Skip to content
2000
Volume 13, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

There are several classification problems, which are difficult to solve using a single classifier because of the complexity of the decision boundary. Whereas a wide variety of multiple classifier systems have been built with the purpose of improving the recognition process, there is no universal method performing the best. This paper provides a review of different multi-classifiers and some application of them. Also it is shown a novel model of combining classifiers and its application to predicting human immunodeficiency virus drug resistance from genotype. The proposal is based on the use of different classifier models. It clusters the dataset considering the performance of the base classifiers. The system learns how to decide from the groups, by using a meta-classifier, which are the best classifiers for a given pattern. The proposed model is compared with well-known classifier ensembles and individual classifiers as well resulting the novel model in similar or even better performance.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026611313050011
2013-03-01
2025-05-31
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026611313050011
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test