Skip to content
2000
image of Chemical Profiling and Antibacterial Potential of Methanol Extract of Solanum xanthocarpum Fruits against Methicillin-Resistant Staphylococcus aureus: Implications for AMR Management

Abstract

Aim

To investigate the antimicrobial potential of methanol fruit extract of against Methicillin-Resistant (MRSA) and elucidate its mode of action.

Background

The rise of antimicrobial resistance (AMR) demands the exploration of alternative therapeutic strategies to combat resistant pathogens.

Objective

To evaluate the efficacy of methanol extract against MRSA, and identify its active constituents and mechanism of action.

Method

The fruits of were extracted using various solvents, with hexane and methanol yielding the highest results. Microbroth dilution assays assessed antimicrobial activity, while assays such as Alamar blue, Scanning Electron Microscopy (SEM), protein, and nucleic acid leakage examined metabolic disruption and cell membrane integrity. Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify active compounds, and molecular docking studies assessed interactions with key MRSA proteins.

Result

The methanol extract demonstrated significant antimicrobial activity against MRSA, causing metabolic disruption and leakage of cellular contents as evidenced by various assays including alarm blue, SEM, and protein and nucleic acid leakage assay. GC-MS analysis identified alpha-linoleic acid and palmitic acid as key active components. Molecular docking studies confirmed their inhibition of beta-lactamase activity, cell wall biosynthesis, efflux pumps, and virulence factors.

Conclusion

The findings suggest that methanol fruit extract has promising potential as a natural remedy against AMR associated with MRSA.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266364747250223154131
2025-03-03
2025-04-10
Loading full text...

Full text loading...

References

  1. Sheng Y. Narayanan M. Basha S. Elfasakhany A. Brindhadevi K. Xia C. Pugazhendhi A. In vitro and in vivo efficacy of green synthesized AgNPs against Gram negative and Gram positive bacterial pathogens. Process Biochem. 2022 112 241 247 10.1016/j.procbio.2021.12.012
    [Google Scholar]
  2. Danaraj J. Uthirakrishnan U. Kumaresan S. Natarajan P.K. Krishna J. Perumal A.S. Selvakumar K. Karami Z. Pugazhendhi A. Multifunctional application of seagrass-derived rosmarinic acid in mitigating biofilm and quorum-sensing virulence transcripts of methicillin-resistant Staphylococcus aureus. J. Environ. Chem. Eng. 2024 12 4 113086 10.1016/j.jece.2024.113086
    [Google Scholar]
  3. Antimicrobial resistance. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  4. Ahmed S.K. Hussein S. Qurbani K. Ibrahim R.H. Fareeq A. Mahmood K.A. Mohamed M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2024 2 100081 10.1016/j.glmedi.2024.100081
    [Google Scholar]
  5. WHO reports widespread overuse of antibiotics in patients hospitalized with COVID-19. 2024 Available from: https://www.who.int/news/item/26-04-2024-who-reports-widespread-overuse-of-antibiotics-in-patients--hospitalized-with-covid-19
  6. Chinemerem Nwobodo D. Ugwu M.C. Oliseloke Anie C. Al-Ouqaili M.T.S. Chinedu Ikem J. Victor Chigozie U. Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022 36 9 e24655 10.1002/jcla.24655 35949048
    [Google Scholar]
  7. David M.Z. Daum R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010 23 3 616 687 10.1128/CMR.00081‑09 20610826
    [Google Scholar]
  8. Wielders C.L.C. Fluit A.C. Brisse S. Verhoef J. Schmitz F.J. mecA gene is widely disseminated in Staphylococcus aureus population. J. Clin. Microbiol. 2002 40 11 3970 3975 10.1128/JCM.40.11.3970‑3975.2002 12409360
    [Google Scholar]
  9. Lade H. Kim J.S. Molecular determinants of β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA): An updated review. Antibiotics 2023 12 9 1362 10.3390/antibiotics12091362 37760659
    [Google Scholar]
  10. Gaurav A. Bakht P. Saini M. Pandey S. Pathania R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 2023 169 5 001333 10.1099/mic.0.001333 37224055
    [Google Scholar]
  11. Belay W.Y. Getachew M. Tegegne B.A. Teffera Z.H. Dagne A. Zeleke T.K. Abebe R.B. Gedif A.A. Fenta A. Yirdaw G. Tilahun A. Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Front. Pharmacol. 2024 15 1444781 10.3389/fphar.2024.1444781 39221153
    [Google Scholar]
  12. Boudet A. Sorlin P. Pouget C. Chiron R. Lavigne J.P. Dunyach-Remy C. Marchandin H. Biofilm formation in methicillin-resistant Staphylococcus aureus isolated in cystic fibrosis patients is strain-dependent and differentially influenced by antibiotics. Front. Microbiol. 2021 12 750489 10.3389/fmicb.2021.750489 34721354
    [Google Scholar]
  13. Turner A.B. Zermeño-Pérez D. Mysior M.M. Giraldo-Osorno P.M. García B. O’Gorman E. Oubihi S. Simpson J.C. Lasa I. Ó Cróinín T. Trobos M. Biofilm morphology and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) on poly-D,L-lactide-co-poly(ethylene glycol) (PDLLA-PEG) coated titanium. Biofilm 2024 8 100228 10.1016/j.bioflm.2024.100228
    [Google Scholar]
  14. Kaushik A. Kest H. Sood M. Steussy B. Thieman C. Gupta S. Biofilm producing methicillin-resistant Staphylococcus aureus (MRSA) infections in humans: Clinical implications and management. Pathogens 2024 13 1 76 10.3390/pathogens13010076 38251383
    [Google Scholar]
  15. Schilcher K. Horswill A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 2020 84 3 e00026-19 10.1128/MMBR.00026‑19 32792334
    [Google Scholar]
  16. McCarthy A.J. Loeffler A. Witney A.A. Gould K.A. Lloyd D.H. Lindsay J.A. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 2014 6 10 2697 2708 10.1093/gbe/evu214 25260585
    [Google Scholar]
  17. Haaber J. Penadés J.R. Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 2017 25 11 893 905 10.1016/j.tim.2017.05.011 28641931
    [Google Scholar]
  18. Emamalipour M. Seidi K. Zununi Vahed S. Jahanban-Esfahlan A. Jaymand M. Majdi H. Amoozgar Z. Chitkushev L.T. Javaheri T. Jahanban-Esfahlan R. Zare P. Horizontal gene transfer: From Evolutionary flexibility to disease progression. Front. Cell Dev. Biol. 2020 8 229 10.3389/fcell.2020.00229 32509768
    [Google Scholar]
  19. Chen J. Zhou H. Huang J. Zhang R. Rao X. Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J. Adv. Res. 2021 31 165 175 10.1016/j.jare.2021.01.008 34194840
    [Google Scholar]
  20. Singh V. Phukan U.J. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med. Microbiol. Immunol. 2019 208 5 585 607 10.1007/s00430‑018‑0573‑y 30483863
    [Google Scholar]
  21. Cheung G.Y.C. Bae J.S. Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021 12 1 547 569 10.1080/21505594.2021.1878688 33522395
    [Google Scholar]
  22. Aslam B. Asghar R. Muzammil S. Shafique M. Siddique A.B. Khurshid M. Ijaz M. Rasool M.H. Chaudhry T.H. Aamir A. Baloch Z. AMR and Sustainable Development Goals: At a crossroads. Global. Health 2024 20 1 73 10.1186/s12992‑024‑01046‑8 39415207
    [Google Scholar]
  23. Annadurai P. Gideon D.A. Nirusimhan V. Sivaramakrishnan R. Dhandayuthapani K. Pugazhendhi A. Deciphering the pharmacological potentials of Aganosma cymosa (Roxb.) G. Don using in vitro and computational methods. Process Biochem. 2022 114 119 133 10.1016/j.procbio.2022.01.024
    [Google Scholar]
  24. Veeramuthu K. Annadurai P. Gideon D.A. Sivaramakrishnan R. Sundarrajan B. Dhandayuthapani K. Pugazhendhi A. In silico molecular docking approach and in vitro cytotoxic, antioxidant, antimicrobial and anti-inflammatory activity of Ixora brachiata Roxb. Process Biochem. 2023 124 150 159 10.1016/j.procbio.2022.11.014
    [Google Scholar]
  25. Rameshkumar A. Mahalakshmi P. Sudha G. Dineshkumar T. Vinoth H. A Malar A.D. Evaluation of antimicrobial properties of Solanum xanthocarpum and Pistacia lentiscus extracts on Streptococcus mutans, Lactobacillus species and Actinomyces viscosus: An in vitro study. J. Oral Maxillofac. Pathol. 2019 23 3 383 388 10.4103/jomfp.JOMFP_30_19 31942118
    [Google Scholar]
  26. Govindan S. Viswanathan S. Vijayasekaran V. Alagappan R. A pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. J. Ethnopharmacol. 1999 66 2 205 210 10.1016/S0378‑8741(98)00160‑3 10433479
    [Google Scholar]
  27. Shivnath N. Siddiqui S. Rawat V. Khan M.S. Arshad M. Solanum xanthocarpum fruit extract promotes chondrocyte proliferation in vitro and protects cartilage damage in collagenase induced osteoarthritic rats (article reference number: JEP 114028). J. Ethnopharmacol. 2021 274 114028 10.1016/j.jep.2021.114028 33775807
    [Google Scholar]
  28. Kumar S. Pandey A.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective. BMC Complement. Altern. Med. 2014 14 1 112 10.1186/1472‑6882‑14‑112 24678980
    [Google Scholar]
  29. Sahu N. Madan S. Walia R. Tyagi R. Fantoukh O.I. Hawwal M.F. Akhtar A. Almarabi I. Alam P. Saxena S. Multi-target mechanism of Solanum xanthocarpum for treatment of psoriasis based on network pharmacology and molecular docking. Saudi Pharm. J. 2023 31 11 101788 10.1016/j.jsps.2023.101788 37811124
    [Google Scholar]
  30. Mawire P. Mozirandi W. Heydenreich M. Chi G.F. Mukanganyama S. Isolation and Antimicrobial Activities of Phytochemicals from Parinari curatellifolia (Chrysobalanaceae). Adv. Pharmacol. Pharm. Sci. 2021 2021 1 1 18 10.1155/2021/8842629 33763648
    [Google Scholar]
  31. Tourabi M. Metouekel A. ghouizi A.E.L. Jeddi M. Nouioura G. Laaroussi H. Hosen M.E. Benbrahim K.F. Bourhia M. Salamatullah A.M. Nafidi H.A. Wondmie G.F. Lyoussi B. Derwich E. Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts. Sci. Rep. 2023 13 1 18028 10.1038/s41598‑023‑45030‑5 37865706
    [Google Scholar]
  32. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laboratory Standards Institute 2024 12th ed
    [Google Scholar]
  33. Augustus A.R. Jana S. Samsudeen M.B. Nagaiah H.P. Shunmugiah K.P. In vitro and in vivo evaluation of the anti-infective potential of the essential oil extracted from the leaves of Plectranthus amboinicus (lour.) spreng against Klebsiella pneumoniae and elucidation of its mechanism of action through proteomics approach. J. Ethnopharmacol. 2024 330 118202 10.1016/j.jep.2024.118202 38641078
    [Google Scholar]
  34. Kasthuri T. Swetha T.K. Bhaskar J.P. Pandian S.K. Rapid-killing efficacy substantiates the antiseptic property of the synergistic combination of carvacrol and nerol against nosocomial pathogens. Arch. Microbiol. 2022 204 9 590 10.1007/s00203‑022‑03197‑x 36053368
    [Google Scholar]
  35. Li J. Liu W. Zhang X. Chu P.K. Cheung K.M.C. Yeung K.W.K. Temperature-responsive tungsten doped vanadium dioxide thin film starves bacteria to death. Mater. Today 2019 22 35 49 10.1016/j.mattod.2018.04.005
    [Google Scholar]
  36. Topçu S. Şeker M.G. In vitro antimicrobial effects and inactivation mechanisms of 5,8-Dihydroxy-1,4-Napthoquinone. Antibiotics 2022 11 11 1537 10.3390/antibiotics11111537 36358192
    [Google Scholar]
  37. Yuan C. Hao X. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon 2023 9 8 e18742 10.1016/j.heliyon.2023.e18742 37636470
    [Google Scholar]
  38. Lakshmi S.A. Alexpandi R. Shafreen R.M.B. Tamilmuhilan K. Srivathsan A. Kasthuri T. Ravi A.V. Shiburaj S. Pandian S.K. Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Arch. Microbiol. 2022 204 5 243 10.1007/s00203‑022‑02847‑4 35381886
    [Google Scholar]
  39. Chóez-Guaranda I. Maridueña-Zavala M. Quevedo A. Quijano-Avilés M. Manzano P. Cevallos-Cevallos J.M. Changes in GC-MS metabolite profile, antioxidant capacity and anthocyanins content during fermentation of fine-flavor cacao beans from Ecuador. PLoS One 2024 19 3 e0298909 10.1371/journal.pone.0298909 38427658
    [Google Scholar]
  40. Chadha J. Ahuja P. Mudgil U. Khullar L. Harjai K. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa. Arch. Microbiol. 2024 206 7 324 10.1007/s00203‑024‑04059‑4 38913239
    [Google Scholar]
  41. Hossain S. Rafi R.H. Ripa F.A. Khan M.R.I. Hosen M.E. Molla M.K.I. Faruqe M.O. Al-Bari M.A.A. Das S. Modulating the antibacterial effect of the existing antibiotics along with repurposing drug metformin. Arch. Microbiol. 2024 206 4 190 10.1007/s00203‑024‑03917‑5 38519821
    [Google Scholar]
  42. Extraction of Bioactive Compounds from Medicinal Plants and Herbs IntechOpen
    [Google Scholar]
  43. Barbieri R. Coppo E. Marchese A. Daglia M. Sobarzo-Sánchez E. Nabavi S.F. Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  44. Nikolic P. Mudgil P. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms 2023 11 2 259 10.3390/microorganisms11020259 36838224
    [Google Scholar]
  45. Kang X. Yang X. He Y. Guo C. Li Y. Ji H. Qin Y. Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater. Today Bio 2023 23 100827 10.1016/j.mtbio.2023.100827 37859998
    [Google Scholar]
  46. Algburi A. Comito N. Kashtanov D. Dicks L.M.T. Chikindas M.L. Control of biofilm formation: Antibiotics and beyond. Appl. Environ. Microbiol. 2017 83 3 e02508-16 10.1128/AEM.02508‑16 27864170
    [Google Scholar]
  47. Zafer M.M. Mohamed G.A. Ibrahim S.R.M. Ghosh S. Bornman C. Elfaky M.A. Biofilm-mediated infections by multidrug-resistant microbes: A comprehensive exploration and forward perspectives. Arch. Microbiol. 2024 206 3 101 10.1007/s00203‑023‑03826‑z 38353831
    [Google Scholar]
  48. Saraswathi K. Bharkavi R. Khusro A. Sivaraj C. Arumugam P. Alghamdi S. Dablool A.S. Almehmadi M. Bannunah A.M. Umar Khayam Sahibzada M. Assessment on in vitro medicinal properties and chemical composition analysis of Solanum virginianum dried fruits. Arab. J. Chem. 2021 14 12 103442 10.1016/j.arabjc.2021.103442
    [Google Scholar]
  49. Wei M. Wang P. Li T. Wang Q. Su M. Gu L. Wang S. Antimicrobial and antibiofilm effects of essential fatty acids against clinically isolated vancomycin-resistant Enterococcus faecium. Front. Cell. Infect. Microbiol. 2023 13 1266674 10.3389/fcimb.2023.1266674 37842001
    [Google Scholar]
  50. Borreby C. Lillebæk E.M.S. Kallipolitis B.H. Anti-infective activities of long-chain fatty acids against foodborne pathogens. FEMS Microbiol. Rev. 2023 47 4 fuad037 10.1093/femsre/fuad037 37437907
    [Google Scholar]
  51. Rossellia S Maggio A Formisano C Napolitano F Senatore F Spadaro V Chemical composition and antibacterial activity of extracts of Helleborus bocconei Ten. subsp. intermedius. Nat. Prod. Commun. 2007 2 6
    [Google Scholar]
  52. Dilika F. Bremner P.D. Meyer J.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000 71 4 450 452 10.1016/S0367‑326X(00)00150‑7 10925024
    [Google Scholar]
  53. Zheng C.J. Yoo J.S. Lee T.G. Cho H.Y. Kim Y.H. Kim W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005 579 23 5157 5162 10.1016/j.febslet.2005.08.028 16146629
    [Google Scholar]
  54. Casillas-Vargas G. Ocasio-Malavé C. Medina S. Morales-Guzmán C. Del Valle R.G. Carballeira N.M. Sanabria-Ríos D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021 82 101093 10.1016/j.plipres.2021.101093 33577909
    [Google Scholar]
  55. Yoon B. Jackman J. Valle-González E. Cho N.J. Antibacterial free fatty acids and Monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018 19 4 1114 10.3390/ijms19041114 29642500
    [Google Scholar]
  56. Greenway D.L.A. Dyke K.G.H. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J. Gen. Microbiol. 1979 115 1 233 245 10.1099/00221287‑115‑1‑233 93615
    [Google Scholar]
  57. Yuyama K.T. Rohde M. Molinari G. Stadler M. Abraham W.R. Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other gram-positive bacteria. Antibiotics 2020 9 11 788 10.3390/antibiotics9110788 33171584
    [Google Scholar]
  58. Desbois A.P. Smith V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010 85 6 1629 1642 10.1007/s00253‑009‑2355‑3 19956944
    [Google Scholar]
  59. Padmini N. Rashiya N. Sivakumar N. Kannan N.D. Manjuladevi R. Rajasekar P. Prabhu N.M. Selvakumar G. In vitro and in vivo efficacy of methyl oleate and palmitic acid against ESBL producing MDR Escherichia coli and Klebsiella pneumoniae. Microb. Pathog. 2020 148 104446 10.1016/j.micpath.2020.104446 32810555
    [Google Scholar]
  60. Khan N.A. Barthes N. McCormack G. O’Gara J.P. Thomas O.P. Boyd A. Sponge-derived fatty acids inhibit biofilm formation of MRSA and MSSA by down-regulating biofilm-related genes specific to each pathogen. J. Appl. Microbiol. 2023 134 8 lxad152 10.1093/jambio/lxad152 37468451
    [Google Scholar]
  61. Song H.S. Choi T.R. Bhatia S.K. Lee S.M. Park S.L. Lee H.S. Kim Y.G. Kim J.S. Kim W. Yang Y.H. Combination therapy using low-concentration oxacillin with palmitic acid and Span85 to control clinical methicillin-resistant Staphylococcus aureus. Antibiotics 2020 9 10 682 10.3390/antibiotics9100682 33049970
    [Google Scholar]
  62. Kim M. Seo Y. Kim S.G. Choi Y. Kim H.J. Kim T.J. Synergistic antibiotic activity of ricini semen extract with oxacillin against methicillin-resistant Staphylococcus aureus. Antibiotics 2023 12 2 340 10.3390/antibiotics12020340 36830251
    [Google Scholar]
  63. Shalaby M.A.W. Dokla E.M.E. Serya R.A.T. Abouzid K.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur. J. Med. Chem. 2020 199 112312 10.1016/j.ejmech.2020.112312 32442851
    [Google Scholar]
  64. Fishovitz J. Hermoso J.A. Chang M. Mobashery S. Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life 2014 66 8 572 577 10.1002/iub.1289 25044998
    [Google Scholar]
  65. Fergestad M.E. Stamsås G.A. Morales Angeles D. Salehian Z. Wasteson Y. Kjos M. Penicillin‐binding protein PBP2a provides variable levels of protection toward different β‐lactams in Staphylococcus aureus RN4220. MicrobiologyOpen 2020 9 8 e1057 10.1002/mbo3.1057 32419377
    [Google Scholar]
  66. Spengler G. Kincses A. Gajdács M. Amaral L. New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 2017 22 3 468 10.3390/molecules22030468 28294992
    [Google Scholar]
  67. Brawley D.N. Sauer D.B. Li J. Zheng X. Koide A. Jedhe G.S. Suwatthee T. Song J. Liu Z. Arora P.S. Koide S. Torres V.J. Wang D.N. Traaseth N.J. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat. Chem. Biol. 2022 18 7 706 712 10.1038/s41589‑022‑00994‑9 35361990
    [Google Scholar]
  68. Hervin V. Roy V. Agrofoglio L.A. Antibiotics and antibiotic resistance—Mur Ligases as an antibacterial target. Molecules 2023 28 24 8076 10.3390/molecules28248076 38138566
    [Google Scholar]
  69. Pelz A. Wieland K.P. Putzbach K. Hentschel P. Albert K. Götz F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 2005 280 37 32493 32498 10.1074/jbc.M505070200 16020541
    [Google Scholar]
  70. Song Y. Liu C.I. Lin F.Y. No J.H. Hensler M. Liu Y.L. Jeng W.Y. Low J. Liu G.Y. Nizet V. Wang A.H.J. Oldfield E. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: In vitro, in vivo, and crystallographic results. J. Med. Chem. 2009 52 13 3869 3880 10.1021/jm9001764 19456099
    [Google Scholar]
  71. Mahasenan K.V. Molina R. Bouley R. Batuecas M.T. Fisher J.F. Hermoso J.A. Chang M. Mobashery S. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, Allosteric communication network and enablement of catalysis. J. Am. Chem. Soc. 2017 139 5 2102 2110 10.1021/jacs.6b12565 28099001
    [Google Scholar]
  72. Tintino S.R. Wilairatana P. de Souza V.C.A. da Silva J.M.A. Pereira P.S. de Morais Oliveira-Tintino C.D. de Matos Y.M.L.S. Júnior J.T.C. de Queiroz Balbino V. Siqueira-Junior J.P. Menezes I.R.A. Siyadatpanah A. Coutinho H.D.M. Balbino T.C.L. Inhibition of the norA gene expression and the NorA efflux pump by the tannic acid. Sci. Rep. 2023 13 1 17394 10.1038/s41598‑023‑43038‑5 37833301
    [Google Scholar]
  73. Tintino S.R. Oliveira-Tintino C.D.M. Campina F.F. Silva R.L.P. Costa M.S. Menezes I.R.A. Calixto-Júnior J.T. Siqueira-Junior J.P. Coutinho H.D.M. Leal-Balbino T.C. Balbino V.Q. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 2016 97 9 13 10.1016/j.micpath.2016.04.003 27057677
    [Google Scholar]
  74. Diniz-Silva H.T. Cirino I.C.S. Falcão-Silva V.S. Magnani M. de Souza E.L. Siqueira-Júnior J.P. Tannic acid as a potential modulator of norfloxacin resistance in Staphylococcus Aureus overexpressing norA. Chemotherapy 2016 61 6 319 322 10.1159/000443495 27144278
    [Google Scholar]
  75. Mann P.A. Müller A. Xiao L. Pereira P.M. Yang C. Ho Lee S. Wang H. Trzeciak J. Schneeweis J. dos Santos M.M. Murgolo N. She X. Gill C. Balibar C.J. Labroli M. Su J. Flattery A. Sherborne B. Maier R. Tan C.M. Black T. Önder K. Kargman S. Monsma F.J. Jr Pinho M.G. Schneider T. Roemer T. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem. Biol. 2013 8 11 2442 2451 10.1021/cb400487f 23957438
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266364747250223154131
Loading
/content/journals/ctmc/10.2174/0115680266364747250223154131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test