.M. Giralt-Herrera A. Leiva-Enríquez J. Leiva-Enríquez J. Role of newer antidiabetic drugs on cardiovascular prevention and heart failure. Clínica e Investigación en Arteriosclerosis (English Edition) 2021 33 6 314 322 10.1016/j.artere.2021.11.002 33820673
    [Google Scholar]
  72. Lahiri S.W. Personalizing type 2 diabetes management: Use of a patient-centered approach to individualizing A1C goals and pharmacological regimens. Clin. Diabetes 2017 35 5 321 328 10.2337/cd17‑0083 29263575
    [Google Scholar]
  73. Vuohijoki A. Mikkola I. Jokelainen J. Implementation of a personalized care plan for patients with type 2 diabetes is associated with improvements in clinical outcomes: An observational real-world study. J. Prim. Care Community Health 2020 11 2150132720921700 10.1177/2150132720921700 32450742
    [Google Scholar]
  74. Bartkeviciute B. Riklikiene O. Kregzdyte R. Lesauskaite V. Individualized care for older adults with diabetes and its relationship with communication, psychosocial self‐efficacy, resources and support for self‐management and socio‐demographics. Nurs. Open 2023 10 4 2560 2571 10.1002/nop2.1515 36479931
    [Google Scholar]
  75. Sugandh F.N.U. Chandio M. Raveena F.N.U. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611322555250219111038
Loading
/content/journals/cvp/10.2174/0115701611322555250219111038
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HbA1c ; Acute coronary syndrome ; diabetes mellitus ; newly diagnosed ; pre-existing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test