Skip to content
2000
image of Roles of Empagliflozin in Diabetic Cardiomyopathy: A Review

Abstract

Empagliflozin (EMPA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i), represents a novel therapeutic agent for diabetes management. Over the past decade, studies have consistently demonstrated that EMPA not only effectively lowers blood glucose levels but also confers substantial cardiovascular benefits without inducing hypoglycemia. This holds for individuals with or without diabetes, highlighting EMPA’s potential in mitigating the risk of adverse cardiovascular events and cardiovascular mortality. The underlying mechanisms driving these advantageous effects remain incompletely understood, with presently elucidated pathways encompassing blood pressure reduction, oxidative stress attenuation, anti-inflammatory properties, metabolic regulation, uric acid level modulation, inhibition of Na+/H+ exchangers, preservation of mitochondrial function, vascular protection, and regulation of myocardial autophagy. In this review, we considered the effects and mechanisms of EMPA in combating diabetic cardiomyopathy (DCM), underscoring its therapeutic relevance in addressing cardiovascular complications associated with diabetes.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611319744250116092707
2025-01-27
2025-06-20
Loading full text...

Full text loading...

References

  1. Jia G. Hill M.A. Sowers J.R. Diabetic cardiomyopathy. Circ. Res. 2018 122 4 624 638 10.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  2. Wei J. Zhao Y. Liang H. Du W. Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm. Sin. B 2022 12 1 1 17 10.1016/j.apsb.2021.08.026 35127369
    [Google Scholar]
  3. Ritchie R.H. Abel E.D. Basic mechanisms of diabetic heart disease. Circ. Res. 2020 126 11 1501 1525 10.1161/CIRCRESAHA.120.315913 32437308
    [Google Scholar]
  4. Kenny H.C. Abel E.D. Heart failure in type 2 diabetes mellitus. Circ. Res. 2019 124 1 121 141 10.1161/CIRCRESAHA.118.311371 30605420
    [Google Scholar]
  5. Yun J.S. Ko S.H. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism 2021 123 154838 10.1016/j.metabol.2021.154838 34333002
    [Google Scholar]
  6. Udell J.A. Cavender M.A. Bhatt D.L. Chatterjee S. Farkouh M.E. Scirica B.M. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2015 3 5 356 366 10.1016/S2213‑8587(15)00044‑3 25791290
    [Google Scholar]
  7. Packer M. SGLT2 inhibitors: Role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 2023 20 7 443 462 10.1038/s41569‑022‑00824‑4 36609604
    [Google Scholar]
  8. Li C. Zhang J. Xue M. Li X. Han F. Liu X. Xu L. Lu Y. Cheng Y. Li T. Yu X. Sun B. Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019 18 1 15 10.1186/s12933‑019‑0816‑2 30710997
    [Google Scholar]
  9. Nagahisa T. Saisho Y. Cardiorenal protection: Potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes. Diabetes Ther. 2019 10 5 1733 1752 10.1007/s13300‑019‑00680‑5 31440988
    [Google Scholar]
  10. Yurista S.R. Silljé H.H.W. Oberdorf-Maass S.U. Schouten E.M. Pavez Giani M.G. Hillebrands J.L. van Goor H. van Veldhuisen D.J. de Boer R.A. Westenbrink B.D. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 2019 21 7 862 873 10.1002/ejhf.1473 31033127
    [Google Scholar]
  11. Zelniker T.A. Braunwald E. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes. J. Am. Coll. Cardiol. 2018 72 15 1845 1855 10.1016/j.jacc.2018.06.040 30075873
    [Google Scholar]
  12. Zinman B. Wanner C. Lachin J.M. Fitchett D. Bluhmki E. Hantel S. Mattheus M. Devins T. Johansen O.E. Woerle H.J. Broedl U.C. Inzucchi S.E. EMPA-REG OUTCOME Investigators Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015 373 22 2117 2128 10.1056/NEJMoa1504720 26378978
    [Google Scholar]
  13. Tsapas A. Avgerinos I. Karagiannis T. Malandris K. Manolopoulos A. Andreadis P. Liakos A. Matthews D.R. Bekiari E. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes. Ann. Intern. Med. 2020 173 4 278 286 10.7326/M20‑0864 32598218
    [Google Scholar]
  14. Griffin M. Rao V.S. Ivey-Miranda J. Fleming J. Mahoney D. Maulion C. Suda N. Siwakoti K. Ahmad T. Jacoby D. Riello R. Bellumkonda L. Cox Z. Collins S. Jeon S. Turner J.M. Wilson F.P. Butler J. Inzucchi S.E. Testani J.M. Empagliflozin in heart failure. Circulation 2020 142 11 1028 1039 10.1161/CIRCULATIONAHA.120.045691 32410463
    [Google Scholar]
  15. Guo J. Smith S.M. Newer drug treatments for type 2 diabetes. BMJ 2021 373 1171 n1171 10.1136/bmj.n1171 33975861
    [Google Scholar]
  16. Jia G. Sowers J.R. Hypertension in diabetes: An update of basic mechanisms and clinical disease. Hypertension 2021 78 5 1197 1205 10.1161/HYPERTENSIONAHA.121.17981 34601960
    [Google Scholar]
  17. Omar M. Jensen J. Frederiksen P.H. Kistorp C. Videbæk L. Poulsen M.K. Möller S. Ali M. Gustafsson F. Køber L. Borlaug B.A. Schou M. Møller J.E. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 2020 76 23 2740 2751 10.1016/j.jacc.2020.10.005 33272368
    [Google Scholar]
  18. Wolsk E. Jürgens M. Schou M. Ersbøll M. Hasbak P. Kjær A. Zerahn B. Brandt N.H. Gæde P.H. Rossing P. Faber J. Inzucchi S.E. Kistorp C.M. Gustafsson F. Randomized controlled trial of the hemodynamic effects of empagliflozin in patients with type 2 diabetes at high cardiovascular risk: The SIMPLE trial. Diabetes 2022 71 4 812 820 10.2337/db21‑0721 35061894
    [Google Scholar]
  19. Nassif M.E. Qintar M. Windsor S.L. Jermyn R. Shavelle D.M. Tang F. Lamba S. Bhatt K. Brush J. Civitello A. Gordon R. Jonsson O. Lampert B. Pelzel J. Kosiborod M.N. Empagliflozin effects on pulmonary artery pressure in patients with heart failure. Circulation 2021 143 17 1673 1686 10.1161/CIRCULATIONAHA.120.052503 33550815
    [Google Scholar]
  20. Cherney D.Z.I. Perkins B.A. Soleymanlou N. Maione M. Lai V. Lee A. Fagan N.M. Woerle H.J. Johansen O.E. Broedl U.C. von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014 129 5 587 597 10.1161/CIRCULATIONAHA.113.005081 24334175
    [Google Scholar]
  21. Vallon V. Gerasimova M. Rose M.A. Masuda T. Satriano J. Mayoux E. Koepsell H. Thomson S.C. Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 2014 306 2 F194 F204 10.1152/ajprenal.00520.2013 24226524
    [Google Scholar]
  22. Lytvyn Y. Bjornstad P. Udell J.A. Lovshin J.A. Cherney D.Z.I. Sodium glucose cotransporter-2 inhibition in heart failure. Circulation 2017 136 17 1643 1658 10.1161/CIRCULATIONAHA.117.030012 29061576
    [Google Scholar]
  23. Lopaschuk G.D. Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl. Sci. 2020 5 6 632 644 10.1016/j.jacbts.2020.02.004 32613148
    [Google Scholar]
  24. Kidokoro K. Cherney D.Z.I. Bozovic A. Nagasu H. Satoh M. Kanda E. Sasaki T. Kashihara N. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation 2019 140 4 303 315 10.1161/CIRCULATIONAHA.118.037418 30773020
    [Google Scholar]
  25. Wanner C. Inzucchi S.E. Lachin J.M. Fitchett D. von Eynatten M. Mattheus M. Johansen O.E. Woerle H.J. Broedl U.C. Zinman B. EMPA-REG OUTCOME Investigators Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 2016 375 4 323 334 10.1056/NEJMoa1515920 27299675
    [Google Scholar]
  26. Vallon V. Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu. Rev. Physiol. 2021 83 1 503 528 10.1146/annurev‑physiol‑031620‑095920 33197224
    [Google Scholar]
  27. Johnson R.J. Bakris G.L. Borghi C. Chonchol M.B. Feldman D. Lanaspa M.A. Merriman T.R. Moe O.W. Mount D.B. Sanchez Lozada L.G. Stahl E. Weiner D.E. Chertow G.M. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am. J. Kidney Dis. 2018 71 6 851 865 10.1053/j.ajkd.2017.12.009 29496260
    [Google Scholar]
  28. Deng X. Zhang C. Wang P. Wei W. Shi X. Wang P. Yang J. Wang L. Tang S. Fang Y. Liu Y. Chen Y. Zhang Y. Yuan Q. Shang J. Kan Q. Yang H. Man H. Wang D. Yuan H. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes. J. Clin. Endocrinol. Metab. 2022 107 7 1888 1896 10.1210/clinem/dgac210 35397165
    [Google Scholar]
  29. Hesp A.C. Schaub J.A. Prasad P.V. Vallon V. Laverman G.D. Bjornstad P. van Raalte D.H. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: A promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int. 2020 98 3 579 589 10.1016/j.kint.2020.02.041 32739206
    [Google Scholar]
  30. Lu Q. Yang L. Xiao J.J. Liu Q. Ni L. Hu J.W. Yu H. Wu X. Zhang B.F. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway. Free Radic. Biol. Med. 2023 195 89 102 10.1016/j.freeradbiomed.2022.12.088 36581059
    [Google Scholar]
  31. Ng A.C.T. Delgado V. Borlaug B.A. Bax J.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat. Rev. Cardiol. 2021 18 4 291 304 10.1038/s41569‑020‑00465‑5 33188304
    [Google Scholar]
  32. Fioretto P. Zambon A. Rossato M. Busetto L. Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016 39 Suppl. 2 S165 S171 10.2337/dcS15‑3006 27440829
    [Google Scholar]
  33. Soga F. Tanaka H. Tatsumi K. Mochizuki Y. Sano H. Toki H. Matsumoto K. Shite J. Takaoka H. Doi T. Hirata K. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc. Diabetol. 2018 17 1 132 10.1186/s12933‑018‑0775‑z 30296931
    [Google Scholar]
  34. Nishida K. Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc. Res. 2017 113 4 389 398 10.1093/cvr/cvx012 28395010
    [Google Scholar]
  35. Poznyak A. Grechko A.V. Poggio P. Myasoedova V.A. Alfieri V. Orekhov A.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020 21 5 1835 10.3390/ijms21051835 32155866
    [Google Scholar]
  36. Kusaka H. Koibuchi N. Hasegawa Y. Ogawa H. Kim-Mitsuyama S. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc. Diabetol. 2016 15 1 157 10.1186/s12933‑016‑0473‑7 27835975
    [Google Scholar]
  37. Canet F. Iannantuoni F. Marañon A.M. Díaz-Pozo P. López-Domènech S. Vezza T. Navarro B. Solá E. Falcón R. Bañuls C. Morillas C. Rocha M. Víctor V.M. Does empagliflozin modulate leukocyte–endothelium interactions, oxidative stress, and inflammation in type 2 diabetes? Antioxidants 2021 10 8 1228 10.3390/antiox10081228 34439476
    [Google Scholar]
  38. Kang Q. Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020 37 101799 10.1016/j.redox.2020.101799 33248932
    [Google Scholar]
  39. Matsushima S. Tsutsui H. Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia–reperfusion. Trends Cardiovasc. Med. 2014 24 5 202 205 10.1016/j.tcm.2014.03.003 24880746
    [Google Scholar]
  40. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  41. Sabbah H.N. Targeting the mitochondria in heart failure. JACC Basic Transl. Sci. 2020 5 1 88 106 10.1016/j.jacbts.2019.07.009 32043022
    [Google Scholar]
  42. Kolijn D. Pabel S. Tian Y. Lódi M. Herwig M. Carrizzo A. Zhazykbayeva S. Kovács Á. Fülöp G.Á. Falcão-Pires I. Reusch P.H. Linthout S.V. Papp Z. van Heerebeek L. Vecchione C. Maier L.S. Ciccarelli M. Tschöpe C. Mügge A. Bagi Z. Sossalla S. Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 2021 117 2 495 507 10.1093/cvr/cvaa123 32396609
    [Google Scholar]
  43. Steinberg G.R. Hardie D.G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 2023 24 4 255 272 10.1038/s41580‑022‑00547‑x 36316383
    [Google Scholar]
  44. Sun X. Han F. Lu Q. Li X. Ren D. Zhang J. Han Y. Xiang Y.K. Li J. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated ampk-mtor signaling and redox homeostasis in high-fat diet–induced obese mice. Diabetes 2020 69 6 1292 1305 10.2337/db19‑0991 32234722
    [Google Scholar]
  45. Chen S. Khan Z.A. Karmazyn M. Chakrabarti S. Role of endothelin‐1, sodium hydrogen exchanger‐1 and mitogen activated protein kinase (MAPK) activation in glucose‐induced cardiomyocyte hypertrophy. Diabetes Metab. Res. Rev. 2007 23 5 356 367 10.1002/dmrr.689 17024690
    [Google Scholar]
  46. Uthman L. Baartscheer A. Bleijlevens B. Schumacher C.A. Fiolet J.W.T. Koeman A. Jancev M. Hollmann M.W. Weber N.C. Coronel R. Zuurbier C.J. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018 61 3 722 726 10.1007/s00125‑017‑4509‑7 29197997
    [Google Scholar]
  47. Baartscheer A. Schumacher C.A. Wüst R.C.I. Fiolet J.W.T. Stienen G.J.M. Coronel R. Zuurbier C.J. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017 60 3 568 573 10.1007/s00125‑016‑4134‑x 27752710
    [Google Scholar]
  48. Chung Y.J. Park K.C. Tokar S. Eykyn T.R. Fuller W. Pavlovic D. Swietach P. Shattock M.J. Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc. Res. 2021 117 14 2794 2806 10.1093/cvr/cvaa323 33135077
    [Google Scholar]
  49. Lopaschuk G.D. Karwi Q.G. Tian R. Wende A.R. Abel E.D. Cardiac energy metabolism in heart failure. Circ. Res. 2021 128 10 1487 1513 10.1161/CIRCRESAHA.121.318241 33983836
    [Google Scholar]
  50. Ho K.L. Zhang L. Wagg C. Al Batran R. Gopal K. Levasseur J. Leone T. Dyck J.R.B. Ussher J.R. Muoio D.M. Kelly D.P. Lopaschuk G.D. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc. Res. 2019 115 11 1606 1616 10.1093/cvr/cvz045 30778524
    [Google Scholar]
  51. Verma S. Rawat S. Ho K.L. Wagg C.S. Zhang L. Teoh H. Dyck J.E. Uddin G.M. Oudit G.Y. Mayoux E. Lehrke M. Marx N. Lopaschuk G.D. Empagliflozin increases cardiac energy production in diabetes. JACC Basic Transl. Sci. 2018 3 5 575 587 10.1016/j.jacbts.2018.07.006 30456329
    [Google Scholar]
  52. Abdelgani S. Khattab A. Adams J. Abu-Farha M. Daniele G. Al-Mulla F. Del Prato S. DeFronzo R.A. Abdul-Ghani M. Distinct mechanisms responsible for the increase in glucose production and ketone formation caused by empagliflozin in T2DM patients. Diabetes Care 2023 46 5 978 984 10.2337/dc22‑0885 36857415
    [Google Scholar]
  53. Abdurrachim D. Manders E. Nicolay K. Mayoux E. Prompers J.J. Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice. Cardiovasc. Res. 2018 114 14 1843 1844 10.1093/cvr/cvy246 30295756
    [Google Scholar]
  54. Thirunavukarasu S. Jex N. Chowdhary A. Hassan I.U. Straw S. Craven T.P. Gorecka M. Broadbent D. Swoboda P. Witte K.K. Cubbon R.M. Xue H. Kellman P. Greenwood J.P. Plein S. Levelt E. Empagliflozin treatment is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes. Diabetes 2021 70 12 2810 2822 10.2337/db21‑0270 34610982
    [Google Scholar]
  55. Nathan D.M. Lachin J.M. Bebu I. Burch H.B. Buse J.B. Cherrington A.L. Fortmann S.P. Green J.B. Kahn S.E. Kirkman M.S. Krause-Steinrauf H. Larkin M.E. Phillips L.S. Pop-Busui R. Steffes M. Tiktin M. Tripputi M. Wexler D.J. Younes N. GRADE Study Research Group Glycemia reduction in type 2 diabetes — Microvascular and cardiovascular outcomes. N. Engl. J. Med. 2022 387 12 1075 1088 10.1056/NEJMoa2200436 36129997
    [Google Scholar]
  56. Mátyás C. Németh B.T. Oláh A. Hidi L. Birtalan E. Kellermayer D. Ruppert M. Korkmaz-Icöz S. Kökény G. Horváth E.M. Szabó G. Merkely B. Radovits T. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc. Diabetol. 2015 14 1 145 10.1186/s12933‑015‑0309‑x 26520063
    [Google Scholar]
  57. Xue M. Li T. Wang Y. Chang Y. Cheng Y. Lu Y. Liu X. Xu L. Li X. Yu X. Sun B. Chen L. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin. Sci. 2019 133 15 1705 1720 10.1042/CS20190585 31337673
    [Google Scholar]
  58. Adingupu D.D. Göpel S.O. Grönros J. Behrendt M. Sotak M. Miliotis T. Dahlqvist U. Gan L.M. Jönsson-Rylander A.C. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice. Cardiovasc. Diabetol. 2019 18 1 16 10.1186/s12933‑019‑0820‑6 30732594
    [Google Scholar]
  59. Spigoni V. Fantuzzi F. Carubbi C. Pozzi G. Masselli E. Gobbi G. Solini A. Bonadonna R.C. Dei Cas A. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: Potential relevance to prevention of cardiovascular events. Cardiovasc. Diabetol. 2020 19 1 46 10.1186/s12933‑020‑01016‑5 32264868
    [Google Scholar]
  60. Juni R.P. Kuster D.W.D. Goebel M. Helmes M. Musters R.J.P. van der Velden J. Koolwijk P. Paulus W.J. van Hinsbergh V.W.M. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic Transl. Sci. 2019 4 5 575 591 10.1016/j.jacbts.2019.04.003 31768475
    [Google Scholar]
  61. Steven S. Oelze M. Hanf A. Kröller-Schön S. Kashani F. Roohani S. Welschof P. Kopp M. Gödtel-Armbrust U. Xia N. Li H. Schulz E. Lackner K.J. Wojnowski L. Bottari S.P. Wenzel P. Mayoux E. Münzel T. Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017 13 370 385 10.1016/j.redox.2017.06.009 28667906
    [Google Scholar]
  62. Oelze M. Mollnau H. Hoffmann N. Warnholtz A. Bodenschatz M. Smolenski A. Walter U. Skatchkov M. Meinertz T. Münzel T. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ. Res. 2000 87 11 999 1005 10.1161/01.RES.87.11.999 11090544
    [Google Scholar]
  63. Rovira-Llopis S. Bañuls C. Diaz-Morales N. Hernandez-Mijares A. Rocha M. Victor V.M. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017 11 637 645 10.1016/j.redox.2017.01.013 28131082
    [Google Scholar]
  64. Ferreira J.C.B. Campos J.C. Qvit N. Qi X. Bozi L.H.M. Bechara L.R.G. Lima V.M. Queliconi B.B. Disatnik M.H. Dourado P.M.M. Kowaltowski A.J. Mochly-Rosen D. A selective inhibitor of mitofusin 1-βIIPKC association improves heart failure outcome in rats. Nat. Commun. 2019 10 1 329 10.1038/s41467‑018‑08276‑6 30659190
    [Google Scholar]
  65. Cipolat S. de Brito O.M. Dal Zilio B. Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 2004 101 45 15927 15932 10.1073/pnas.0407043101 15509649
    [Google Scholar]
  66. Ren L. Han F. Xuan L. Lv Y. Gong L. Yan Y. Wan Z. Guo L. Liu H. Xu B. Sun Y. Yang S. Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic. Biol. Med. 2019 145 357 373 10.1016/j.freeradbiomed.2019.10.008 31614179
    [Google Scholar]
  67. Wang J. Huang X. Liu H. Chen Y. Li P. Liu L. Li J. Ren Y. Huang J. Xiong E. Tian Z. Dai X. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxid. Med. Cell. Longev. 2022 2022 1 16 10.1155/2022/1122494 35585884
    [Google Scholar]
  68. Zhou H. Wang S. Zhu P. Hu S. Chen Y. Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018 15 335 346 10.1016/j.redox.2017.12.019 29306791
    [Google Scholar]
  69. Shao Q. Meng L. Lee S. Tse G. Gong M. Zhang Z. Zhao J. Zhao Y. Li G. Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 2019 18 1 165 10.1186/s12933‑019‑0964‑4 31779619
    [Google Scholar]
  70. Ashraf R. Kumar S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling. Cell. Mol. Life Sci. 2022 79 11 573 10.1007/s00018‑022‑04595‑6 36308626
    [Google Scholar]
  71. Delbridge L.M.D. Mellor K.M. Taylor D.J. Gottlieb R.A. Myocardial stress and autophagy: Mechanisms and potential therapies. Nat. Rev. Cardiol. 2017 14 7 412 425 10.1038/nrcardio.2017.35 28361977
    [Google Scholar]
  72. Song S. Ding Y. Dai G. Zhang Y. Xu M. Shen J. Chen T. Chen Y. Meng G. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol. Sin. 2021 42 2 230 241 10.1038/s41401‑020‑0490‑7 32770173
    [Google Scholar]
  73. Cai Z. Jitkaew S. Zhao J. Chiang H.C. Choksi S. Liu J. Ward Y. Wu L. Liu Z.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 2014 16 1 55 65 10.1038/ncb2883 24316671
    [Google Scholar]
  74. Cao T. Ni R. Ding W. Ji X. Li L. Liao G. Lu Y. Fan G.C. Zhang Z. Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc. Diabetol. 2022 21 1 165 10.1186/s12933‑022‑01602‑9 36030201
    [Google Scholar]
  75. Madonna R. Moscato S. Cufaro M.C. Pieragostino D. Mattii L. Del Boccio P. Ghelardoni S. Zucchi R. De Caterina R. Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signalling pathway in diabetic cardiomyopathy. Cardiovasc. Res. 2023 119 5 1175 1189 10.1093/cvr/cvad009 36627733
    [Google Scholar]
  76. Anker S.D. Butler J. Filippatos G. Ferreira J.P. Bocchi E. Böhm M. Brunner-La Rocca H.P. Choi D.J. Chopra V. Chuquiure-Valenzuela E. Giannetti N. Gomez-Mesa J.E. Janssens S. Januzzi J.L. Gonzalez-Juanatey J.R. Merkely B. Nicholls S.J. Perrone S.V. Piña I.L. Ponikowski P. Senni M. Sim D. Spinar J. Squire I. Taddei S. Tsutsui H. Verma S. Vinereanu D. Zhang J. Carson P. Lam C.S.P. Marx N. Zeller C. Sattar N. Jamal W. Schnaidt S. Schnee J.M. Brueckmann M. Pocock S.J. Zannad F. Packer M. EMPEROR-Preserved Trial Investigators Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021 385 16 1451 1461 10.1056/NEJMoa2107038 34449189
    [Google Scholar]
  77. Laffel L.M. Danne T. Klingensmith G.J. Tamborlane W.V. Willi S. Zeitler P. Neubacher D. Marquard J. Bardymova T. Barrientos Perez M. Bethin K. Bjornstad P. Bondar I. Chen M. Choi J-H. Clements M.A. Colomar J.R. Daniels M. Deerochanawong C. Desai V.S. Desmangles J-C.G. Dillon R.G. Dixit N.M. Du H. Edelen R. Espinoza Peralta D. Felipe Gacioppo M.V. Ferraz T.M.B.L. Galkina G. Gallagher M.P. George M. Gonzalez E. Gottschalk M.E. Guido G. Hassan A.A. Hershkovitz E. Huerta-Saenz L.P. Hwang J.S. Ibarra Gomez J.O. Irizarry Gonzalez L. Jain N. Jelley D.H. Kim H-S. Kovalenko T. Laffel L.M.B. Leichter S.B. Liberatore R.D.R. Jr Lynch J. Mahmud F.H. Malievskiy O.A. Muir A. Nelson B.A. Nevarez Ruiz L.A. Olson M.L. Pelayo Orozco E.S. Peterkova V. Ramírez Mendoza F.R. Reddy K.M. Rodriguez H. Saenz J.A. Samoilova J. Schwab K-O. Shah S.H. Shehadeh N. Shoemaker A.H. Skorodok Y. Sobolev A. Solís S.E. Srinivasan S. Tamborlane W.V. Tsalikian E. Valeeva F. Vance C.D. Velasquez-Mieyer P.A. Violante Ortiz R.M. Votyakova O. Wei H. Weinstock R.S. Wheeler M.D. Wicklow B.A. Willi S.M. Wintergerst K.A. Wolf R.M. Wood J.R. Yaliwal C. Yupanqui Lozno H. DINAMO Study Group Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): A multicentre, randomised, double-blind, parallel group, phase 3 trial. Lancet Diabetes Endocrinol. 2023 11 3 169 181 10.1016/S2213‑8587(22)00387‑4 36738751
    [Google Scholar]
  78. Lee M.M.Y. Brooksbank K.J.M. Wetherall K. Mangion K. Roditi G. Campbell R.T. Berry C. Chong V. Coyle L. Docherty K.F. Dreisbach J.G. Labinjoh C. Lang N.N. Lennie V. McConnachie A. Murphy C.L. Petrie C.J. Petrie J.R. Speirits I.A. Sourbron S. Welsh P. Woodward R. Radjenovic A. Mark P.B. McMurray J.J.V. Jhund P.S. Petrie M.C. Sattar N. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 2021 143 6 516 525 10.1161/CIRCULATIONAHA.120.052186 33186500
    [Google Scholar]
  79. Mordi N.A. Mordi I.R. Singh J.S. McCrimmon R.J. Struthers A.D. Lang C.C. Renal and cardiovascular effects of sglt2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure. Circulation 2020 142 18 1713 1724 10.1161/CIRCULATIONAHA.120.048739 32865004
    [Google Scholar]
  80. Shimizu W. Kubota Y. Hoshika Y. Mozawa K. Tara S. Tokita Y. Yodogawa K. Iwasaki Y. Yamamoto T. Takano H. Tsukada Y. Asai K. Miyamoto M. Miyauchi Y. Kodani E. Ishikawa M. Maruyama M. Ogano M. Tanabe J. Shiomura R. Fukuizumi I. Matsuda J. Noma S. Sangen H. Komiyama H. Imori Y. Nakamura S. Nakata J. Miyachi H. Takagi G. Todoroki T. Ikeda T. Miyakuni T. Shima A. Matsushita M. Okazaki H. Shirakabe A. Kobayashi N. Takano M. Seino Y. Nishi Y. Suzuki K. Shibuya J. Saito T. Nakano H. Taichirou M. Furuse E. Nakama K. Hosokawa Y. Tsuboi I. Kawanaka H. EMBODY trial investigators Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial. Cardiovasc. Diabetol. 2020 19 1 148 10.1186/s12933‑020‑01127‑z 32977831
    [Google Scholar]
  81. Mason T. Coelho-Filho O.R. Verma S. Chowdhury B. Zuo F. Quan A. Thorpe K.E. Bonneau C. Teoh H. Gilbert R.E. Leiter L.A. Jüni P. Zinman B. Jerosch-Herold M. Mazer C.D. Yan A.T. Connelly K.A. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc. Imaging 2021 14 6 1164 1173 10.1016/j.jcmg.2020.10.017 33454272
    [Google Scholar]
  82. Gaborit B. Ancel P. Abdullah A.E. Maurice F. Abdesselam I. Calen A. Soghomonian A. Houssays M. Varlet I. Eisinger M. Lasbleiz A. Peiretti F. Bornet C.E. Lefur Y. Pini L. Rapacchi S. Bernard M. Resseguier N. Darmon P. Kober F. Dutour A. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: The EMPACEF study. Cardiovasc. Diabetol. 2021 20 1 57 10.1186/s12933‑021‑01237‑2 33648515
    [Google Scholar]
  83. Rau M. Thiele K. Hartmann N.U.K. Schuh A. Altiok E. Möllmann J. Keszei A.P. Böhm M. Marx N. Lehrke M. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: A randomized controlled study. Cardiovasc. Diabetol. 2021 20 1 6 10.1186/s12933‑020‑01175‑5 33413355
    [Google Scholar]
  84. Brandt-Jacobsen N.H. Jürgens M. Hasbak P. Gæde P. Rossing P. Rasmussen J.J. Andersen C.F. Forman J.L. Faber J. Inzucchi S.E. Gustafsson F. Schou M. Kistorp C. Reduction of cardiac adipose tissue volume with short‐term empagliflozin treatment in patients with type 2 diabetes: A substudy from the SIMPLE randomized clinical trial. Diabetes Obes. Metab. 2023 25 3 844 855 10.1111/dom.14933 36484428
    [Google Scholar]
  85. Puar P. Hibino M. Mazer C.D. Yan A.T. Pandey A.K. Quan A. Teoh H. Hess D.A. Verma R. Connelly K.A. Verma S. Left ventricular mass predicts cardiac reverse remodelling in patients treated with empagliflozin. Cardiovasc. Diabetol. 2023 22 1 152 10.1186/s12933‑023‑01849‑w 37380983
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611319744250116092707
Loading
/content/journals/cvp/10.2174/0115701611319744250116092707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test