Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Alzheimer's disease (AD) plays a prominent role as the most common form of dementia. Moreover, the traditional mechanism of AD does not explain the microvascular damage observed in about 25-30 years between the onset of AD, which results in late application treatment that inhibits or delays neurodegeneration.

Objective

Our objective was to identify differentially expressed genes in human brain samples associated with vascular disruption in AD.

Methods

We analyzed 1633 post-mortem brain samples in the GEO database and, after applying clinical and bioinformatic exclusion criteria, worked with 581 prefrontal and frontal samples. All datasets were analyzed using GEO2R from NCBI. We identified common genes using the Venny tool, and their metabolic relevance associated with AD and the vascular system was analyzed using MetaboAnalyst tools.

Results

Our bioinformatic analysis identified PRKCB, MAP2K2, ADCY1, GNA11, GNAQ, PRKACB, KCNMB4, CALD1, and GNAS as potentially involved in AD pathogenesis. These genes are associated with signal transductions, cell death signaling, and cytoskeleton, suggesting potential modulation of cellular physiology, including endoplasmic reticulum and mitochondrial activity.

Conclusion

This study generates hypotheses regarding the roles of novel genes over critical pathways relevant to AD and its relation with vascular dysfunction. These findings suggest potential new targets for further investigation into the pathogenesis of dementia and AD.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611298073240612050741
2024-06-20
2024-11-16
Loading full text...

Full text loading...

References

  1. 2021 Alzheimer’s disease facts and figures.Alzheimers Dement.202117332740610.1002/alz.1232833756057
    [Google Scholar]
  2. Global action plan on the public health response to dementia 2017 - 2025.Available from: https://www.who.int/publications-detail-redirect/global-action-plan-on-the-public-health-response-to-dementia-2017---2025 [cited 2023 Jun 13].
  3. ShinJ.H. Dementia epidemiology fact sheet 2022.Ann. Rehabil. Med.2022462535910.5535/arm.2202735508924
    [Google Scholar]
  4. CaoQ. TanC.C. XuW. HuH. CaoX.P. DongQ. TanL. YuJ.T. The prevalence of dementia: A systematic review and meta-analysis.J. Alzheimers Dis.20207331157116610.3233/JAD‑19109231884487
    [Google Scholar]
  5. HugoJ. GanguliM. Dementia and cognitive impairment: Epidemiology, diagnosis, and treatment.Clin. Geriatr. Med.201430342144210.1016/j.cger.2014.04.00125037289
    [Google Scholar]
  6. KapasiA. DeCarliC. SchneiderJ.A. Impact of multiple pathologies on the threshold for clinically overt dementia.Acta Neuropathol.2017134217118610.1007/s00401‑017‑1717‑728488154
    [Google Scholar]
  7. LoiS.M. TsoukraP. SunE. ChenZ. WibawaP. BiaseM. FarrandS. EratneD. KelsoW. EvansA. WalterfangM. VelakoulisD. Survival in Huntington’s disease and other young‐onset dementias.Int. J. Geriatr. Psychiatry2023384e591310.1002/gps.591337062919
    [Google Scholar]
  8. ChagantiSS McCuskerEA LoyCT What do we know about Late Onset Huntington’s Disease?J Huntingt Dis.20176295103
    [Google Scholar]
  9. DavisM.Y. KeeneC.D. JayadevS. BirdT. The co-occurrence of Alzheimer’s disease and Huntington’s disease: A neuropathological study of 15 elderly Huntington’s disease subjects.J. Huntingtons Dis.20143220921710.3233/JHD‑14011125062863
    [Google Scholar]
  10. AhamadS. BhatS.A. The emerging landscape of small-molecule therapeutics for the treatment of huntington’s disease.J. Med. Chem.20226524159931603210.1021/acs.jmedchem.2c0079936490325
    [Google Scholar]
  11. BhatS.A. AhamadS. DarN.J. SiddiqueY.H. NazirA. The emerging landscape of natural small-molecule therapeutics for huntington’s disease.Curr. Neuropharmacol.202321486788910.2174/1570159X2166623021610462136797612
    [Google Scholar]
  12. AhamadS. BanoN. KhanS. HussainM.K. BhatS.A. Unraveling the puzzle of therapeutic peptides: A promising frontier in huntington’s disease treatment.J. Med. Chem.202467278381510.1021/acs.jmedchem.3c0113138207096
    [Google Scholar]
  13. ZhangX.X. TianY. WangZ.T. MaY.H. TanL. YuJ.T. The epidemiology of alzheimer’s disease modifiable risk factors and prevention.J. Prev. Alzheimers Dis.20218331332134101789
    [Google Scholar]
  14. The Economic Costs of Alzheimer’s Disease : The Economic Costs of Alzheimer’s Disease : United States Joint Economic Committee.Available from: https://www.jec.senate.gov/public/index.cfm/democrats/issue-briefs?ID=02F4CADC-954F-4E3B-8409-A4213E3C0759 [cited 2023 Sep 24].
  15. NandiA. CountsN. ChenS. SeligmanB. TortoriceD. VigoD. BloomD.E. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach.EClinical.Med.20225110158010.1016/j.eclinm.2022.10158035898316
    [Google Scholar]
  16. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  17. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. Contributors NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  18. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  19. FerrariC. SorbiS. The complexity of Alzheimer’s disease: An evolving puzzle.Physiol. Rev.202110131047108110.1152/physrev.00015.202033475022
    [Google Scholar]
  20. ClaveauJ.S. PresseN. KergoatM.J. VillalpandoJ.M. The Lost Years: Delay between the onset of cognitive symptoms and clinical assessment at a memory clinic.Can. Geriatr. J.201821215215610.5770/cgj.21.29729977430
    [Google Scholar]
  21. LissJ.L. Seleri AssunçãoS. CummingsJ. AtriA. GeldmacherD.S. CandelaS.F. DevanandD.P. FillitH.M. SusmanJ. MintzerJ. BittnerT. BruntonS.A. KerwinD.R. JacksonW.C. SmallG.W. GrossbergG.T. ClevengerC.K. CotterV. StefanacciR. Wise-BrownA. SabbaghM.N. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: A review and synthesis.J. Intern. Med.2021290231033410.1111/joim.1324433458891
    [Google Scholar]
  22. SolisE.Jr HascupK.N. HascupE.R. Alzheimer’s Disease: The link between amyloid-β and neurovascular dysfunction.J. Alzheimers Dis.20207641179119810.3233/JAD‑20047332597813
    [Google Scholar]
  23. ZlokovicB.V. Neurovascular mechanisms of Alzheimer’s neurodegeneration.Trends Neurosci.200528420220810.1016/j.tins.2005.02.00115808355
    [Google Scholar]
  24. SchefferS. HermkensD.M.A. van der WeerdL. de VriesH.E. DaemenM.J.A.P. Vascular hypothesis of alzheimer disease.Arterioscler. Thromb. Vasc. Biol.20214141265128310.1161/ATVBAHA.120.31191133626911
    [Google Scholar]
  25. KislerK. NelsonA.R. MontagneA. ZlokovicB.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease.Nat. Rev. Neurosci.201718741943410.1038/nrn.2017.4828515434
    [Google Scholar]
  26. SharmaN. SinghA.N. Exploring biomarkers for alzheimer’s disease.J. Clin. Diagn. Res.2016107KE01KE0627630867
    [Google Scholar]
  27. TanM.S. CheahP.L. ChinA.V. LooiL.M. ChangS.W. A review on omics-based biomarkers discovery for Alzheimer’s disease from the bioinformatics perspectives: Statistical approach vs machine learning approach.Comput. Biol. Med.202113910494710.1016/j.compbiomed.2021.10494734678481
    [Google Scholar]
  28. WangM. SongW. MingC. WangQ. ZhouX. XuP. KrekA. YoonY. HoL. OrrM.E. YuanG.C. ZhangB. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer’s disease: review, recommendation, implementation and application.Mol. Neurodegener.20221711710.1186/s13024‑022‑00517‑z35236372
    [Google Scholar]
  29. DiazE. BarisoneG.A. DNA microarrays: Sample quality control, array hybridization and scanning.J. Vis. Exp.201149254621445042
    [Google Scholar]
  30. BumgarnerR. DNA microarrays: Types, Applications and their future.Curr Protoc Mol Biol201322
    [Google Scholar]
  31. ChongJ. WishartD.S. XiaJ. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis.Curr. Protoc. Bioinformatics2019681e8610.1002/cpbi.8631756036
    [Google Scholar]
  32. MartensM. AmmarA. RiuttaA. WaagmeesterA. SlenterD.N. HanspersK. A MillerR. DiglesD. LopesE.N. EhrhartF. DupuisL.J. WinckersL.A. CoortS.L. WillighagenE.L. EveloC.T. PicoA.R. KutmonM. WikiPathways: Connecting communities.Nucleic Acids Res.202149D1D613D62110.1093/nar/gkaa102433211851
    [Google Scholar]
  33. PicoA.R. KelderT. van IerselM.P. HanspersK. ConklinB.R. EveloC. WikiPathways: Pathway editing for the people.PLoS Biol.200867e18410.1371/journal.pbio.006018418651794
    [Google Scholar]
  34. PangZ. ZhouG. ChongJ. XiaJ. Comprehensive meta-analysis of COVID-19 global metabolomics datasets.Metabolites20211114410.3390/metabo1101004433435351
    [Google Scholar]
  35. ChangC.H. LinC.H. LaneH.Y. Machine learning and novel biomarkers for the diagnosis of alzheimer’s disease.Int. J. Mol. Sci.2021225276110.3390/ijms2205276133803217
    [Google Scholar]
  36. AronsonJK FernerRE Biomarkers : A general review.Curr Protoc Pharmacol.20177619.23
    [Google Scholar]
  37. Higgins-ChenA.T. ThrushK.L. LevineM.E. Aging biomarkers and the brain.Semin. Cell Dev. Biol.202111618019310.1016/j.semcdb.2021.01.00333509689
    [Google Scholar]
  38. ZhaoH. GongL. WuS. JingT. XiaoX. CuiY. XuH. LuH. TangY. ZhangJ. ZhouQ. MaD. LiX. The inhibition of protein kinase C β contributes to the pathogenesis of preeclampsia by activating autophagy.EBioMedicine20205610281310.1016/j.ebiom.2020.10281332544612
    [Google Scholar]
  39. ZhuZ. YangL. ZhangY. LiuL. HuangY. WenL. YangC. ChenL. WangW. ZuoX. ZhouF. WangH. TangH. ZhangX. YangS. ShengY. CuiY. Increased expression of PRKCB mRNA in peripheral blood mononuclear cells from patients with systemic lupus erythematosus.Ann. Hum. Genet.201882420020510.1111/ahg.1224029297929
    [Google Scholar]
  40. LiN. ZhangW. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.Biosci. Rep.2017372BSR2016044510.1042/BSR2016044528246354
    [Google Scholar]
  41. RingvoldH.C. KhalilR.A. Protein Kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders.Adv. Pharmacol.20177820330110.1016/bs.apha.2016.06.00228212798
    [Google Scholar]
  42. FanH.C. Fernández-HernandoC. LaiJ.H. Protein kinase C isoforms in atherosclerosis: Pro or anti-inflammatory?Biochem. Pharmacol.201488213914910.1016/j.bcp.2014.01.00624440741
    [Google Scholar]
  43. PRKCB protein kinase C beta [Homo sapiens (human)] : Gene : NCBI.Available from: https://www.ncbi.nlm.nih.gov/gene/5579#bibliography [cited 2023 Sep 5].
  44. ZhouZ. ChenF. ZhongS. ZhouY. ZhangR. KangK. ZhangX. XuY. ZhaoM. ZhaoC. Molecular identification of protein kinase C beta in Alzheimer’s disease.Aging20201221217982180810.18632/aging.10399433186918
    [Google Scholar]
  45. ZhouZ. BaiJ. ZhongS. ZhangR. KangK. ZhangX. XuY. ZhaoC. ZhaoM. Downregulation of PIK3CB involved in alzheimer’s disease via apoptosis, axon guidance, and foxo signaling pathway.Oxid. Med. Cell. Longev.2022202211510.1155/2022/126016135096262
    [Google Scholar]
  46. AntonellA. LladóA. Sánchez-ValleR. SanfeliuC. CasserrasT. RamiL. Muñoz-GarcíaC. Dangla-VallsA. BalasaM. BoyaP. KalkoS.G. MolinuevoJ.L. Altered blood gene expression of tumor-related genes (PRKCB, BECN1, and CDKN2A) in Alzheimer’s Disease.Mol. Neurobiol.20165395902591110.1007/s12035‑015‑9483‑926510741
    [Google Scholar]
  47. ShafiqM JagaveluK IqbalH YadavP ChandaD VermaNK Inhibition of mitogen-activated protein kinase (MAPK)-Activated Protein Kinase 2 (MK2) is Protective in Pulmonary Hypertension.Hypertens Dallas Tex197977412481259
    [Google Scholar]
  48. SchiffrinEL Vascular remodeling in hypertension: mechanisms and treatment.Hypertens Dallas Tex1979592367374
    [Google Scholar]
  49. LuY. SunX. PengL. JiangW. LiW. YuanH. CaiJ. Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V- MEK/ERK mediated mechanism.Int. J. Cardiol.20202989810610.1016/j.ijcard.2019.09.07031668507
    [Google Scholar]
  50. PubChemMAP2K2 : mitogen-activated protein kinase kinase 2 (human).Available from: https://pubchem.ncbi.nlm.nih.gov/gene/MAP2K2/human [cited 2023 Sep 5].
  51. YoonG. RosenbergJ. BlaserS. RauenK.A. Neurological complications of cardio‐facio‐cutaneous syndrome.Dev. Med. Child Neurol.2007491289489910.1111/j.1469‑8749.2007.00894.x18039235
    [Google Scholar]
  52. BuljanM. CiuffaR. van DrogenA. VichalkovskiA. MehnertM. RosenbergerG. LeeS. VarjosaloM. PernasL.E. SpeggV. SnijderB. AebersoldR. GstaigerM. Kinase interaction network expands functional and disease roles of human kinases.Mol. Cell2020793504520.e910.1016/j.molcel.2020.07.00132707033
    [Google Scholar]
  53. PeiJ.J. BraakH. AnW.L. WinbladB. CowburnR.F. IqbalK. Grundke-IqbalI. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease.Brain Res. Mol. Brain Res.20021091-2455510.1016/S0169‑328X(02)00488‑612531514
    [Google Scholar]
  54. FerrerI. BlancoR. CarmonaM. RiberaR. GoutanE. PuigB. ReyM.J. CardozoA. ViñalsF. RibaltaT. Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration.Brain Pathol.200111214415810.1111/j.1750‑3639.2001.tb00387.x11303790
    [Google Scholar]
  55. KhezriM.R. YousefiK. EsmaeiliA. Ghasemnejad-BerenjiM. The Role of ERK1/2 pathway in the pathophysiology of alzheimer’s disease: An overview and update on new developments.Cell. Mol. Neurobiol.202343117719110.1007/s10571‑022‑01191‑x35038057
    [Google Scholar]
  56. PubChemDCY1 : adenylate cyclase 1 (human).Available from: https://pubchem.ncbi.nlm.nih.gov/gene/ADCY1/human [cited 2023 Sep 5].
  57. ChenJ. DingQ. AnL. WangH. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders.Front. Pharmacol.20221394938410.3389/fphar.2022.94938436188604
    [Google Scholar]
  58. SundararajanT. ManzardoA.M. ButlerM.G. Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases.Gene2018641253410.1016/j.gene.2017.10.03529032150
    [Google Scholar]
  59. ZhangM. WangH. Ca2+-stimulated ADCY1 and ADCY8 regulate distinct aspects of synaptic and cognitive flexibility.Front. Cell. Neurosci.202317121525510.3389/fncel.2023.121525537465213
    [Google Scholar]
  60. SethnaF. FengW. DingQ. RobisonA.J. FengY. WangH. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model.Nat. Commun.2017811435910.1038/ncomms1435928218269
    [Google Scholar]
  61. WangH. FergusonG.D. PinedaV.V. CundiffP.E. StormD.R. Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP.Nat. Neurosci.20047663564210.1038/nn124815133516
    [Google Scholar]
  62. GuoR. LiuT. ShasaltanehM.D. WangX. ImaniS. WenQ. Targeting adenylate cyclase family: New concept of targeted cancer therapy.Front. Oncol.20221282921210.3389/fonc.2022.82921235832555
    [Google Scholar]
  63. ZouT. LiuJ. SheL. ChenJ. ZhuT. YinJ. LiX. LiX. ZhouH. LiuZ. A perspective profile of ADCY1 in cAMP signaling with drug-resistance in lung cancer.J. Cancer201910276848685710.7150/jca.3661431839819
    [Google Scholar]
  64. PubChemGNA11 : G protein subunit alpha 11 (human).Available from: https://pubchem.ncbi.nlm.nih.gov/gene/GNA11/human [cited 2023 Sep 5].
  65. Silva-RodríguezP. Fernández-DíazD. BandeM. PardoM. LoidiL. Blanco-TeijeiroM.J. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma.Cancers20221413306610.3390/cancers1413306635804836
    [Google Scholar]
  66. ShirleyM.D. TangH. GallioneC.J. BaugherJ.D. FrelinL.P. CohenB. NorthP.E. MarchukD.A. ComiA.M. PevsnerJ. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ.N. Engl. J. Med.2013368211971197910.1056/NEJMoa121350723656586
    [Google Scholar]
  67. MooreA.R. CeraudoE. SherJ.J. GuanY. ShoushtariA.N. ChangM.T. ZhangJ.Q. WalczakE.G. KazmiM.A. TaylorB.S. HuberT. ChiP. SakmarT.P. ChenY. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma.Nat. Genet.201648667568010.1038/ng.354927089179
    [Google Scholar]
  68. JiaN. LiG. HuangP. GuoJ. WeiL. LuD. ChenS. Protective role and related mechanism of Gnaq in neural cells damaged by oxidative stress.Acta Biochim. Biophys. Sin.201749542843410.1093/abbs/gmx02428369206
    [Google Scholar]
  69. SunX. LiG.P. HuangP. WeiL.G. GuoJ.Z. AoL.J. LuD. ChenS.C. Gnaq Protects PC12 cells from oxidative damage by activation of Nrf2 and inhibition of NF-kB.Neuromolecular Med.202022340141010.1007/s12017‑020‑08598‑z32253686
    [Google Scholar]
  70. GNAQ G protein subunit alpha q [Homo sapiens (human)] : Gene : NCBI.Available from: https://www.ncbi.nlm.nih.gov/gene/2776#summary [cited 2023 Sep 6].
  71. GNAS GNAS complex locus [Homo sapiens (human)] : Gene : NCBI.Available from: https://www.ncbi.nlm.nih.gov/gene/2778#summary [cited 2023 Sep 6].
  72. VitvitskyV.M. GargS.K. KeepR.F. AlbinR.L. BanerjeeR. Na+ and K+ ion imbalances in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822111671168110.1016/j.bbadis.2012.07.00422820549
    [Google Scholar]
  73. BarhD. García-SolanoM. TiwariS. BhattacharyaA. JainN. Torres-MorenoD. FerriB. SilvaA. AzevedoV. GhoshP. BlumK. Conesa-ZamoraP. PerryG. BARHL1 is downregulated in alzheimer’s disease and may regulate cognitive functions through ESR1 and multiple pathways.Genes201781024510.3390/genes810024528956815
    [Google Scholar]
  74. ChowriappaP. DuaP. WalterJ. An exploratory analysis of conservation of co-expressed genes across alzheimer’s disease progression.J. Comput. Sci. Syst. Biol.20136422122710.4172/jcsb.1000119
    [Google Scholar]
  75. TaguchiK. YamagataH.D. ZhongW. KaminoK. AkatsuH. HataR. YamamotoT. KosakaK. TakedaM. KondoI. MikiT. Identification of hippocampus‐related candidate genes for Alzheimer’s disease.Ann. Neurol.200557458558810.1002/ana.2043315786443
    [Google Scholar]
  76. KEGG PATHWAYGap junction : Reference pathway.Available from: https://www.kegg.jp/pathway/map04540 [cited 2023 Sep 6].
  77. PRKACB protein kinase cAMP-activated catalytic subunit beta [Homo sapiens (human)] : Gene : NCBI.Available from: https://www.ncbi.nlm.nih.gov/gene/5567#summary [cited 2023 Sep 5].
  78. YoonC. KoradeZ. CarterB.D. Protein kinase A-induced phosphorylation of the p65 subunit of nuclear factor-kappaB promotes Schwann cell differentiation into a myelinating phenotype.J. Neurosci.200828143738374610.1523/JNEUROSCI.4439‑07.200818385332
    [Google Scholar]
  79. EspiardS KnapeMJ BathonK AssiéG Rizk-RabinM FaillotS Activating PRKACB somatic mutation in cortisol-producing adenomas.JCI Insight.201838e9829610.1172/jci.insight.98296
    [Google Scholar]
  80. Palencia-CamposA. AotoP.C. MachalE.M.F. Rivera-BarahonaA. Soto-BielickaP. BertinettiD. BakerB. VuL. Piceci-SparascioF. TorrenteI. BoudinE. PeetersS. Van HulW. HuberC. BonneauD. HildebrandM.S. ColemanM. BahloM. BennettM.F. SchneiderA.L. SchefferI.E. KibækM. KristiansenB.S. IssaM.Y. MehrezM.I. IsmailS. TenorioJ. LiG. SkålheggB.S. OtaifyG.A. TemtamyS. AglanM. JønchA.E. De LucaA. MortierG. Cormier-DaireV. ZieglerA. WallisM. LapunzinaP. HerbergF.W. TaylorS.S. Ruiz-PerezV.L. Germline and mosaic variants in PRKACA and PRKACB cause a multiple congenital malformation syndrome.Am. J. Hum. Genet.2020107597798810.1016/j.ajhg.2020.09.00533058759
    [Google Scholar]
  81. PRKACB variants in skeletal disease or adrenocortical hyperplasia: effects on protein kinase A : PubMed.Available from: https://pubmed.ncbi.nlm.nih.gov/33055300/ [cited 2023 Sep 5].
  82. DwivediY. RizaviH.S. ShuklaP.K. LyonsJ. FaludiG. PalkovitsM. SarosiA. ConleyR.R. RobertsR.C. TammingaC.A. PandeyG.N. Protein kinase a in postmortem brain of depressed suicide victims: altered expression of specific regulatory and catalytic subunits.Biol. Psychiatry200455323424310.1016/j.biopsych.2003.11.00314744463
    [Google Scholar]
  83. WangL. LiuJ. WangQ. JiangH. ZengL. LiZ. LiuR. MicroRNA-200a-3p mediates neuroprotection in alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via Coregulating BACE1 and PRKACB.Front. Pharmacol.20191080610.3389/fphar.2019.0080631379578
    [Google Scholar]
  84. LiH. LiuQ. ZhangQ. XueX. ZhangJ. ZhangJ. LinL. NiuQ. miR-200a-3p Regulates PRKACB and participates in aluminium-induced tau phosphorylation in PC12 cells.Neurotox. Res.20224061963197810.1007/s12640‑022‑00609‑036459375
    [Google Scholar]
  85. IwanickiT. BalcerzykA. KazekB. Emich-WideraE. LikusW. IwanickaJ. Kapinos-GorczycaA. KapinosM. JaroszA. GrzeszczakW. Górczyńska-KosiorzS. NiemiecP. Family-based cohort association study of PRKCB1, CBLN1 and KCNMB4 gene polymorphisms and autism in polish population.J. Autism Dev. Disord.202252104213421810.1007/s10803‑021‑05291‑334562210
    [Google Scholar]
  86. WhitmireL.E. LingL. BugayV. CarverC.M. TimilsinaS. ChuangH.H. JaffeD.B. ShapiroM.S. CavazosJ.E. BrennerR. Downregulation of KCNMB4 expression and changes in BK channel subtype in hippocampal granule neurons following seizure activity.PLoS One20171211e018806410.1371/journal.pone.018806429145442
    [Google Scholar]
  87. WangB. BugayV. LingL. ChuangH.H. JaffeD.B. BrennerR. Knockout of the BK β 4 -subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability.J. Neurophysiol.2016116245646510.1152/jn.00857.201527146987
    [Google Scholar]
  88. PetrikD. WangB. BrennerR. Modulation by the BK accessory β4 subunit of phosphorylation-dependent changes in excitability of dentate gyrus granule neurons.Eur. J. Neurosci.201134569570410.1111/j.1460‑9568.2011.07799.x21848922
    [Google Scholar]
  89. Ancatén-GonzálezC. SeguraI. Alvarado-SánchezR. ChávezA.E. LatorreR. Ca2+- and Voltage-Activated K+ (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions.Int. J. Mol. Sci.2023244340710.3390/ijms2404340736834817
    [Google Scholar]
  90. LiuY. XieS. ZhuK. GuanX. GuoL. LuR. CALD1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancers.Heliyon202176e0725710.1016/j.heliyon.2021.e0725734189308
    [Google Scholar]
  91. ZhengP.P. SieuwertsA.M. LuiderT.M. van der WeidenM. Sillevis-SmittP.A.E. KrosJ.M. Differential expression of splicing variants of the human caldesmon gene (CALD1) in glioma neovascularization versus normal brain microvasculature.Am. J. Pathol.200416462217222810.1016/S0002‑9440(10)63778‑915161654
    [Google Scholar]
  92. LiC. YangF. WangR. LiW. MaskeyN. ZhangW. GuoY. LiuS. WangH. YaoX. CALD1 promotes the expression of PD-L1 in bladder cancer via the JAK/STAT signaling pathway.Ann. Transl. Med.2021918144110.21037/atm‑21‑419234733993
    [Google Scholar]
  93. SuQ. DaiB. ZhangH. ZhangS. Discovering gene signature shared by prostate cancer and neurodegenerative diseases based on the bioinformatics approach.Comput. Math. Methods Med.202220221810.1155/2022/843048535799671
    [Google Scholar]
  94. PereiraA.C. GrayJ.D. KoganJ.F. DavidsonR.L. RubinT.G. OkamotoM. MorrisonJ.H. McEwenB.S. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole.Mol. Psychiatry201722229630510.1038/mp.2016.3327021815
    [Google Scholar]
  95. LiQS De MuynckL Differentially expressed genes in Alzheimer’s disease highlighting the roles of microglia genes including OLR1 and astrocyte gene CDK2AP1.Brain Behav Immun Health20211310022710.1016/j.bbih.2021.100227
    [Google Scholar]
  96. KumariA. RahamanA. ZengX.A. FarooqM.A. HuangY. YaoR. AliM. IshratR. AliR. Temporal cortex microarray analysis revealed impaired ribosomal biogenesis and hyperactivity of the glutamatergic system: an early signature of asymptomatic alzheimer’s disease.Front. Neurosci.20221696687710.3389/fnins.2022.96687735958988
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611298073240612050741
Loading
/content/journals/cvp/10.2174/0115701611298073240612050741
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alzheimer; bioinformatics; DEG; dementia; genes; vascular
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test