Skip to content
2000
image of Synthesis, X-Ray Structure, Characterization, Antifungal Activity, DFT, and Molecular Simulation of a Novel Pyrazole Carboxylic Acid

Abstract

Background

The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.

Methods

Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD). The antifungal activity of the compound was assessed , and its molecular structure was studied using Density Functional Theory (DFT). Molecular docking and dynamics simulations were conducted to evaluate the interaction of the compound with sterol 14-alpha demethylase (CYP51) from . ADME/Tox evaluations were also performed to assess the drug-like properties of compound L1.

Results

Compound L1 exhibited moderate antifungal activity with an IC50 value of 34.25 µg/mL. DFT studies confirmed the highly stable molecular structure of the compound. Molecular docking and dynamics simulations demonstrated that compound L1 had a higher affinity and stability when forming complexes with the crystal structure of CYP51, particularly in interaction with the tetrazole-based antifungal drug candidate VT1161 (PDB ID: 5TZ1). ADME/Tox evaluations indicated favorable drug-like properties for compound L1.

Conclusion

The results suggest that compound L1 is a promising antifungal candidate, showing greater potential than fluconazole in the conducted evaluations. Further studies are warranted to explore its full therapeutic potential.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266348692241211111312
2025-01-21
2025-04-03
Loading full text...

Full text loading...

References

  1. Kruithoff C. Gamal A. McCormick T.S. Ghannoum M.A. Dermatophyte infections worldwide: Increase in incidence and associated antifungal resistance. Life 2023 14 1 1 10.3390/life14010001 38276250
    [Google Scholar]
  2. Fisher M.C. Alastruey-Izquierdo A. Berman J. Bicanic T. Bignell E.M. Bowyer P. Bromley M. Brüggemann R. Garber G. Cornely O.A. Gurr S.J. Harrison T.S. Kuijper E. Rhodes J. Sheppard D.C. Warris A. White P.L. Xu J. Zwaan B. Verweij P.E. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022 20 9 557 571 10.1038/s41579‑022‑00720‑1 35352028
    [Google Scholar]
  3. Friedrich G. Rose T. Rissler K. Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002 766 2 295 305 10.1016/S0378‑4347(01)00514‑X 11824818
    [Google Scholar]
  4. Boustany-Kari C.M. Jackson V.M. Gibbons C.P. Swick A.G. Leptin potentiates the anti-obesity effects of rimonabant. Eur. J. Pharmacol. 2011 658 2-3 270 276 10.1016/j.ejphar.2011.02.021 21371466
    [Google Scholar]
  5. Yu B. Zhao B. Hao Z. Chen L. Cao L. Guo X. Zhang N. Yang D. Tang L. Fan Z. Design, synthesis and biological evaluation of pyrazole-aromatic containing carboxamides as potent SDH inhibitors. Eur. J. Med. Chem. 2021 214 113230 10.1016/j.ejmech.2021.113230 33581553
    [Google Scholar]
  6. Joshi G. Sharma M. Kalra S. Gavande N.S. Singh S. Kumar R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg. Chem. 2021 107 104620 10.1016/j.bioorg.2020.104620 33454509
    [Google Scholar]
  7. Xu Z. Gao C. Ren Q.C. Song X.F. Feng L.S. Lv Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem. 2017 139 429 440 10.1016/j.ejmech.2017.07.059 28818767
    [Google Scholar]
  8. Abd El-Karim S.S. Mohamed H.S. Abdelhameed M.F. El-Galil E Amr A. Almehizia A.A. Nossier E.S. Design, synthesis and molecular docking of new pyrazole-thiazolidinones as potent anti-inflammatory and analgesic agents with TNF-α inhibitory activity. Bioorg. Chem. 2021 111 104827 10.1016/j.bioorg.2021.104827 33798845
    [Google Scholar]
  9. Shaikh S. Dhavan P. Pavale G. Ramana M.M.V. Jadhav B.L. Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against alzheimer’s disease. Bioorg. Chem. 2020 96 103589 10.1016/j.bioorg.2020.103589 31978679
    [Google Scholar]
  10. Bekhit A.A. Saudi M.N. Hassan A.M.M. Fahmy S.M. Ibrahim T.M. Ghareeb D. El-Seidy A.M. Nasralla S.N. Bekhit A.E.D.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem. 2019 163 353 366 10.1016/j.ejmech.2018.11.067 30530172
    [Google Scholar]
  11. Khan I.M. Islam M. Shakya S. Alam K. Alam N. Shahid M. Synthesis, characterization, antimicrobial and DNA binding properties of an organic charge transfer complex obtained from pyrazole and chloranilic acid. Bioorg. Chem. 2020 99 103779 10.1016/j.bioorg.2020.103779 32240872
    [Google Scholar]
  12. Jo J. Lee D. Park Y.H. Choi H. Han J. Park D.H. Choi Y.K. Kwak J. Yang M.K. Yoo J.W. Moon H.R. Geum D. Kang K.S. Yun H. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. Eur. J. Med. Chem. 2021 217 113325 10.1016/j.ejmech.2021.113325 33765605
    [Google Scholar]
  13. Dong F. Chen X. Xu J. Liu X. Chen Z. Li Y. Zhang H. Zheng Y. Enantioseparation and determination of the chiral fungicide furametpyr enantiomers in rice, soil, and water by high-performance liquid chromatography. Chirality 2013 25 12 904 909 10.1002/chir.22232 24038350
    [Google Scholar]
  14. Dahmani M. Et-Touhami A. Yahyi A. Harit T. Eddike D. Tillard M. Benabbes R. Synthesis, characterization, X-ray structure and in vitro antifungal activity of triphenyltin complexes based on pyrazole dicarboxylic acid derivatives. J. Mol. Struct. 2021 1225 129137 10.1016/j.molstruc.2020.129137
    [Google Scholar]
  15. Mert S. Kasımoğulları R. İça T. Çolak F. Altun A. Ok S. Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem. 2014 78 86 96 10.1016/j.ejmech.2014.03.033 24681068
    [Google Scholar]
  16. Venuta A. Nasso R. Gisonna A. Iuliano R. Montesarchio S. Acampora V. Sepe L. Avagliano A. Arcone R. Arcucci A. Ruocco M.R. Celecoxib, a non-steroidal anti-inflammatory drug, exerts a toxic effect on human melanoma cells grown as 2D and 3D cell cultures. Life 2023 13 4 1067 10.3390/life13041067 37109596
    [Google Scholar]
  17. Prabhash K. Noronha V. Joshi A. Desai S. Sahu A. Crizotinib: A comprehensive review. South Asian J. Cancer 2013 2 2 91 97 10.4103/2278‑330X.110506 24455567
    [Google Scholar]
  18. Çorman M.E. Cetinkaya A. Ozcelikay G. Özgür E. Atici E.B. Uzun L. Ozkan S.A. A porous molecularly imprinted nanofilm for selective and sensitive sensing of an anticancer drug ruxolitinib. Anal. Chim. Acta 2021 1187 339143 10.1016/j.aca.2021.339143 34753569
    [Google Scholar]
  19. Spasov A. Ozerov A. Vassiliev P. Kosolapov V. Gurova N. Kucheryavenko A. Naumenko L. Babkov D. Sirotenko V. Taran A. Litvinov R. Borisov A. Klochkov V. Merezhkina D. Miroshnikov M. Uskov G. Ovsyankina N. Synthesis and multifaceted pharmacological activity of novel quinazoline NHE-1 inhibitors. Sci. Rep. 2021 11 1 24380 10.1038/s41598‑021‑03722‑w 34934125
    [Google Scholar]
  20. Roby O. Kadiri F.Z. Moutaouakil M. Ousaid F.E. Saddik R. Aboulmouhajir A. Alzahran A.Y. Tighadouini S. Synthesis, characterization, DFT calculations, antimicrobial activity, molecular docking, and ADMET study of new pyrazole-carboxamide derivatives. J. Mol. Struct. 2024 140400 10.1016/j.molstruc.2024.140400
    [Google Scholar]
  21. Abdul Amin S. Adhikari N. Gayen S. Jha T. Insight into the structural requirements of theophylline-based aldehyde dehydrogenase lAl (ALDHlAl) inhibitors through multi-QSAR modeling and molecular docking approaches. Curr. Drug Discov. Technol. 2016 13 2 84 100 10.2174/1570163813666160429115628 27132720
    [Google Scholar]
  22. Yamari I. Mouhib A. Es-Sounni B. Nejjari R. Mazoir N. Bakhouch M. Mouzdahir A. Benharref A. El Kouali M. Chtita S. Oxidative functionalization of triterpenes isolated from Euphorbia resinifera latex: Semisynthesis, ADME-Tox, molecular docking, and molecular dynamics simulations. Chemical Physics Impact 2023 7 100372 10.1016/j.chphi.2023.100372
    [Google Scholar]
  23. Drug Discovery in the 21st Century. Toxicology and Applied Pharmacology Insights 2023 6 1 10.33140/TAPI.06.01.09
    [Google Scholar]
  24. Roby O. Ouadghiri Z. Moutaouakil M. Alzahran A.Y. Loukhmi Z. Saddik R. Mtairag E.M. Aboulmouhajir A. Tighadouini S. New pyrazole‐hydrazide derivatives: Synthesis, Characterization, highly active catecholase‐like catalyst, and antibacterial study. ChemistrySelect 2023 8 48 e202304507 10.1002/slct.202304507
    [Google Scholar]
  25. Dolomanov O.V. Bourhis L.J. Gildea R.J. Howard J.A.K. Puschmann H. OLEX2 : A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009 42 2 339 341 10.1107/S0021889808042726
    [Google Scholar]
  26. Mohammadiani E. Aliakbarlu J. Ownagh A. Kaboudari A. Antifungal interactions of Persian shallot ( Allium hirtifolium ) extracts and potassium sorbate against Aspergillus flavus and Penicillium citrinum. Flavour Fragrance J. 2021 36 3 332 338 10.1002/ffj.3645
    [Google Scholar]
  27. Tighadouini S. Radi S. Benabbes R. Youssoufi M.H. Shityakov S. El Massaoudi M. Garcia Y. Synthesis, biochemical characterization, and theoretical studies of Novel β-Keto-enol pyridine and furan derivatives as potent antifungal agents. ACS Omega 2020 5 28 17743 17752 10.1021/acsomega.0c02365 32715261
    [Google Scholar]
  28. Srinivasan B. Lloyd M.D. Dose–response curves and the determination of IC 50 and EC 50 values. J. Med. Chem. 2024 67 20 17931 17934 10.1021/acs.jmedchem.4c02052 39356832
    [Google Scholar]
  29. Tran H.N.H. Graham L. Adukwu E.C. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol. 2020 104 20 8911 8924 10.1007/s00253‑020‑10829‑z 32880694
    [Google Scholar]
  30. Scorzoni L. Sangalli-Leite F. de Lacorte Singulani J. de Paula e Silva A.C.A. Costa-Orlandi C.B. Fusco-Almeida A.M. Mendes-Giannini M.J.S. Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds. J. Microbiol. Methods 2016 123 68 78 10.1016/j.mimet.2016.02.005 26853122
    [Google Scholar]
  31. Miar M. Shiroudi A. Pourshamsian K. Oliaey A.R. Hatamjafari F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[ d ]thiazole-2(3 H )-imine and its para -substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2021 45 1-2 147 158 10.1177/1747519820932091
    [Google Scholar]
  32. Roby O. Kadiri F.Z. Loukhmi Z. Moutaouakil M. Tighadouini S. Saddik R. Aboulmouhajir A. Synthesis of new set of imidazo[1,2-a]pyridine-schiff bases derivatives as potential antimicrobial agents: Experimental and theoretical approaches. J. Mol. Struct. 2023 1292 136186 10.1016/j.molstruc.2023.136186
    [Google Scholar]
  33. Gaussian 09 (Revision A02). 2013 Available from: https://www.researchgate.net/publication/260433987_Gaussian_09_Revision_A02
  34. Aihara J. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 1999 103 37 7487 7495 10.1021/jp990092i
    [Google Scholar]
  35. Mary Y.S. Varghese H.T. Panicker C.Y. Girisha M. Sagar B.K. Yathirajan H.S. Al-Saadi A.A. Van Alsenoy C. Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1-yl)butanamide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 150 543 556 10.1016/j.saa.2015.05.090 26079512
    [Google Scholar]
  36. Ojha J.K. Ramesh G. Reddy B.V. Structure, chemical reactivity, NBO, MEP analysis and thermodynamic parameters of pentamethyl benzene using DFT study. Chemical Physics Impact 2023 7 100280 10.1016/j.chphi.2023.100280
    [Google Scholar]
  37. Sampathkumar J. Rajamanickam R. Synthesis, crystal structure, Hirshfeld surface, QTAIM, NCI-RDG, DFT and molecular docking studies of 4-(aryl)-1,4-dihydro-N,1-dimethyl-6-(methylthio)-3,5-dinitropyridin-2-amines. J. Mol. Struct. 2024 1299 137063 10.1016/j.molstruc.2023.137063
    [Google Scholar]
  38. Kumar A.R. Ilavarasan L. Mol G.P.S. Selvaraj S. Azam M. Jayaprakash P. Kesavan M. Alam M. Dhanalakshmi J. Al-Resayes S.I. Ravi A. Spectroscopic (FT-IR, FT-Raman, UV–Vis and NMR) and computational (DFT, MESP, NBO, NCI, LOL, ELF, RDG and QTAIM) profiling of 5‑chloro-2‑hydroxy-3-methoxybenzaldehyde: A promising antitumor agent. J. Mol. Struct. 2024 1298 136974 10.1016/j.molstruc.2023.136974
    [Google Scholar]
  39. Jorgensen W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res. 2009 42 6 724 733 10.1021/ar800236t 19317443
    [Google Scholar]
  40. Hargrove T.Y. Friggeri L. Wawrzak Z. Qi A. Hoekstra W.J. Schotzinger R.J. York J.D. Guengerich F.P. Lepesheva G.I. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 2017 292 16 6728 6743 10.1074/jbc.M117.778308 28258218
    [Google Scholar]
  41. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  42. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17
    [Google Scholar]
  43. Guex N. Peitsch M.C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997 18 15 2714 2723 10.1002/elps.1150181505 9504803
    [Google Scholar]
  44. Elokely K.M. Doerksen R.J. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model. 2013 53 8 1934 1945 10.1021/ci400040d 23530568
    [Google Scholar]
  45. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010 31 2 455 461 10.1002/jcc.21334
    [Google Scholar]
  46. BIOVIA discovery studio. 2021 Available from: https://www.3ds.com/products/biovia/discovery-studio
  47. Abdelhady M.I.S. Kamal A.M. Barghash M.F. POM analyses, immunomodulatory, cytotoxic activities and polyphenolic constituents of Callistemon viridiflorus fruits. Bull. Fac. Pharm. Cairo Univ. 2018 56 2 175 178 10.1016/j.bfopcu.2018.06.001
    [Google Scholar]
  48. Osiris n.d.
    [Google Scholar]
  49. Winiwarter S. Ahlberg E. Watson E. Oprisiu I. Mogemark M. Noeske T. Greene N. In silico ADME in drug design – enhancing the impact. ADMET DMPK 2018 6 1 15 10.5599/admet.6.1.470
    [Google Scholar]
  50. E V Pires Douglas pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. J. Med. Chem. 2015 58 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  51. System, Maestro-Desmond Interoperability Tools. 2021 Available from: https://doi.org/software
  52. Protein preparation wizard. 2018 Available from: https://www.schrodinger.com/life-science/learn/white-papers/protein-preparation-wizard/
  53. Mark P. Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  54. Roos K. Wu C. Damm W. Reboul M. Stevenson J.M. Lu C. Dahlgren M.K. Mondal S. Chen W. Wang L. Abel R. Friesner R.A. Harder E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019 15 3 1863 1874 10.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  55. Ke Q. Gong X. Liao S. Duan C. Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022 365 120116 10.1016/j.molliq.2022.120116
    [Google Scholar]
  56. Yamari I. Abchir O. Siddique F. Zaki H. Errougui A. Talbi M. Bouachrine M. ElKouali M. Chtita S. The anticoagulant potential of Lippia Alba extract in inhibiting SARS-CoV-2 Mpro: Density functional calculation, molecular docking analysis, and molecular dynamics simulations. Sci. Afr. 2024 23 e01986 10.1016/j.sciaf.2023.e01986
    [Google Scholar]
  57. Abchir O. Yamari I. Nour H. Daoui O. Elkhattabi S. Errougui A. Chtita S. Structure‐based virtual screening, ADMET analysis, and molecular dynamics simulation of moroccan natural compounds as candidates α‐amylase inhibitors. ChemistrySelect 2023 8 26 e202301092 10.1002/slct.202301092
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266348692241211111312
Loading
/content/journals/ctmc/10.2174/0115680266348692241211111312
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test