Skip to content
2000
Volume 12, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Three new triphenyltin(IV) complexes, viz., triphenylstannyl 2-((E)-(4-hydroxy-3-((E)-((4-(methoxycarbonyl) phenyl)imino)methyl)phenyl)-diazenyl)benzoate (Ph3SnL2H: 2), methyl 2-((E)-(4-hydroxy-3-((E)-((4- (((triphenylstannyl)oxy)carbonyl)phenyl)imino)methyl)phenyl)diazenyl)benzoate (Ph3SnL3H: 3), and triphenylstannyl 2- ((E)-(4-hydroxy-3-((E)-((4-(((triphenylstannyl)oxy)carbonyl)phenyl)imino)methyl)phenyl)diazenyl)benzoate ((Ph3Sn)2 L4H: 4) were synthesized and characterized by spectroscopic (1H, 119Sn NMR and IR) techniques in combination with elemental analysis. The 119Sn NMR spectral data were recorded in a non-coordinating solvent and indicate tetrahedral coordination geometry in solution. In the solid state, a single-crystal X-ray diffraction analysis of the dinuclear complex (Ph3Sn)2L4H (4) revealed a monocapped tetrahedral coordination geometry with anisobidentate coordination modes of the carboxylate groups with average bond angles around the Sn atoms of 113.5 and 112.2°, respectively. In vitro cytotoxicity studies were performed with all three complexes 2-4, along with a previously reported parent aquatriphenylstannyl complex, 2-((3-formyl-4-hydroxyphenyl)diazenyl)benzoate (Ph3SnL1H.OH2 (1)) across a panel of human tumor cell lines, viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with those from related triphenyltin(IV) carboxylates containing (i) imino (11-16) and (ii) diazenyl frameworks (1, 5-10). In general, complexes 2-4 exhibited good cytotoxic activity and among them, compound 4 was found to be the best performer, particularly for EVSA-T and MCF-7 cell lines. Additionally, 4 scored better activity than cisplatin (2-15 folds), 5-fluorouracil and etoposide across a panel of cell lines. Docking studies indicated that the diazenyl and imino nitrogen atoms, and the oxygen atoms of triphenyltin ester, methyl ester and phenolic group play an important role for the complexation of the organotin compounds in the active sites of enzymes such as ribonucleotide reductase (pdb ID: 4R1R), thymidylate synthase (pdb ID: 2G8D), thymidylate phosphorylase (pdb ID: 1BRW) and topoisomerase II (pdb ID: 1QZR).

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026611212240008
2012-12-01
2025-05-14
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026611212240008
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test