Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Epidermal Growth Factor Receptor (EGFR) is still the main target of the Head and Neck Squamous Cell Cancer (HNSCC) because its overexpression has been detected in more than 90% of this type of cancer. This overexpression is usually linked with more aggressive disease, increased resistance to chemotherapy and radiotherapy, increased metastasis, inhibition of apoptosis, promotion of neoplastic angiogenesis, and, finally, poor prognosis and decreased survival. Due to this reason, the main target in the search of new drugs and inhibitors candidates is to downturn this overexpression. Quantitative Structure-Activity Relationship (QSAR) is one of the most widely used approaches while looking for new and more active inhibitors drugs. In this contest, a lot of authors used this technique, combined with others, to find new drugs or enhance the activity of well-known inhibitors. In this paper, on one hand, we will review the most important QSAR approaches developed in the last fifteen years, spacing from classical 1D approaches until more sophisticated 3D; the first paper is dated 2003 while the last one is from 2017. On the other hand, we will present a completely new QSAR approach aimed at the prediction of new EGFR inhibitors drugs. The model presented here has been developed over a dataset consisting of more than 1000 compounds using various molecular descriptors calculated with the DRAGON 7.0© software.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026618666180329123023
2018-01-01
2025-01-24
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026618666180329123023
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test