Skip to content
2000
Volume 14, Issue 16
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Machine learning (ML) computational methods for predicting compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties are being increasingly applied in drug discovery and evaluation. Recently, machine learning techniques such as artificial neural networks, support vector machines and genetic programming have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic targets. These methods are particularly useful for screening compound libraries of diverse chemical structures, “noisy” and high-dimensional data to complement QSAR methods, and in cases of unavailable receptor 3D structure to complement structure-based methods. A variety of studies have demonstrated the potential of machine-learning methods for predicting compounds as potential drug candidates. The present review is intended to give an overview of the strategies and current progress in using machine learning methods for drug design and the potential of the respective model development tools. We also regard a number of applications of the machine learning algorithms based on common classes of diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026614666140929124203
2014-08-01
2025-03-16
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026614666140929124203
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test