Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Introduction/Objective

Coronavirus disease 2019 (COVID-19) has been the biggest pandemic in history, with severe complications, such as acute respiratory distress syndrome and pulmonary hypertension (PH). An endothelin-1 (ET-1) receptor antagonist, such as bosentan, may be beneficial in treating elevated ET-1 levels. Hence, our study aimed to evaluate the therapeutic effects of bosentan in patients with COVID-19-induced PH.

Methods

A single-centre, randomized, double-blind study involving 72 participants was carried out; 36 received bosentan and the other 36 received a placebo. Pulmonary arterial pressure, tricuspid valve pressure gradient, and right atrial pressure were measured using echocardiography. The Cox proportional hazards regression model was used to investigate the impact of bosentan and patients' age on mortality during a 6-month follow-up period.

Results

In-hospital mortality was significantly lower in the case group (13%) compared with the control group (33.3%) (=0.003). Additionally, bosentan improved echocardiographic parameters, such as systolic pulmonary artery pressure and tricuspid regurgitation gradient (=0.011 and =0.003, respectively). Bosentan use was a significant predictor of long-term mortality rates for 600 days [age-adjusted hazard ratio of 5.24 (95% CI 1.34 to 20.46)].

Conclusion

This study provided a mixed perspective on the use of bosentan therapy in patients with COVID-19-related PH. Bosentan effectively reduced in-hospital mortality and improved echocardiographic measures. However, the treatment group showed an increased requirement for supplemental oxygen therapy and long-term mortality. Further studies with larger sample sizes are necessary to elucidate the effects of bosentan in PH following COVID-19.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611299843240607061547
2024-06-13
2025-01-18
Loading full text...

Full text loading...

References

  1. EsakandariH. Nabi-AfjadiM. Fakkari-AfjadiJ. FarahmandianN. MiresmaeiliS.M. BahreiniE. A comprehensive review of COVID-19 characteristics.Biol. Proced. Online20202211910.1186/s12575‑020‑00128‑232774178
    [Google Scholar]
  2. AllanM LièvreM Laurenson-SchaferH de BarrosS JinnaiY AndrewsS The world health organization COVID-19 surveillance database.Int. J. Equity Health202221Suppl 3167
    [Google Scholar]
  3. AhamadS. BranchS. HarrelsonS. HussainM.K. SaquibM. KhanS. Primed for global coronavirus pandemic: Emerging research and clinical outcome.Eur. J. Med. Chem.202120911286210.1016/j.ejmech.2020.11286233070079
    [Google Scholar]
  4. CastiglioneL. DroppaM. Pulmonary hypertension and COVID-19.Hamostaseologie202242423023810.1055/a‑1661‑024034933375
    [Google Scholar]
  5. CaravitaS. BarattoC. Di MarcoF. CalabreseA. BalestrieriG. RussoF. FainiA. SorannaD. PeregoG.B. BadanoL.P. GrazioliL. LoriniF.L. ParatiG. SenniM. Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization.Eur. J. Heart Fail.202022122228223710.1002/ejhf.205833200458
    [Google Scholar]
  6. BeshayS. GuhaA. SahayS. Evaluation, diagnosis, and classification of pulmonary hypertension.Methodist DeBakey Cardiovasc. J.2021172869110.14797/OCDF445334326927
    [Google Scholar]
  7. LinP JiangF LiX ZhaoY ShiY LiangZ International trends in pulmonary hypertension mortality between 2001 and 2019: Retrospective analysis of the WHO mortality database.Heliyon2024104e26139
    [Google Scholar]
  8. BeshayS. SahayS. HumbertM. Evaluation and management of pulmonary arterial hypertension.Respir. Med.202017110609910.1016/j.rmed.2020.10609932829182
    [Google Scholar]
  9. FarhaS. COVID-19 and pulmonary hypertension.Cleve. Clin. J. Med.20208751332393596
    [Google Scholar]
  10. KadiyskaT. TourtourikovI. DabchevK. ChernevaR. StoynevN. HadjiolovaR. MitevV. SpandidosD. AdamakiM. ZoumpourlisV. Role of endothelial dysfunction in the severity of COVID-19 infection (Review).Mol. Med. Rep.202226535110.3892/mmr.2022.1286736196882
    [Google Scholar]
  11. XuJ. JiangX. XuS. Aprocitentan, a dual endothelin-1 (ET-1) antagonist for treating resistant hypertension: Mechanism of action and therapeutic potential.Drug Discov. Today2023281110378810.1016/j.drudis.2023.10378837742911
    [Google Scholar]
  12. SharifS. MaqboolR. NazS. Role of endothelin in hypertension: A review.Scientific Reports in Life Sciences.2022346883
    [Google Scholar]
  13. HaryonoA. RamadhianiR. RyantoG.R.T. EmotoN. Endothelin and the cardiovascular system: The long journey and where we are going.Biology202211575910.3390/biology1105075935625487
    [Google Scholar]
  14. ChesterA.H. YacoubM.H. The role of endothelin-1 in pulmonary arterial hypertension.Glob. Cardiol. Sci. Pract.2014201422910.5339/gcsp.2014.2925405182
    [Google Scholar]
  15. FrommerK.W. Müller-LadnerU. Expression and function of ETA and ETB receptors in SSc.Rheumatology200847Suppl. 5v27v2810.1093/rheumatology/ken27418784135
    [Google Scholar]
  16. ChenY.F. OparilS. Endothelin and pulmonary hypertension.J. Cardiovasc. Pharmacol.2000354Suppl. 2S49S5310.1097/00005344‑200000002‑0001210976782
    [Google Scholar]
  17. MiyagawaK. EmotoN. Current state of endothelin receptor antagonism in hypertension and pulmonary hypertension.Ther. Adv. Cardiovasc. Dis.20148520221610.1177/175394471454151124990369
    [Google Scholar]
  18. LiJ. GuanJ. LongX. XiangX. Endothelin-1 upregulates the expression of high mobility group box 1 in human bronchial epithelial cells.Pharmacology2015963-414415010.1159/00043588826226834
    [Google Scholar]
  19. AgarwalR. Gomberg-MaitlandM. Current therapeutics and practical management strategies for pulmonary arterial hypertension.Am. Heart J.2011162220121310.1016/j.ahj.2011.05.01221835279
    [Google Scholar]
  20. RosenkranzS. Pulmonary hypertension: Current diagnosis and treatment.Clin. Res. Cardiol.200796852754110.1007/s00392‑007‑0526‑817534570
    [Google Scholar]
  21. BhogalS. MukherjeeD. BanerjeeS. TanW. PaulT.K. Current trends and future perspectives in the treatment of pulmonary arterial hypertension.Curr. Probl. Cardiol.201843519121610.1016/j.cpcardiol.2017.10.00229174585
    [Google Scholar]
  22. ProvencherS. GrantonJ.T. Current treatment approaches to pulmonary arterial hypertension.Can. J. Cardiol.201531446047710.1016/j.cjca.2014.10.02425840096
    [Google Scholar]
  23. ArazO. Current pharmacological approach to ARDS: The place of bosentan.Eurasian J. Med.2020521818510.5152/eurasianjmed.2020.1921832158321
    [Google Scholar]
  24. GuoQ. HuangJ. FraidenburgD.R. Bosentan as rescue treatment in refractory hypoxemia and pulmonary hypertension in a patient with ARDS and H7N9 influenza virus infection.Lung2014192563563610.1007/s00408‑014‑9602‑924898108
    [Google Scholar]
  25. GiannakoulasG. GatzoulisM.A. Pulmonary arterial hypertension in congenital heart disease: Current perspectives and future challenges.Hellenic J. Cardiol.201657421822210.1016/j.hjc.2016.05.00227642135
    [Google Scholar]
  26. BasyalB. JarrettH. BarnettC.F. Pulmonary hypertension in HIV.Can. J. Cardiol.201935328829810.1016/j.cjca.2019.01.00530825951
    [Google Scholar]
  27. AslanA. AslanC. ZolbaninN.M. JafariR. Acute respiratory distress syndrome in COVID-19: Possible mechanisms and therapeutic management.Pneumonia20211311410.1186/s41479‑021‑00092‑934872623
    [Google Scholar]
  28. BatahS.S. FabroA.T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians.Respir. Med.202117610623910.1016/j.rmed.2020.10623933246294
    [Google Scholar]
  29. FarmakisI.T. GiannakoulasG. Management of COVID-19 in patients with pulmonary arterial hypertension.Heart Fail. Clin.202319110711410.1016/j.hfc.2022.07.00336435565
    [Google Scholar]
  30. PukO. NowackaA. SmulewiczK. MocnaK. BursiewiczW. KęsyN. KwiecieńJ. WicińskiM. Pulmonary artery targeted therapy in treatment of COVID-19 related ARDS. Literature review.Biomed. Pharmacother.202214611259210.1016/j.biopha.2021.11259235062063
    [Google Scholar]
  31. NIH COVID-19 Treatment Guidelines: NIH.2024Available from: https://www.covid19treatmentguidelines.nih.gov
  32. MilanA. MagninoC. VeglioF. Echocardiographic indexes for the non-invasive evaluation of pulmonary hemodynamics.J. Am. Soc. Echocardiogr.201023322523910.1016/j.echo.2010.01.00320206827
    [Google Scholar]
  33. LibbyP. BonowR.O. MannD.L. TomaselliG.F. BhattD.L. SolomonS.D. BraunwaldE. Braunwald's heart disease: A textbook of cardiovascular medicine.Heart disease12th edElsevierPhiladelphia, PA2021206
    [Google Scholar]
  34. MarjaniM. TabarsiP. MoniriA. HashemianS.M. NadjiS.A. AbtahianZ. MalekmohammadM. KianiA. FarzaneganB. EslaminejadA. FakharianA. HeshmatniaJ. AbediniA. SeifiS. YassariF. MirenayatM.S. RezaeiM. SheikhzadeH. AhmadiZ.H. DastanF. SadeghiM. LookzadehS. PorabdollahM. AskariE. BaghaeiP. MansourafsharB. JahangirifardA. VasheghaniM. Mokhber DezfuliM. VarahramM. JamaatiH. MansouriD. ZaliA. VelayatiA.A. NRITLD protocol for the management of patients with COVID-19 admitted to hospitals.Tanaffos2020192919933262795
    [Google Scholar]
  35. DomenighettiG. SuterP.M. SchallerM.D. RitzR. PerretC. Treatment with N-acetylcysteine during acute respiratory distress syndrome: A randomized, double-blind, placebo-controlled clinical study.J. Crit. Care199712417718210.1016/S0883‑9441(97)90029‑09459113
    [Google Scholar]
  36. SuterP.M. DomenighettiG. SchallerM.D. LaverrièreM.C. RitzR. PerretC. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study.Chest1994105119019410.1378/chest.105.1.1908275731
    [Google Scholar]
  37. BeigelJ.H. TomashekK.M. DoddL.E. MehtaA.K. ZingmanB.S. KalilA.C. HohmannE. ChuH.Y. LuetkemeyerA. KlineS. Lopez de CastillaD. FinbergR.W. DierbergK. TapsonV. HsiehL. PattersonT.F. ParedesR. SweeneyD.A. ShortW.R. TouloumiG. LyeD.C. OhmagariN. OhM. Ruiz-PalaciosG.M. BenfieldT. FätkenheuerG. KortepeterM.G. AtmarR.L. CreechC.B. LundgrenJ. BabikerA.G. PettS. NeatonJ.D. BurgessT.H. BonnettT. GreenM. MakowskiM. OsinusiA. NayakS. LaneH.C. ACTT-1 Study Group Members Remdesivir for the treatment of Covid-19.N. Engl. J. Med.2020383191813182610.1056/NEJMoa200776432445440
    [Google Scholar]
  38. Al-TawfiqJ.A. Al-HomoudA.H. MemishZ.A. Remdesivir as a possible therapeutic option for the COVID-19.Travel Med. Infect. Dis.20203410161510.1016/j.tmaid.2020.10161532145386
    [Google Scholar]
  39. LambY.N. Remdesivir: First approval.Drugs202080131355136310.1007/s40265‑020‑01378‑w32870481
    [Google Scholar]
  40. GrantW. LahoreH. McDonnellS. BaggerlyC. FrenchC. AlianoJ. BhattoaH. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths.Nutrients202012498810.3390/nu1204098832252338
    [Google Scholar]
  41. YisakH. EwuneteiA. KefaleB. MamuyeM. TeshomeF. AmbawB. Yideg YitbarekG. Effects of vitamin D on COVID-19 infection and prognosis: A systematic review.Risk Manag. Healthc. Policy202114313810.2147/RMHP.S29158433447107
    [Google Scholar]
  42. AyerbeL. RiscoC. AyisS. The association between treatment with heparin and survival in patients with Covid-19.J. Thromb. Thrombolysis202050229830110.1007/s11239‑020‑02162‑z32476080
    [Google Scholar]
  43. BillettH.H. Reyes-GilM. SzymanskiJ. IkemuraK. StahlL.R. LoY. RahmanS. Gonzalez-LugoJ.D. KushnirM. BarouqaM. GolestanehL. BellinE. Anticoagulation in COVID-19: Effect of enoxaparin, heparin, and apixaban on mortality.Thromb. Haemost.2020120121691169910.1055/s‑0040‑172097833186991
    [Google Scholar]
  44. HorbyP. LimW.S. EmbersonJ.R. MafhamM. BellJ.L. LinsellL. StaplinN. BrightlingC. UstianowskiA. ElmahiE. PrudonB. GreenC. FeltonT. ChadwickD. RegeK. FeganC. ChappellL.C. FaustS.N. JakiT. JefferyK. MontgomeryA. RowanK. JuszczakE. BaillieJ.K. HaynesR. LandrayM.J. RECOVERY Collaborative Group Dexamethasone in hospitalized patients with Covid-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa202143632678530
    [Google Scholar]
  45. AhmedM.H. HassanA. Dexamethasone for the treatment of coronavirus disease (COVID-19): A review.SN Compr. Clin. Med.20202122637264610.1007/s42399‑020‑00610‑833163859
    [Google Scholar]
  46. PreechagoonY. KawbootS. OnsanitS. The use of bosentan in pulmonary arterial hypertension.Proceedings of the 4th International Conference Current Breakthrough in Pharmacy (ICB-Pharma 2022), Atlantis Press, 14 December 2022, pp. 55–62.
    [Google Scholar]
  47. ShahbaziS. Vahdat ShariatpanahiZ. ShahbaziE. Bosentan for high-risk outpatients with COVID-19 infection: A randomized, double blind, placebo-controlled trial.EClinicalMedicine20236210211710.1016/j.eclinm.2023.10211737554128
    [Google Scholar]
  48. BergerM. HechtS.R. van ToshA. LingamU. Pulsed and continuous wave doppler echocardiographic assessment of valvular regurgitation in normal subjects.J. Am. Coll. Cardiol.19891371540154510.1016/0735‑1097(89)90345‑82786017
    [Google Scholar]
  49. ChowS-C ShaoJ WangH LokhnyginaY Sample size calculations in clinical research2nd edChapman and hall/CRC20171451
    [Google Scholar]
  50. SchulzK.F. AltmanD.G. MoherD. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials.J. Pharmacol. Pharmacother.20101210010710.4103/0976‑500X.7235221350618
    [Google Scholar]
  51. KuangH.Y. WuY.H. YiQ.J. TianJ. WuC. ShouW.N. LuT.W. The efficiency of endothelin receptor antagonist bosentan for pulmonary arterial hypertension associated with congenital heart disease.Medicine20189710e007510.1097/MD.000000000001007529517668
    [Google Scholar]
  52. MotteS. McEnteeK. NaeijeR. Endothelin receptor antagonists.Pharmacol. Ther.2006110338641410.1016/j.pharmthera.2005.08.01216219361
    [Google Scholar]
  53. KaravoliasG.K. GeorgiadouP. GkouzioutaA. KariofillisP. KarabelaG. TsiaprasD. SbarouniE. ChaidaroglouA. DegiannisD. AdamopoulosS. VoudrisV. Short and long term anti-inflammatory effects of bosentan therapy in patients with pulmonary arterial hypertension: Relation to clinical and hemodynamic responses.Expert Opin. Ther. Targets201014121283128910.1517/14728222.2010.52342120958219
    [Google Scholar]
  54. KooH.S. KimK.C. HongY.M. Gene expressions of nitric oxide synthase and matrix metalloproteinase-2 in monocrotaline-induced pulmonary hypertension in rats after bosentan treatment.Korean Circ. J.2011412839010.4070/kcj.2011.41.2.8321430993
    [Google Scholar]
  55. LiH.F. WangJ.X. XieZ.F. LiL.H. LiB. HuangF.F. LiJ. ZhouX.L. Bosentan and ambrisentan in the treatment of idiopathic pulmonary fibrosis: A meta-analysis.Eur. Rev. Med. Pharmacol. Sci.20242831183119338375723
    [Google Scholar]
  56. JandaS. QuonB.S. SwistonJ. HIV and pulmonary arterial hypertension: A systematic review.HIV Med.2010111062063410.1111/j.1468‑1293.2010.00829.x20408888
    [Google Scholar]
  57. SitbonO. HIV-related pulmonary arterial hypertension: Clinical presentation and management.AIDS200822Suppl. 3S55S6210.1097/01.aids.0000327517.62665.ec18845923
    [Google Scholar]
  58. ChinelloP. CicaliniS. CorteseA. CiciniM.P. PetrosilloN. Bosentan and sildenafil in the treatment of HIV-associated pulmonary hypertension.Infect. Dis. Rep.201132e1410.4081/idr.2011.e1424470911
    [Google Scholar]
  59. FunkeC. FarrM. WernerB. DittmannS. ÜberlaK. PiperC. NiehausK. HorstkotteD. Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells.J. Gen. Virol.20109181959197010.1099/vir.0.020065‑020392896
    [Google Scholar]
  60. SohnD.W. KimH.K. KimM.A. SongY.W. NohC.I. KimD.K. KangI.S. KimH. LeeS.D. KimY.H. YounH.J. ChungN. ChoiJ.Y. JunJ.B. ShinJ. Beneficial and adverse effects of bosentan treatment in korean patients with pulmonary artery hypertension.Korean Circ. J.200939310511010.4070/kcj.2009.39.3.10519949596
    [Google Scholar]
  61. ChenX. ZhaiZ. HuangK. XieW. WanJ. WangC. Bosentan therapy for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: A systemic review and meta-analysis.Clin. Respir. J.20181262065207410.1111/crj.1277429393580
    [Google Scholar]
  62. KuangH. LiQ. DuH. ChenM. YinY. Efficacy and safety of long-term oral bosentan in different types of pulmonary arterial hypertension: A systematic review and meta-analysis.Am. J. Cardiovasc. Drugs202121218119110.1007/s40256‑020‑00426‑w32918210
    [Google Scholar]
  63. DongS. GuoX. WangH. SunC. Liver injury due to endothelin receptor antagonists: A real-world study based on post-marketing drug monitoring data.Ther. Adv. Respir. Dis.2024181753466623122360610.1177/1753466623122360638179676
    [Google Scholar]
  64. LiL-X WeiB YangM LiM JiaJ-J Efficacy and safety of bosentan in the treatment of persistent pulmonary hypertension of the newborn: A metaanalysis.Chin. J. Contemp. Pediatr.2022243319325
    [Google Scholar]
  65. BetelliM. BredaS. RamoniV. ParisiF. RampelloS. LimontaM. MeroniM. BrucatoA. Pregnancy in systemic sclerosis.J. Scleroderma Relat. Disord.201831212910.1177/239719831774744035382124
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611299843240607061547
Loading
/content/journals/cvp/10.2174/0115701611299843240607061547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test