Skip to content
2000
image of Neuroactive Phytoconstituents of Glycyrrhiza glabra for the Treatment of Alzheimer’s Disease

Abstract

Alzheimer’s Disease (AD), a prevalent neurodegenerative disorder, poses a significant global health challenge with complicated pathogenesis. Pathological characteristics of AD include increasing loss of cholinergic neurons, oxidative stress, mitochondrial dysfunction, and amyloid beta accumulation. Due to the limited availability of effective therapeutic options with only symptomatic relief and their severe adverse effects, there is a significant need to search and explore new agents for the management of AD. Recently, natural products and/or phytoconstituents of plants have gained notable attention as potential sources of neuroprotective agents due to their diverse chemical constituents, mechanism of action, and relatively safe profiles. In view of this, has been recognized for its several therapeutic properties in traditional medicine systems for centuries. Further, neuroactive phytoconstituents of this plant, including glycyrrhizin, liquiritigenin, isoliquiritigenin, glabridin, and glycyrrhizic acid, exhibit significant pharmacological advantages along with potential neuroprotective effects against AD. and its phytoconstituents have gained significant interest due to its ability to exert a neuroprotective impact by influencing multiple signaling pathways, inhibiting AChE and BACE1 activity, reducing Aβ accumulation, plaque formation, and tau phosphorylation, and quenching the free radical in experimentally-induced AD-like brain. The present review summarizes available and preclinical studies that have been performed to evaluate the beneficial neuroprotective effect of and its phytoconstituents against AD-like pathology. Based on available facts, it can be concluded that neuroactive phytoconstituents of could be significant lead molecules for the drug discovery of anti-AD medicines in the future.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266357793241223100307
2024-12-26
2025-01-18
Loading full text...

Full text loading...

References

  1. Adavala P.D. Musukula Y.R. Puchchakayala G. Neuroprotective effect of Aegle marmelos leaf extract in scopolamine induced cognitive impairment and oxidative stress in mice. Glob. J. Pharmacol. 2016 10 45 53
    [Google Scholar]
  2. Jivad N. Rabiei Z. A review study on medicinal plants used in the treatment of learning and memory impairments. Asian Pac. J. Trop. Biomed. 2014 4 10 780 789 10.12980/APJTB.4.2014APJTB‑2014‑0412
    [Google Scholar]
  3. Brookmeyer R. Johnson E. Ziegler-Graham K. Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007 3 3 186 191 10.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  4. Olufunmilayo E.O. Gerke-Duncan M.B. Holsinger R.M.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023 12 2 517 10.3390/antiox12020517 36830075
    [Google Scholar]
  5. Ballatore C. Lee V.M.Y. Trojanowski J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 2007 8 9 663 672 10.1038/nrn2194 17684513
    [Google Scholar]
  6. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  7. Serrano-Pozo A. Frosch M.P. Masliah E. Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011 1 1 a006189 10.1101/cshperspect.a006189 22229116
    [Google Scholar]
  8. Honig L.S. Boyd C.D. Treatment of Alzheimer’s Disease: Current Management and Experimental Therapeutics. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 2013 2 3 174 181 10.1007/s13670‑013‑0056‑3 24093080
    [Google Scholar]
  9. Chételat G. Landeau B. Salmon E. Yakushev I. Bahri M.A. Mézenge F. Perrotin A. Bastin C. Manrique A. Scheurich A. Scheckenberger M. Desgranges B. Eustache F. Fellgiebel A. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage 2013 76 167 177 10.1016/j.neuroimage.2013.03.009 23518010
    [Google Scholar]
  10. Liu Z. Zhang A. Sun H. Han Y. Kong L. Wang X. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Advances 2017 7 10 6046 6058 10.1039/C6RA26737H
    [Google Scholar]
  11. Navarro A. Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 2007 292 2 C670 C686 10.1152/ajpcell.00213.2006 17020935
    [Google Scholar]
  12. Kumar Thakur A. Kamboj P. Goswami K. Ahuja K. Pathophysiology and management of alzheimer’s disease: an overview. J. Anal. Pharm. Res. 2018 7 2 226 235 10.15406/japlr.2018.07.00230
    [Google Scholar]
  13. Wang X. Su B. Lee H. Li X. Perry G. Smith M.A. Zhu X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 2009 29 28 9090 9103 10.1523/JNEUROSCI.1357‑09.2009 19605646
    [Google Scholar]
  14. Šimić G. Babić Leko M. Wray S. Harrington C. Delalle I. Jovanov-Milošević N. Bažadona D. Buée L. De Silva R. Di Giovanni G. Wischik C. Hof P. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016 6 1 6 10.3390/biom6010006 26751493
    [Google Scholar]
  15. Breijyeh Z. Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  16. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  17. Eftekharzadeh B. Daigle J.G. Kapinos L.E. Coyne A. Schiantarelli J. Carlomagno Y. Cook C. Miller S.J. Dujardin S. Amaral A.S. Grima J.C. Bennett R.E. Tepper K. DeTure M. Vanderburg C.R. Corjuc B.T. DeVos S.L. Gonzalez J.A. Chew J. Vidensky S. Gage F.H. Mertens J. Troncoso J. Mandelkow E. Salvatella X. Lim R.Y.H. Petrucelli L. Wegmann S. Rothstein J.D. Hyman B.T. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron 2018 99 5 925 940.e7 10.1016/j.neuron.2018.07.039 30189209
    [Google Scholar]
  18. Lee V.M.Y. Goedert M. Trojanowski J.Q. Neurodegenerative Tauopathies. Annu. Rev. Neurosci. 2001 24 1 1121 1159 10.1146/annurev.neuro.24.1.1121 11520930
    [Google Scholar]
  19. Akram M. Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res. 2017 12 4 660 670 10.4103/1673‑5374.205108 28553349
    [Google Scholar]
  20. Frattaruolo L. Carullo G. Brindisi M. Mazzotta S. Bellissimo L. Rago V. Curcio R. Dolce V. Aiello F. Cappello A.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-kB/MAPK Pathway. Antioxidants 2019 8 6 186 10.3390/antiox8060186 31226797
    [Google Scholar]
  21. Sharma V. Agrawal R.C. Glycyrrhiza glabra: a plant for the future. Mintage J Pharmaceutical Med Sci 2013 2 15 20
    [Google Scholar]
  22. Sharma V. Katiyar A. Agrawal R.C. Glycyrrhiza glabra: Chemistry and Pharmacological Activity. Reference Series in Phytochemistry 2018 31 87 100 10.1007/978‑3‑319‑27027‑2_21
    [Google Scholar]
  23. Lim T.K. Glycyrrhiza glabra. Edible Medicinal Non-Medicinal Plants 2015 22 354 457
    [Google Scholar]
  24. Cerulli A. Masullo M. Montoro P. Piacente S. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. Cosmetics 2022 9 1 7 10.3390/cosmetics9010007
    [Google Scholar]
  25. Al-Snafi A.E. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J. Pharm. 2018 8 1 17
    [Google Scholar]
  26. Liu H.M. Sugimoto N. Akiyama T. Maitani T. Constituents and their sweetness of food additive enzymatically modified licorice extract. J. Agric. Food Chem. 2000 48 12 6044 6047 10.1021/jf000772e 11312777
    [Google Scholar]
  27. Pastorino G. Cornara L. Soares S. Rodrigues F. Oliveira M.B.P.P. Liquorice (Glycyrrhiza glabra ): A phytochemical and pharmacological review. Phytother. Res. 2018 32 12 2323 2339 10.1002/ptr.6178 30117204
    [Google Scholar]
  28. Tanaka A. Horiuchi M. Umano K. Shibamoto T. Antioxidant and anti‐inflammatory activities of water distillate and its dichloromethane extract from licorice root ( Glycyrrhiza uralensis ) and chemical composition of dichloromethane extract. J. Sci. Food Agric. 2008 88 7 1158 1165 10.1002/jsfa.3191
    [Google Scholar]
  29. Enas M.A. Phytochemical composition, antifungal, antiaflatoxigenic, antioxidant, and anticancer activities of Glycyrrhiza glabra L. and Matricaria chamomilla L. essential oils. J. Med. Plants Res. 2013 7 29 2197 2207 10.5897/JMPR12.5134
    [Google Scholar]
  30. Husain I. Bala K. Khan I.A. Khan S.I. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice ( Glycyrrhiza sp.). Food Front. 2021 2 4 449 485 10.1002/fft2.110
    [Google Scholar]
  31. Rizzato G. Scalabrin E. Radaelli M. Capodaglio G. Piccolo O. A new exploration of licorice metabolome. Food Chem. 2017 221 959 968 10.1016/j.foodchem.2016.11.068 27979300
    [Google Scholar]
  32. Wang Q. Qiao X. Liu C. Ji S. Feng L. Qian Y. Guo D. Ye M. Metabolites identification of glycycoumarin, a major bioactive coumarin from licorice in rats. J. Pharm. Biomed. Anal. 2014 98 287 295 10.1016/j.jpba.2014.06.001 24960236
    [Google Scholar]
  33. Kinoshita T. Maruyama K. Yamamoto N. Saito I. The effects of dietary licorice flavonoid oil supplementation on body balance control in healthy middle-aged and older Japanese women undergoing a physical exercise intervention: a randomized, double-blind, placebo-controlled trial. Aging Clin. Exp. Res. 2021 33 11 3099 3108 10.1007/s40520‑020‑01513‑3 32162239
    [Google Scholar]
  34. Matos M.J. Santana L. Uriarte E. Abreu O. Pérez E.M. Coumarins: An important class of phytochemicals. Phytochemicals - Isolation, Characterisation and Role in Human Health InTech 2015 113 123
    [Google Scholar]
  35. Batovska D. Todorova I. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010 5 1 1 29 10.2174/157488410790410579 19891604
    [Google Scholar]
  36. Ploeger B. Mensinga T. Sips A. Seinen W. Meulenbelt J. DeJongh J. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling. Drug Metab. Rev. 2001 33 2 125 147 10.1081/DMR‑100104400 11495500
    [Google Scholar]
  37. Vibha J.B. Choudhary K. Singh M. Rathore M.S. Shekhawat N.S. A Study on Pharmacokinetics and Therapeutic Efficacy of Glycyrrhiza glabra: A Miracle Medicinal Herb. Bot. Res. Int. 2009 2 3 157 163
    [Google Scholar]
  38. El-Saber Batiha G. Magdy Beshbishy A. El-Mleeh A. Abdel-Daim M.M. Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020 10 3 352 10.3390/biom10030352 32106571
    [Google Scholar]
  39. Wahab S. Annadurai S. Abullais S.S. Das G. Ahmad W. Ahmad M.F. Kandasamy G. Vasudevan R. Ali M.S. Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021 10 12 2751 10.3390/plants10122751 34961221
    [Google Scholar]
  40. Mantovani A. Ricciardi C. Stazi A.V. Macri C. Piccioni A. Badellino E. De Vincenzi M. Caiola S. Patriarca M. Teratogenicity study of ammonium glycyrrhizinate in the Sprague-Dawley rat. Food Chem. Toxicol. 1988 26 5 435 440 10.1016/0278‑6915(88)90054‑3 3391466
    [Google Scholar]
  41. Omar H.R. Komarova I. El-Ghonemi M. Fathy A. Rashad R. Abdelmalak H.D. Yerramadha M.R. Ali Y. Helal E. Camporesi E.M. Licorice abuse: time to send a warning message. Ther. Adv. Endocrinol. Metab. 2012 3 4 125 138 10.1177/2042018812454322 23185686
    [Google Scholar]
  42. Celik M.M. Karakus A. Zeren C. Demir M. Bayarogullari H. Duru M. Al M. Licorice induced hypokalemia, edema, and thrombocytopenia. Hum. Exp. Toxicol. 2012 31 12 1295 1298 10.1177/0960327112446843 22653692
    [Google Scholar]
  43. Mao M. Li W. Wang W. Wang S.X. Lu J. Chang Z.F. [Adverse reaction induced by licorice preparations: clinical analysis of 93 cases]. Zhongguo Zhongyao Zazhi 2013 38 21 3768 3772 24494570
    [Google Scholar]
  44. Hasan M.K. Ara I. Mondal M.S.A. Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021 7 6 e07240 10.1016/j.heliyon.2021.e07240 34189299
    [Google Scholar]
  45. Pieroni A. Quave C.L. Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: A comparison. J. Ethnopharmacol. 2005 101 1-3 258 270 10.1016/j.jep.2005.04.028 15978757
    [Google Scholar]
  46. Calvo M.I. Akerreta S. Cavero R.Y. Pharmaceutical ethnobotany in the Riverside of Navarra (Iberian Peninsula). J. Ethnopharmacol. 2011 135 1 22 33 10.1016/j.jep.2011.02.016 21345364
    [Google Scholar]
  47. Medeiros M.F.T. de Albuquerque U.P. The pharmacy of the Benedictine monks: The use of medicinal plants in Northeast Brazil during the nineteenth century (1823–1829). J. Ethnopharmacol. 2012 139 1 280 286 10.1016/j.jep.2011.11.014 22115750
    [Google Scholar]
  48. Rahnama M. Mehrabani D. Japoni S. Edjtehadi M. Saberi Firoozi M. The healing effect of licorice (Glycyrrhiza glabra) on Helicobacter pylori infected peptic ulcers. J. Res. Med. Sci. 2013 18 6 532 533 24250708
    [Google Scholar]
  49. Wang L. Yang R. Yuan B. Liu Y. Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015 5 4 310 315 10.1016/j.apsb.2015.05.005 26579460
    [Google Scholar]
  50. Vijayakumar S. Harikrishnan J.P. Prabhu S. Morvin Yabesh J.E. Manogar P. Quantitative Ethnobotanical Survey of Traditional Siddha Medical Practitioners from Thiruvarur District with Hepatoprotective Potentials through In Silico Methods. Achievements in the Life Sciences 2016 10 1 11 26 10.1016/j.als.2016.03.001
    [Google Scholar]
  51. Sharma D. Namdeo P. Singh P. Phytochemistry and Pharmacological Studies of Glycyrrhiza glabra: A Medicinal Plant Review. Int. J. Pharm. Sci. Rev. Res. 2021 67 1 187 194 10.47583/ijpsrr.2021.v67i01.030
    [Google Scholar]
  52. Dey A. Gorai P. Mukherjee A. Dhan R. Modak B.K. Ethnobiological treatments of neurological conditions in the Chota Nagpur Plateau, India. J. Ethnopharmacol. 2017 198 33 44 10.1016/j.jep.2016.12.040 28017696
    [Google Scholar]
  53. Silambarasan R. Ayyanar M. An ethnobotanical study of medicinal plants in Palamalai region of Eastern Ghats, India. J. Ethnopharmacol. 2015 172 162 178 10.1016/j.jep.2015.05.046 26068426
    [Google Scholar]
  54. Dhingra D. Parle M. Kulkarni S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol. 2004 91 2-3 361 365 10.1016/j.jep.2004.01.016 15120462
    [Google Scholar]
  55. Leite C.S. Bonafé G.A. Carvalho Santos J. Martinez C.A.R. Ortega M.M. Ribeiro M.L. The Anti-Inflammatory Properties of Licorice (Glycyrrhiza glabra)-Derived Compounds in Intestinal Disorders. Int. J. Mol. Sci. 2022 23 8 4121 10.3390/ijms23084121 35456938
    [Google Scholar]
  56. Tamir S. Eizenberg M. Somjen D. Izrael S. Vaya J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J. Steroid Biochem. Mol. Biol. 2001 78 3 291 298 10.1016/S0960‑0760(01)00093‑0 11595510
    [Google Scholar]
  57. Ko Y.H. Kwon S.H. Lee S.Y. Jang C.G. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch. Pharm. Res. 2017 40 10 1209 1217 10.1007/s12272‑017‑0954‑6 28940173
    [Google Scholar]
  58. Du Y. Luo M. Du Y. Xu M. Yao Q. Wang K. He G. Liquiritigenin Decreases Aβ Levels and Ameliorates Cognitive Decline by Regulating Microglia M1/M2 Transformation in AD Mice. Neurotox. Res. 2021 39 2 349 358 10.1007/s12640‑020‑00284‑z 32990912
    [Google Scholar]
  59. Zulfugarova P. Zivari-Ghader T. Maharramova S. Ahmadian E. Eftekhari A. Khalilov R. Turksoy V.A. Rosić G. Selakovic D. A mechanistic review of pharmacological activities of homeopathic medicine licorice against neural diseases. Front. Neurosci. 2023 17 1148258 10.3389/fnins.2023.1148258 36950127
    [Google Scholar]
  60. Chakravarthi K. Avadhani R. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. J. Nat. Sci. Biol. Med. 2013 4 2 420 425 10.4103/0976‑9668.117025 24082744
    [Google Scholar]
  61. Zhou Y.Z. Zhao F.F. Gao L. Du G.H. Zhang X. Qin X.M. Licorice extract attenuates brain aging of d -galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis. RSC Advances 2017 7 75 47758 47766 10.1039/C7RA07110H
    [Google Scholar]
  62. Cherng J.M. Lin H.J. Hung M.S. Lin Y.R. Chan M.H. Lin J.C. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur. J. Pharmacol. 2006 547 1-3 10 21 10.1016/j.ejphar.2006.06.080 16952351
    [Google Scholar]
  63. Song J.H. Lee J.W. Shim B. Lee C.Y. Choi S. Kang C. Sohn N.W. Shin J.W. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice. Molecules 2013 18 12 15788 15803 10.3390/molecules181215788 24352029
    [Google Scholar]
  64. Zhao H. Wang S.L. Qian L. Jin J.L. Li H. Xu Y. Zhu X.L. Diammonium glycyrrhizinate attenuates Aβ(1-42) -induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci. Ther. 2013 19 2 117 124 10.1111/cns.12043 23279783
    [Google Scholar]
  65. Jiang R. Gao J. Shen J. Zhu X. Wang H. Feng S. Huang C. Shen H. Liu H. Glycyrrhizic Acid Improves Cognitive Levels of Aging Mice by Regulating T/B Cell Proliferation. Front. Aging Neurosci. 2020 12 12 570116 10.3389/fnagi.2020.570116 33132898
    [Google Scholar]
  66. Ban J.Y. Park H.K. Kim S.K. Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice. Int. Neurourol. J. 2020 24 Suppl. 1 S48 S55 10.5213/inj.2040154.077 32482057
    [Google Scholar]
  67. Gong X. Shen H. Guo L. Huang C. Su T. Wang H. Feng S. Yang S. Huo F. Liu H. Zhu J. Zhu J.K. Li H. Liu H. Glycyrrhizic acid inhibits myeloid differentiation of hematopoietic stem cells by binding S100 calcium binding protein A8 to improve cognition in aged mice. Immun. Ageing 2023 20 1 12 10.1186/s12979‑023‑00337‑9 36906583
    [Google Scholar]
  68. Paudel Y.N. Angelopoulou E. Semple B. Piperi C. Othman I. Shaikh M.F. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem. Neurosci. 2020 11 4 485 500 10.1021/acschemneuro.9b00640 31972087
    [Google Scholar]
  69. Kong Z.H. Chen X. Hua H.P. Liang L. Liu L.J. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. J. Mol. Neurosci. 2017 63 3-4 385 395 10.1007/s12031‑017‑0989‑7 29034441
    [Google Scholar]
  70. Liu R. Zou L. Lü Q. Liquiritigenin inhibits Aβ25–35-induced neurotoxicity and secretion of Aβ1–40 in rat hippocampal neurons. Acta Pharmacol. Sin. 2009 30 7 899 906 10.1038/aps.2009.74 19574995
    [Google Scholar]
  71. Liu R.T. Tang J.T. Zou L.B. Fu J.Y. Lu Q.J. Liquiritigenin attenuates the learning and memory deficits in an amyloid protein precursor transgenic mouse model and the underlying mechanisms. Eur. J. Pharmacol. 2011 669 1-3 76 83 10.1016/j.ejphar.2011.07.051 21872584
    [Google Scholar]
  72. Maher P. Schubert D. Signaling by reactive oxygen species in the nervous system. Cell. Mol. Life Sci. 2000 57 8 1287 1305 10.1007/PL00000766 11028919
    [Google Scholar]
  73. Yang E.J. Park G.H. Song K.S. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 2013 39 114 123 10.1016/j.neuro.2013.08.012 24012889
    [Google Scholar]
  74. Ko Y.H. Kwon S.H. Hwang J.Y. Kim K.I. Seo J.Y. Nguyen T.L. Lee S.Y. Kim H.C. Jang C.G. The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice. Biomol. Ther. (Seoul) 2018 26 2 109 114 10.4062/biomolther.2016.284 28554200
    [Google Scholar]
  75. Yuan X. Wang Z. Zhang L. Sui R. Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer’s disease. Int. J. Biol. Macromol. 2021 183 1184 1190 10.1016/j.ijbiomac.2021.05.041 33965487
    [Google Scholar]
  76. Zhu X. Liu J. Chen S. Xue J. Huang S. Wang Y. Chen O. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci. 2019 20 1 41 10.1186/s12868‑019‑0520‑x 31387531
    [Google Scholar]
  77. Ma X. Fang F. Song M. Ma S. The effect of isoliquiritigenin on learning and memory impairments induced by high-fat diet via inhibiting TNF-α/JNK/IRS signaling. Biochem. Biophys. Res. Commun. 2015 464 4 1090 1095 10.1016/j.bbrc.2015.07.081 26188513
    [Google Scholar]
  78. Yang E.J. Kim G.S. Noh H. Shin Y.S. Song K.S. Inhibitory effect of isoliquiritigenin isolated from Glycyrrhizae Radix on amyloid-β production in Swedish mutant amyloid precursor protein-transfected Neuro2a cells. J. Funct. Foods 2015 18 445 454 10.1016/j.jff.2015.08.001
    [Google Scholar]
  79. Shi D. Yang J. Jiang Y. Wen L. Wang Z. Yang B. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic. Biol. Med. 2020 152 207 215 10.1016/j.freeradbiomed.2020.03.016 32220625
    [Google Scholar]
  80. Fu Y. Jia J. Isoliquiritigenin Confers Neuroprotection and Alleviates Amyloid-β42-Induced Neuroinflammation in Microglia by Regulating the Nrf2/NF-κB Signaling. Front. Neurosci. 2021 15 638772 10.3389/fnins.2021.638772 33642990
    [Google Scholar]
  81. Liu J.Y. Guo H.Y. Quan Z.S. Shen Q.K. Cui H. Li X. Research progress of natural products and their derivatives against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2171026 10.1080/14756366.2023.2171026 36803484
    [Google Scholar]
  82. Zhu Z. Li C. Wang X. Yang Z. Chen J. Hu L. Jiang H. Shen X. 2,2′,4′‐Trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice. J. Neurochem. 2010 114 2 374 385 10.1111/j.1471‑4159.2010.06751.x 20412384
    [Google Scholar]
  83. Cui Y.M. Ao M.Z. Li W. Yu L.J. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med. 2008 74 4 377 380 10.1055/s‑2008‑1034319 18484526
    [Google Scholar]
  84. Arif N. Subhani A. Hussain W. Rasool N. In Silico Inhibition of BACE-1 by Selective Phytochemicals as Novel Potential Inhibitors: Molecular Docking and DFT Studies. Curr. Drug Discov. Technol. 2020 17 3 397 411 10.2174/1570163816666190214161825 30767744
    [Google Scholar]
  85. Jiang M. Zhao S. Yang S. Lin X. He X. Wei X. Song Q. Li R. Fu C. Zhang J. Zhang Z. An “essential herbal medicine”—licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol. 2020 249 112439 10.1016/j.jep.2019.112439 31811935
    [Google Scholar]
  86. Li B. Yang Y. Chen L. Chen S. Zhang J. Tang W. 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway. MedChemComm 2017 8 7 1498 1504 10.1039/C7MD00210F 30108861
    [Google Scholar]
  87. Kao T.C. Shyu M.H. Yen G.C. Neuroprotective effects of glycyrrhizic acid and 18beta-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. J. Agric. Food Chem. 2009 57 2 754 761 10.1021/jf802864k 19105645
    [Google Scholar]
  88. Kalaiarasi P. Kaviarasan K. Pugalendi K.V. Hypolipidemic activity of 18β-glycyrrhetinic acid on streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2009 612 1-3 93 97 10.1016/j.ejphar.2009.04.003 19361497
    [Google Scholar]
  89. Yu J.Y. Ha J. Kim K.M. Jung Y.S. Jung J.C. Oh S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015 20 7 13041 13054 10.3390/molecules200713041 26205049
    [Google Scholar]
  90. Liu W. Huang S. Li Y. Zhang K. Zheng X. Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway. Food Nutr. Res. 2019 63 0 63 10.29219/fnr.v63.1516 31073286
    [Google Scholar]
  91. Yu X.Q. Xue C.C. Zhou Z.W. Li C.G. Du Y.M. Liang J. Zhou S.F. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci. 2008 82 1-2 68 78 10.1016/j.lfs.2007.10.019 18048062
    [Google Scholar]
  92. Luo L. Jin Y. Kim I.D. Lee J.K. Glycyrrhizin attenuates kainic Acid-induced neuronal cell death in the mouse hippocampus. Exp. Neurobiol. 2013 22 2 107 115 10.5607/en.2013.22.2.107 23833559
    [Google Scholar]
  93. Nadh A.G. Revikumar A. Sudhakaran P.R. Nair A.S. Identification of potential lead compounds against BACE1 through in-silico screening of phytochemicals of Medhya rasayana plants for Alzheimer’s disease management. Comput. Biol. Med. 2022 145 105422 10.1016/j.compbiomed.2022.105422 35354103
    [Google Scholar]
  94. Nakatani Y. Kobe A. Kuriya M. Hiroki Y. Yahagi T. Sakakibara I. Matsuzaki K. Amano T. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells. Eur. J. Pharmacol. 2017 815 381 390 10.1016/j.ejphar.2017.09.040 28970010
    [Google Scholar]
  95. Kim H.J. Lim S.S. Park I.S. Lim J.S. Seo J.Y. Kim J.S. Neuroprotective effects of dehydroglyasperin C through activation of heme oxygenase-1 in mouse hippocampal cells. J. Agric. Food Chem. 2012 60 22 5583 5589 10.1021/jf300548b 22578244
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266357793241223100307
Loading
/content/journals/ctmc/10.2174/0115680266357793241223100307
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Glycyrrhiza glabra ; glycyrrhizin ; Alzheimer’s disease ; liquiritigenin ; amyloid beta
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test