Skip to content
2000
Volume 1, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

The advent of more efficient methods to synthesize and screen new chemical compounds is increasing the number of chemical leads identified in the drug discovery phase. Compounds with good biological activity may fail to become drugs due to insufficient oral absorption. Selection of drug development candidates with adequate absorption characteristics should increase the probability of success in the development phase. To assess the absorption potential of new chemical entities numerous in vitro and in vivo model systems have been used. Many laboratories rely on cell culture models of intestinal permeability such as, Caco-2, HT-29 and MDCK. To attempt to increase the throughput of permeability measurements, several physicochemical methods such as, immobilized artificial membrane (IAM) columns and parallel artificial membrane permeation assay (PAMPA) have been used. More recently, much attention has been given to the development of computational methods to predict drug absorption. However, it is clear that no single method will sufficient for studying drug absorption, but most likely a combination of systems will be needed. Higher throughput, less reliable methods could be used to discover loser compounds, whereas lower throughput, more accurate methods could be used to optimize the absorption properties of lead compounds. Finally, accurate methods are needed to understand absorption mechanisms (efflux -limited absorption, carrier-mediated, intestinal metabolism) that may limit intestinal drug absorption. This information could be extremely valuable to medicinal chemists in the selection of favorable chemo-types. This review describes different techniques used for evaluating drug absorption and indicates their advantages and disadvantages.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026013395010
2001-11-01
2025-08-18
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026013395010
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test