Skip to content
2000
image of Targeted Photodynamic Therapy for Drug-Resistant Pulmonary Tuberculosis through Mycolic Acid and Cyclohexadiene-Aminophenyl Interactions

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266371708250131062447
2025-02-03
2025-06-27
Loading full text...

Full text loading...

References

  1. Alsayed S.S.R. Gunosewoyo H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int. J. Mol. Sci. 2023 24 6 5202 10.3390/ijms24065202 36982277
    [Google Scholar]
  2. Sia J.K. Rengarajan J. Immunology of Mycobacterium tuberculosis infections. Microbiol. Spectr. 2019 7 4 7.4.6 10.1128/microbiolspec.GPP3‑0022‑2018 31298204
    [Google Scholar]
  3. Sotgiu G. Centis R. D’ambrosio L. Migliori G.B. Tuberculosis treatment and drug regimens. Cold Spring Harb. Perspect. Med. 2015 5 5 a017822 10.1101/cshperspect.a017822 25573773
    [Google Scholar]
  4. O’Riordan K. Sharlin D.S. Gross J. Chang S. Errabelli D. Akilov O.E. Kosaka S. Nau G.J. Hasan T. Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob. Agents Chemother. 2006 50 5 1828 1834 10.1128/AAC.50.5.1828‑1834.2006 16641456
    [Google Scholar]
  5. Allison R.R. Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin. Endosc. 2013 46 1 24 29 10.5946/ce.2013.46.1.24 23422955
    [Google Scholar]
  6. Correia J.H. Rodrigues J.A. Pimenta S. Dong T. Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021 13 9 1332 10.3390/pharmaceutics13091332 34575408
    [Google Scholar]
  7. Gunaydin G. Gedik M.E. Ayan S. Photodynamic therapy—current limitations and novel approaches. Front Chem. 2021 9 691697 10.3389/fchem.2021.691697 34178948
    [Google Scholar]
  8. Agostinis P. Berg K. Cengel K.A. Foster T.H. Girotti A.W. Gollnick S.O. Hahn S.M. Hamblin M.R. Juzeniene A. Kessel D. Korbelik M. Moan J. Mroz P. Nowis D. Piette J. Wilson B.C. Golab J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011 61 4 250 281 10.3322/caac.20114 21617154
    [Google Scholar]
  9. Mishchenko T. Balalaeva I. Gorokhova A. Vedunova M. Krysko D.V. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022 13 5 455 10.1038/s41419‑022‑04851‑4 35562364
    [Google Scholar]
  10. Chen P. Shi M. Feng G.D. Liu J.Y. Wang B.J. Shi X.D. Ma L. Liu X.D. Yang Y.N. Dai W. Liu T.T. He Y. Li J.G. Hao X.K. Zhao G. A highly efficient Ziehl-Neelsen stain: Identifying de novo intracellular Mycobacterium tuberculosis and improving detection of extracellular M. tuberculosis in cerebrospinal fluid. J. Clin. Microbiol. 2012 50 4 1166 1170 10.1128/JCM.05756‑11 22238448
    [Google Scholar]
  11. Aziz B. Aziz I. Khurshid A. Raoufi E. Esfahani F.N. Jalilian Z. Mozafari M.R. Taghavi E. Ikram M. An overview of potential natural photosensitizers in cancer photodynamic therapy. Biomedicines 2023 11 1 224 10.3390/biomedicines11010224 36672732
    [Google Scholar]
  12. Mansoori B. Mohammadi A. Doustvandi A.M. Mohammadnejad F. Kamari F. Gjerstorff M.F. Baradaran B. Hamblin M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther. 2019 26 395 404 10.1016/j.pdpdt.2019.04.033 31063860
    [Google Scholar]
  13. Saini R.K. Singh D. Bhagwan S. Sonika Singh I. Kadyan P.S. Photovoltaic characterization of dye sensitized solar cells based on TiO 2 nanoparticles using triarylmethane dyes as photosensitizers. J. Nanoelect. Optoelect. 2016 11 2 175 182 10.1166/jno.2016.1892
    [Google Scholar]
  14. Okuno M. Yamana K. Kawamura S. Nishimura K. Hino S. Kawasaki R. Ikeda A. Selective photodynamic activity of tetrakis(4‐aminophenyl)porphyrins with and without acetyl protecting groups on cancer and normal cells. Chemistry 2023 29 47 e202301385 10.1002/chem.202301385 37334625
    [Google Scholar]
  15. Wang Q. Sun M. Li C. Li D. Yang Z. A computer-aided chem-photodynamic; drugs self-delivery system for synergistically enhanced cancer therapy. Asian J. Pharma. Sci. 2021 16 2 203 212
    [Google Scholar]
  16. Vilchèze C. Kremer L. Acid-fast positive and acid-fast negative Mycobacterium tuberculosis : The koch paradox. Microbiol. Spectr. 2017 5 2 5.2.15 10.1128/microbiolspec.TBTB2‑0003‑2015 28337966
    [Google Scholar]
  17. Selvakumar N. Rahman F. Rajasekaran S. Narayanan P.R. Frieden T.R. Inefficiency of 0.3% carbol fuchsin in ziehl-neelsen staining for detecting acid-fast bacilli. J. Clin. Microbiol. 2002 40 8 3041 3043 10.1128/JCM.40.8.3041‑3043.2002 12149374
    [Google Scholar]
  18. Bayot M.L. Mirza T.M. Sharma S. Acid Fast Bacteria. StatPearls; Treasure Island (FL): StatPearls Publishing 2023
    [Google Scholar]
  19. Dunn J.J. Starke J.R. Revell P.A. Laboratory diagnosis of mycobacterium tuberculosis infection and disease in children. J. Clin. Microbiol. 2016 54 6 1434 1441 10.1128/JCM.03043‑15 26984977
    [Google Scholar]
  20. Zhao Y.L. Liu Y.H. Jiang G.L. Chan W.Y. Yip C.W. Kam K.M. Variations in quality of carbol fuchsin stains collected from routine tuberculosis laboratories. Int. J. Tuberc. Lung Dis. 2009 13 1 126 129 19105890
    [Google Scholar]
  21. Zhang H. Liu M. Fan W. Sun S. Fan X. The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Front. Public Health 2022 10 994745 10.3389/fpubh.2022.994745 36159313
    [Google Scholar]
  22. Cheng Y. Xie J. Lee K.H. Gaur R.L. Song A. Dai T. Ren H. Wu J. Sun Z. Banaei N. Akin D. Rao J. Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci. Transl. Med. 2018 10 454 eaar4470 10.1126/scitranslmed.aar4470 30111644
    [Google Scholar]
  23. Rudolph D. Redinger N. Schwarz K. Li F. Hädrich G. Cohrs M. Dailey L.A. Schaible U.E. Feldmann C. Amorphous drug nanoparticles for inhalation therapy of multidrug-resistant tuberculosis. ACS Nano 2023 17 10 9478 9486 10.1021/acsnano.3c01664 37160267
    [Google Scholar]
  24. Slater B.K. Kim D. Chand P. Xu Y. Shaikh H. Undale V. A current perspective on the potential of nanomedicine for anti-tuberculosis therapy. Trop. Med. Infect. Dis. 2023 8 2 100 10.3390/tropicalmed8020100 36828516
    [Google Scholar]
  25. Kia P. Ruman U. Pratiwi A.R. Hussein M.Z. Innovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosis. Int. J. Nanomed. 2023 18 1159 1191 10.2147/IJN.S364634 36919095
    [Google Scholar]
  26. Kumar M. Virmani T. Kumar G. Deshmukh R. Sharma A. Duarte S. Brandão P. Fonte P. Nanocarriers in tuberculosis treatment: Challenges and delivery strategies. Pharmaceuticals 2023 16 10 1360 10.3390/ph16101360 37895831
    [Google Scholar]
  27. Bourguignon T. Godinez-Leon J.A. Gref R. Nanosized drug delivery systems to fight tuberculosis. Pharmaceutics 2023 15 2 393 10.3390/pharmaceutics15020393 36839715
    [Google Scholar]
  28. Wang X. Wang X. Lei X. He Y. Xiao T. Photodynamic therapy: A new approach to the treatment of nontuberculous mycobacterial skin and soft tissue infections. Photodiagn. Photodyn. Ther. 2023 43 103645 10.1016/j.pdpdt.2023.103645 37270047
    [Google Scholar]
  29. Chang J.E. Oak C.H. Sung N. Jheon S. The potential application of photodynamic therapy in drug-resistant tuberculosis. J. Photochem. Photobiol. B 2015 150 60 65 10.1016/j.jphotobiol.2015.04.001 25907636
    [Google Scholar]
  30. Zhang Z. Liu J. Wan C. Liu P. Wan H. Guo Z. Tong J. Cao X. Successful treatment of tuberculosis verrucosa cutis with fester as primary manifestation with photodynamic therapy and anti-tubercular drugs. Photodiagn. Photodyn. Ther. 2022 38 102763 10.1016/j.pdpdt.2022.102763 35189390
    [Google Scholar]
  31. Walvekar P. Gannimani R. Govender T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 2019 127 127 121 141 10.1016/j.ejps.2018.10.017 30342173
    [Google Scholar]
  32. Olszowy M. Nowak-Perlak M. Woźniak M. Current strategies in photodynamic therapy (PDT) and photodynamic diagnostics (PDD) and the future potential of nanotechnology in cancer treatment. Pharmaceutics 2023 15 6 1712 10.3390/pharmaceutics15061712 37376160
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266371708250131062447
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test