Skip to content
2000
Volume 12, Issue 11
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Phosphodiesterases (PDEs) are a family of enzymes that metabolically inactivate the second messengers 3’,5’- cyclic adenosine monophosphate (cAMP) and/or 3’,5’-cyclic guanosine monophosphate (cGMP). These two messengers regulate the extracellular signal from the plasma membrane G protein-coupled receptors (GPCRs) to the intracellular effector proteins, hence modulating a wide variety of biological processes both in the central nervous system (CNS) and peripheral tissues. Although there are many radiotracers available for positron emission tomography (PET) studies of different receptors, there are just a few tracers available for imaging studies of second messenger systems. The first reported PDE PET ligands were the 11C-labeled versions of the PDE4 inhibitors rolipram and Ro 20-1724, and, to date, PET imaging studies in human subjects have only been reported with [11C]rolipram. As a consequence of the growing interest in identifying selective PDE inhibitors as potential new therapeutic agents, new PET radiotracers for imaging specific PDEs have been described in literature as well. This article highlights these efforts on the design and evaluation of novel PET radioligands for in vivo imaging of PDEs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802612800672853
2012-06-01
2025-07-04
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802612800672853
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test