Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Myocardial metabolism is closely related to functional changes after myocardial infarction (MI).

Objective

This study aimed to present an integrative examination of human ischemic cardiomyopathy.

Methods

We used both GSE121893 single-cell suspension sequencing and GSE19303 transcription microarray data sets from the GEO database, along with a murine MI model for full-spectrum metabolite detection. Through a systematic investigation that involved differential metabolite identification and functional enrichment analysis, we shed light on the pivotal role of energy metabolism dysregulation in the progression of MI.

Results

Our findings revealed an association between the core regulatory genes CDKN1A, FOS, ITGB4, and MAP2K1 and the underlying pathophysiology of the disease. These genes are identified as critical elements in the complex landscape of myocardial ischemic disorder, highlighting novel insights into therapeutic targets and the intricate biological mechanisms involved.

Conclusion

This analysis provides a framework for future research on the metabolic alterations associated with MI.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611289159240724114844
2024-07-26
2025-07-10
The full text of this item is not currently available.

References

  1. YonetsuT. WakabayashiK. MizukamiT. YamamotoM.H. YasuharaS. KondoS. OishiY. OkabeT. SugiyamaT. ArakiM. TakanoM. KobayashiN. KimuraS. YamakamiY. SuwaS. NakamuraS. MitomoS. KakutaT. UsuiE. HigumaT. AkoJ. MinamiY. IwasakiM. ShiteJ. KozukiA. SaitoS. ShishidoK. OkuraH. NaruseG. UemuraS. KumeT. NanasatoM. DohiT. AshikagaT. OtakeH. MoriH. SekimotoT. SugizakiY. ShinkeT. Optical coherence tomography–guided percutaneous coronary intervention for ST-segment elevation myocardial infarction: Rationale and design of the ATLAS-OCT Study.Am. J. Cardiol.202320346647210.1016/j.amjcard.2023.07.07737562073
    [Google Scholar]
  2. SunJ. FanJ. YangF. SuX. LiX. TianL. LiuC. XingY. Effect and possible mechanisms of saponins in Chinese herbal medicine exerts for the treatment of myocardial ischemia-reperfusion injury in experimental animal: A systematic review and meta-analysis.Front. Cardiovasc. Med.202310114774010.3389/fcvm.2023.114774037564906
    [Google Scholar]
  3. SunJ. WangL. MatthewsR.C. WalcottG.P. LuY.A. WeiY. ZhouY. ZangiL. ZhangJ. CCND2 Modified mRNA activates cell cycle of cardiomyocytes in hearts with myocardial infarction in mice and pigs.Circ. Res.2023133648450410.1161/CIRCRESAHA.123.32292937565345
    [Google Scholar]
  4. BernardL. ChenJ. KimH. HuangZ. BazzanoL. QiL. HeJ. RaoV.S. PottsK.S. KellyT.N. WongK.E. SteffenL.M. YuB. RheeE.P. RebholzC.M. Serum metabolomic markers of dairy consumption: Results from the atherosclerosis risk in communities study and the bogalusa heart study.J. Nutr.2023153102994300210.1016/j.tjnut.2023.08.00137541543
    [Google Scholar]
  5. Mendez GarciaM.F. MatsuzakiS. BatushanskyA. NewhardtR. KinterC. JinY. MannS.N. StoutM.B. GuH. ChiaoY.A. KinterM. HumphriesK.M. Increased cardiac PFK-2 protects against high-fat diet-induced cardiomyopathy and mediates beneficial systemic metabolic effects.iScience202326710713110.1016/j.isci.2023.10713137534142
    [Google Scholar]
  6. ZouR. ShiW. QiuJ. ZhouN. DuN. ZhouH. ChenX. MaL. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis.Cardiovasc. Diabetol.202221110610.1186/s12933‑022‑01532‑635705980
    [Google Scholar]
  7. CarrardJ. AngstT. WeberN. BienvenueJ. InfangerD. StreeseL. HinrichsT. CrociI. SchmiedC. Gallart-AyalaH. HöchsmannC. KoehlerK. HanssenH. IvanisevicJ. Schmidt-TrucksässA. Investigating the circulating sphingolipidome response to a single high-intensity interval training session within healthy females and males in their twenties (SphingoHIIT): Protocol for a randomised controlled trial.F1000 Res.202211156510.12688/f1000research.128978.237533665
    [Google Scholar]
  8. DecrosG. DussarratT. BaldetP. CassanC. CabassonC. Dieuaide-NoubhaniM. DestailleurA. FlandinA. PrigentS. MoriK. ColombiéS. JorlyJ. GibonY. BeauvoitB. PétriacqP. Enzyme‐based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability.New Phytol.2023240124225710.1111/nph.1916037548068
    [Google Scholar]
  9. DavisS. MeltzerP.S. GEOquery: A bridge between the gene expression omnibus (GEO) and BioConductor.Bioinformatics200723141846184710.1093/bioinformatics/btm25417496320
    [Google Scholar]
  10. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets--update.Nucleic Acids Res.201341Database issueD991D99523193258
    [Google Scholar]
  11. ZouR. ZhangD. LvL. ShiW. SongZ. YiB. LaiB. ChenQ. YangS. HuaP. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke.J. Transl. Med.20191714510.1186/s12967‑019‑1790‑x30760287
    [Google Scholar]
  12. SlovinS. CarissimoA. PanarielloF. GrimaldiA. BouchéV. GambardellaG. CacchiarelliD. Single-cell RNA sequencing analysis: A step-by-step overview.Methods Mol. Biol.2021228434336510.1007/978‑1‑0716‑1307‑8_1933835452
    [Google Scholar]
  13. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  14. SchultzC.W. PreetR. DhirT. DixonD.A. BrodyJ.R. Understanding and targeting the disease‐related RNA binding protein human antigen R (HuR).Wiley Interdiscip. Rev. RNA2020113e158110.1002/wrna.158131970930
    [Google Scholar]
  15. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  16. Eraso-PichotA. Brasó-VivesM. GolbanoA. MenachoC. ClaroE. GaleaE. MasgrauR. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes.Glia20186681724173510.1002/glia.2333029575211
    [Google Scholar]
  17. PowersR.K. GoodspeedA. Pielke-LombardoH. TanA.C. CostelloJ.C. GSEA-InContext: Identifying novel and common patterns in expression experiments.Bioinformatics20183413i555i56410.1093/bioinformatics/bty27129950010
    [Google Scholar]
  18. FerreiraM.R. SantosG.A. BiagiC.A. Silva JuniorW.A. ZambuzziW.F. GSVA score reveals molecular signatures from transcriptomes for biomaterials comparison.J. Biomed. Mater. Res. A202110961004101410.1002/jbm.a.3709032820608
    [Google Scholar]
  19. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  20. ChenX. ShaoS. WuX. FengJ. QuW. GaoQ. SunJ. WanH. LC/MS-based untargeted lipidomics reveals lipid signatures of nonpuerperal mastitis.Lipids Health Dis.202322112210.1186/s12944‑023‑01887‑z37553678
    [Google Scholar]
  21. GangadharaR.M. GowdaS.G.B. GowdaD. InuiK. HuiS.P. Lipid composition analysis and characterization of acyl sterol glycosides in adzuki and soybean cultivars by non-targeted LC-MS.Foods20231214278410.3390/foods1214278437509876
    [Google Scholar]
  22. JafariJ.M. CasasJ. BarataC. AbdollahiH. TaulerR. Non-target ROIMCR LC–MS analysis of the disruptive effects of TBT over time on the lipidomics of Daphnia magna.Metabolomics20231987010.1007/s11306‑023‑02030‑w37548829
    [Google Scholar]
  23. VillateA. San NicolasM. Aizpurua-OlaizolaO. OlivaresM. UsobiagaA. EtxebarriaN. Quantification of endocannabinoids in human plasma.Methods Mol. Biol.2023268710712610.1007/978‑1‑0716‑3307‑6_937464166
    [Google Scholar]
  24. WeeH. LeeL. HanS. ZhouJ. YenP. ChingJ. Lipidomics workflow for analyzing lipid profiles using multiple reaction monitoring (MRM) in liver homogenate of mice with non-alcoholic steatohepatitis (NASH).Bio Protoc.20231313e477310.21769/BioProtoc.477337456342
    [Google Scholar]
  25. SantulliG. WangX. MoneP. Updated ACC/AHA/HFSA 2022 guidelines on heart failure: What is new? From epidemiology to clinical management.Eur. Heart J. Cardiovasc. Pharmacother.202285e23e2410.1093/ehjcvp/pvac02935460242
    [Google Scholar]
  26. XiaJ. LiB. ZhangH. LiQ. LamS.M. YinC. TianH. ShuiG. Precise metabolomics defines systemic metabolic dysregulation distinct to acute myocardial infarction associated with diabetes.Arterioscler. Thromb. Vasc. Biol.202343458159610.1161/ATVBAHA.122.31887136727520
    [Google Scholar]
  27. ZouR. TaoJ. QiuJ. LuH. WuJ. ZhuH. LiR. MuiD. ToanS. ChangX. ZhouH. FanX. DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction.J. Adv. Res.202241394810.1016/j.jare.2022.01.01436328752
    [Google Scholar]
  28. WangG. ZouR. LiuL. WangZ. ZouZ. TanS. XuW. FanX. A circular network of purine metabolism as coregulators of dilated cardiomyopathy.J. Transl. Med.202220153210.1186/s12967‑022‑03739‑336401332
    [Google Scholar]
  29. MaL. ZouR. ShiW. ZhouN. ChenS. ZhouH. ChenX. WuY. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways.Theranostics202212115034505010.7150/thno.7512135836807
    [Google Scholar]
  30. SunS. YuW. XuH. LiC. ZouR. WuN.N. WangL. GeJ. RenJ. ZhangY. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury.Metabolism202213415523910.1016/j.metabol.2022.15523935680100
    [Google Scholar]
  31. ZhangM. ZouR. WangG. FanX. Editorial: Mitochondrial quality control in cardiovascular diseases.Front. Cardiovasc. Med.202310124389510.3389/fcvm.2023.124389537502184
    [Google Scholar]
  32. MiaoM. CaoS. TianY. LiuD. ChenL. ChaiQ. WeiM. SunS. WangL. XinS. LiuG. ZhengM. Potential diagnostic biomarkers: 6 cuproptosis and ferroptosis-related genes linking immune infiltration in acute myocardial infarction.Genes Immun.202324415917010.1038/s41435‑023‑00209‑837422588
    [Google Scholar]
  33. ZhouM. YaoY. WangX. ZhaL. ChenY. LiY. WangM. YuC. ZhouY. LiQ. CaoZ. WuJ. ShiS. JiangD. LongD. WangJ. WangQ. ChengX. LiaoY. TuX. Crosstalk between KIF1C and PRKAR1A in left atrial myxoma.Commun. Biol.20236172410.1038/s42003‑023‑05094‑537452081
    [Google Scholar]
  34. HuangC.K. DaiD. XieH. ZhuZ. HuJ. SuM. LiuM. LuL. ShenW. NingG. WangJ. ZhangR. YanX. Lgr4 governs a pro-inflammatory program in macrophages to antagonize post-infarction cardiac repair.Circ. Res.2020127895397310.1161/CIRCRESAHA.119.31580732600176
    [Google Scholar]
  35. PalomerX. Román-AzconaM.S. Pizarro-DelgadoJ. PlanavilaA. VillarroyaF. Valenzuela-AlcarazB. CrispiF. Sepúlveda-MartínezÁ. Miguel-EscaladaI. FerrerJ. NistalJ.F. GarcíaR. DavidsonM.M. BarrosoE. Vázquez-CarreraM. SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation.Signal Transduct. Target. Ther.2020511410.1038/s41392‑020‑0114‑132296036
    [Google Scholar]
  36. ZhuangL. WangY. ChenZ. LiZ. WangZ. JiaK. ZhaoJ. ZhangH. XieH. LuL. ChenK. ChenL. FukudaK. SanoM. ZhangR. LiuJ. YanX. Global characteristics and dynamics of single immune cells after myocardial infarction.J. Am. Heart Assoc.20221124e02722810.1161/JAHA.122.02722836515244
    [Google Scholar]
  37. KongX. ChenS. LuoS. ChenA. WangL. TangH. WangF. WangZ. GaoX. ZuoG. ZhouW. GuY. GeZ. ZhangJ. Shear-Induced ITGB4 promotes endothelial cell inflammation and atherosclerosis.Oxid. Med. Cell. Longev.2022202211210.1155/2022/584267736329801
    [Google Scholar]
  38. MoreiraG.C.M. SalvianM. BoschieroC. CesarA.S.M. ReecyJ.M. GodoyT.F. LedurM.C. GarrickD. MourãoG.B. CoutinhoL.L. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens.BMC Genomics201920166910.1186/s12864‑019‑6040‑331438838
    [Google Scholar]
  39. LiuX. ShangH. LiB. ZhaoL. HuaY. WuK. HuM. FanT. Exploration and validation of hub genes and pathways in the progression of hypoplastic left heart syndrome via weighted gene co-expression network analysis.BMC Cardiovasc. Disord.202121130010.1186/s12872‑021‑02108‑034130651
    [Google Scholar]
  40. OzkayaN. RosenblumM.K. DurhamB.H. PichardoJ.D. Abdel-WahabO. HameedM.R. BusamK.J. TravisW.D. DiamondE.L. DoganA. The histopathology of Erdheim–Chester disease: A comprehensive review of a molecularly characterized cohort.Mod. Pathol.201831458159710.1038/modpathol.2017.16029192649
    [Google Scholar]
  41. GambardellaJ. JankauskasS.S. KansakarU. VarzidehF. AvvisatoR. PreveteN. SidoliS. MoneP. WangX. LombardiA. SantulliG. Ketone bodies rescue mitochondrial dysfunction via epigenetic remodeling.JACC Basic Transl. Sci.2023891123113710.1016/j.jacbts.2023.03.01437791311
    [Google Scholar]
  42. LiF. LiJ. HaoJ. LiuJ. ZuX. LiS. WangB. HINT2 deficiency deteriorates oxidative stress in a mouse model of myocardial infarction.ESC Heart Fail.20231021305131310.1002/ehf2.1429236722640
    [Google Scholar]
  43. TeixeiraR.B. PfeifferM. ZhangP. ShafiqueE. RaytaB. KarbasiafsharC. AhsanN. SellkeF.W. AbidM.R. Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction.Basic Res. Cardiol.20231181310.1007/s00395‑022‑00976‑x36639609
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611289159240724114844
Loading
/content/journals/cvp/10.2174/0115701611289159240724114844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test