Skip to content
2000
Volume 12, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Isoprene biosynthesis is an essential component of metabolism. Two pathways are known for the production of five-carbon (isoprene) intermediates: the mevalonate and nonmevalonate pathways. As many pathogenic organisms rely exclusively on the nonmevalonate pathway (NMP) for isoprenoids and humans do not, the enzymes of this route have been recently explored as new therapeutic targets. The second and first-committed step in the NMP is catalyzed by 1-deoxy-Dxylulose- 5-phosphate reductoisomerase (Dxr) and has received significant attention as a novel drug target. This review describes the biochemistry and crystal structures of Dxr and the synthesis and biological activity of inhibitors to date, with a focus on compounds targeting E. coli, Plasmodium, and M. tuberculosis enzymes and intact cells. Most inhibitors for Dxr use natural products fosmidomycin and FR900098 as starting points. The review discusses several families of fosmidomycinrelated analogs including α-substituted, ‘reverse’ and modified hydroxamate, spacer-modified, and hydroxy-amide analogs. Also discussed are non-fosmidomycin-like inhibitors, the aryl phosphonates, and lipophilic prodrugs of fosmidomycin and FR900098 designed to increase cell penetration. A comprehensive SAR of inhibitors is presented.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802612799984599
2012-04-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802612799984599
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test