Skip to content
2000
Volume 8, Issue 4
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

A vast number of manufacturing techniques have been employed in the last five years to manufacture three dimensional (3D) calcium phosphate (CaP) scaffolds, with the intention to replicate the architecture of native bone as well as to repair and restore bone function. Design features such as architectural control and sintering temperature and their impact on scaffold performance is presented in this review. In vitro cell responses to bioceramic scaffolds and their in vivo performances have been enhanced. Current frontiers of active research on HA scaffolds have included the relationship between fluid flow and mechanotransduction as well as cell signaling pathways that induce endothelial cell recruitment and angiogenesis. Additionally, current research has focused on a better understanding of cell signaling and its environmental cues. The availability of non-invasive and non-destructive quantitative imaging modalities has also become critical in aiding the characterization of scaffolds and predicting scaffold performance. It is thus anticipated that further knowledge gained from this research will allow the overall advancement of scaffolds that can be clinically used to restore large bone defects.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802608783790956
2008-03-01
2025-05-10
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802608783790956
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test