Skip to content
2000
image of Targeting Malaria's Achilles' Heels: A Review of Plasmodium Life Cycle Vulnerabilities for Drug Discovery

Abstract

The global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin-based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs. A more comprehensive understanding of the parasites’s life cycle has revealed several promising targets, including enzymes, transport proteins, and essential metabolic pathways that the parasite relies on for its survival and proliferation. This review provides an in-depth analysis of the vulnerabilities displayed by Plasmodium and recent advances that highlight potential drug targets and candidate molecules.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266348099250108065838
2025-01-10
2025-04-22
Loading full text...

Full text loading...

References

  1. Whitfield J. Portrait of a serial killer. Nature 2002 news021001 6 10.1038/news021001‑6
    [Google Scholar]
  2. world malaria report 2023 Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  3. Shibeshi M.A. Kifle Z.D. Atnafie S.A. Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect. Drug Resist. 2020 13 4047 4060 10.2147/IDR.S279433 33204122
    [Google Scholar]
  4. Ward K.E. Fidock D.A. Bridgford J.L. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr. Opin. Microbiol. 2022 69 102193 10.1016/j.mib.2022.102193 36007459
    [Google Scholar]
  5. Cox F.E.G. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors 2010 3 1 5 10.1186/1756‑3305‑3‑5 20205846
    [Google Scholar]
  6. Parry J. WHO combats counterfeit malaria drugs in Asia. BMJ 2005 330 1044.5 10.1136/bmj.330.7499.1044‑d
    [Google Scholar]
  7. Venugopal K. Hentzschel F. Valkiūnas G. Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 2020 18 3 177 189 10.1038/s41579‑019‑0306‑2 31919479
    [Google Scholar]
  8. Ouologuem D.T. Dara A. Kone A. Ouattara A. Djimde A.A. Plasmodium falciparum development from gametocyte to oocyst: Insight from functional studies. Microorganisms 2023 11 8 1966 10.3390/microorganisms11081966 37630530
    [Google Scholar]
  9. Sato S. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J. Physiol. Anthropol. 2021 40 1 1 10.1186/s40101‑020‑00251‑9 33413683
    [Google Scholar]
  10. Rai S. Shukla S. Scotti L. Mani A. Drug repurposing against novel therapeutic targets in Plasmodium falciparum for Malaria: The computational perspective. Curr. Med. Chem. 2024 31 38 6272 6287 10.2174/0929867331666230807151708 37550911
    [Google Scholar]
  11. Counihan N.A. Modak J.K. de Koning-Ward T.F. How Malaria parasites acquire nutrients from their host. Front. Cell Dev. Biol. 2021 9 649184 10.3389/fcell.2021.649184 33842474
    [Google Scholar]
  12. Banerjee R. Goldberg D.E. The plasmodium food vacuole. Antimalar. Chemother. Mech. Action Resist. New Dir. Drug Discov. Rosenthal P.J. Totowa, NJ Humana Press 2001 43 63
    [Google Scholar]
  13. Bonilla J.A. Bonilla T.D. Yowell C.A. Fujioka H. Dame J.B. Critical roles for the digestive vacuole plasmepsins of Plasmodium falciparum in vacuolar function. Mol. Microbiol. 2007 65 1 64 75 10.1111/j.1365‑2958.2007.05768.x 17581121
    [Google Scholar]
  14. Moura I.C. Wunderlich G. Uhrig M.L. Couto A.S. Peres V.J. Katzin A.M. Kimura E.A. Limonene arrests parasite development and inhibits isoprenylation of proteins in Plasmodium falciparum. Antimicrob. Agents Chemother. 2001 45 9 2553 2558 10.1128/AAC.45.9.2553‑2558.2001 11502528
    [Google Scholar]
  15. Liu J. Gluzman I.Y. Drew M.E. Goldberg D.E. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 2005 280 2 1432 1437 10.1074/jbc.M409740200 15513918
    [Google Scholar]
  16. Klemba M. Gluzman I. Goldberg D.E. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J. Biol. Chem. 2004 279 41 43000 43007 10.1074/jbc.M408123200 15304495
    [Google Scholar]
  17. Drew M.E. Banerjee R. Uffman E.W. Gilbertson S. Rosenthal P.J. Goldberg D.E. Plasmodium food vacuole plasmepsins are activated by falcipains. J. Biol. Chem. 2008 283 19 12870 12876 10.1074/jbc.M708949200 18308731
    [Google Scholar]
  18. Patrick G.L. Plasmepsins as targets for antimalarial agents. Antimalar. Agents. Elsevier 2020 217 270 10.1016/B978‑0‑08‑101210‑9.00007‑X
    [Google Scholar]
  19. Sunil S. Chauhan V.S. Malhotra P. Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases. BMC Mol. Biol. 2008 9 1 47 10.1186/1471‑2199‑9‑47 18477411
    [Google Scholar]
  20. Goldberg D.E. Slater A.F. Beavis R. Chait B. Cerami A. Henderson G.B. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: A catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 1991 173 4 961 969 10.1084/jem.173.4.961 2007860
    [Google Scholar]
  21. Padmanaban G. Nagaraj V.A. Rangarajan P.N. Drugs and drug targets against malaria. Curr. Sci. 2007 92 1545 1555
    [Google Scholar]
  22. Krugliak M. Zhang J. Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 2002 119 2 249 256 10.1016/S0166‑6851(01)00427‑3 11814576
    [Google Scholar]
  23. Rohrbach P. Rohrbach P. Dalton J.P. The malaria digestive vacuole. Front. Biosci. 2012 S4 4 1424 1448 10.2741/s344 22652884
    [Google Scholar]
  24. Andrews K.T. Fairlie D.P. Madala P.K. Ray J. Wyatt D.M. Hilton P.M. Melville L.A. Beattie L. Gardiner D.L. Reid R.C. Stoermer M.J. Skinner-Adams T. Berry C. McCarthy J.S. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob. Agents Chemother. 2006 50 2 639 648 10.1128/AAC.50.2.639‑648.2006 16436721
    [Google Scholar]
  25. Bhagavathula A.S. Elnour A.A. Shehab A. Alternatives to currently used antimalarial drugs: In search of a magic bullet. Infect. Dis. Poverty 2016 5 1 103 10.1186/s40249‑016‑0196‑8 27809883
    [Google Scholar]
  26. Raj R. Kumar V. Anti‐malarial drug discovery: New enzyme inhibitors. Nat. Prod. Target. Clin. Relev. Enzym 1st ed Andrade P.B. Valentão P. Pereira D.M. Wiley 2017 277 296 10.1002/9783527805921.ch11
    [Google Scholar]
  27. Amelo W. Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges. BioMed Res. Int. 2021 2021 5539544 10.1155/2021/5539544
    [Google Scholar]
  28. Mavondo G.A. Mkhwananzi B.N. Mabandla M.V. Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected Sprague-Dawley rats. Malar. J. 2016 15 1 226 10.1186/s12936‑016‑1278‑6 27098750
    [Google Scholar]
  29. Coppée R. Sabbagh A. Clain J. Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter. Sci. Rep. 2020 10 1 4842 10.1038/s41598‑020‑61181‑1 32179795
    [Google Scholar]
  30. Berger F. Gomez G.M. Sanchez C.P. Posch B. Planelles G. Sohraby F. Nunes-Alves A. Lanzer M. pH-dependence of the Plasmodium falciparum chloroquine resistance transporter is linked to the transport cycle. Nat. Commun. 2023 14 1 4234 10.1038/s41467‑023‑39969‑2 37454114
    [Google Scholar]
  31. Ehlgen F. Pham J.S. de Koning-Ward T. Cowman A.F. Ralph S.A. Investigation of the Plasmodium falciparum food vacuole through inducible expression of the chloroquine resistance transporter (PfCRT). PLoS One 2012 7 6 e38781 10.1371/journal.pone.0038781 22719945
    [Google Scholar]
  32. Sanchez C.P. Stein W.D. Lanzer M. Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum. Trends Parasitol. 2007 23 7 332 339 10.1016/j.pt.2007.04.013 17493873
    [Google Scholar]
  33. Amambua-Ngwa A. Button-Simons K.A. Li X. Kumar S. Brenneman K.V. Ferrari M. Checkley L.A. Haile M.T. Shoue D.A. McDew-White M. Tindall S.M. Reyes A. Delgado E. Dalhoff H. Larbalestier J.K. Amato R. Pearson R.D. Taylor A.B. Nosten F.H. D’Alessandro U. Kwiatkowski D. Cheeseman I.H. Kappe S.H.I. Avery S.V. Conway D.J. Vaughan A.M. Ferdig M.T. Anderson T.J.C. An amino acid transporter AAT1 plays a pivotal role in chloroquine resistance evolution in malaria parasites. bioRxiv 2022 10.1101/2022.05.26.493611
    [Google Scholar]
  34. Coronado L.M. Nadovich C.T. Spadafora C. Malarial hemozoin: From target to tool. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 6 2032 2041 10.1016/j.bbagen.2014.02.009 24556123
    [Google Scholar]
  35. Hempelmann E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol. Res. 2007 100 4 671 676 10.1007/s00436‑006‑0313‑x 17111179
    [Google Scholar]
  36. Gupta P. Pandey R. Thakur V. Parveen S. Kaur I. Panda A. Bishi R. Mehrotra S. Akhtar A. Gupta D. Mohmmed A. Malhotra P. Heme detoxification protein (PF HDP) is essential for the hemoglobin uptake and metabolism in Plasmodium falciparum. FASEB Bioadv. 2022 4 10 662 674 10.1096/fba.2022‑00021 36238365
    [Google Scholar]
  37. Nakatani K. Ishikawa H. Aono S. Mizutani Y. Heme-binding properties of heme detoxification protein from Plasmodium falciparum. Biochem. Biophys. Res. Commun. 2013 439 4 477 480 10.1016/j.bbrc.2013.08.100 24025682
    [Google Scholar]
  38. Kapishnikov S. Hempelmann E. Elbaum M. Als-Nielsen J. Leiserowitz L. Malaria pigment crystals: The achilles′ heel of the malaria parasite. ChemMedChem 2021 16 10 1515 1532 10.1002/cmdc.202000895 33523575
    [Google Scholar]
  39. Olafson K.N. Ketchum M.A. Rimer J.D. Vekilov P.G. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc. Natl. Acad. Sci. USA 2015 112 16 4946 4951 10.1073/pnas.1501023112 25831526
    [Google Scholar]
  40. Olivier M. Van Den Ham K. Shio M.T. Kassa F.A. Fougeray S. Malarial pigment hemozoin and the innate inflammatory response. Front. Immunol. 2014 5 25 10.3389/fimmu.2014.00025 24550911
    [Google Scholar]
  41. Gupta M. Kumar S. Kumar R. Kumar A. Verma R. Darokar M.P. Rout P. Pal A. Inhibition of heme detoxification pathway in malaria parasite by 3-hydroxy-11-keto-β-boswellic acid isolated from Boswellia serrata. Biomed. Pharmacother. 2021 144 112302 10.1016/j.biopha.2021.112302 34678731
    [Google Scholar]
  42. Mali S.N. Pandey A. Hemozoin (beta-hematin) formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen. 2022 25 11 1859 1874 10.2174/1386207325666210924104036 34565319
    [Google Scholar]
  43. Sullivan D.J. Jr Gluzman I.Y. Goldberg D.E. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 1996 271 5246 219 222 10.1126/science.271.5246.219 8539625
    [Google Scholar]
  44. Edgar R.C.S. Counihan N.A. McGowan S. de Koning-Ward T.F. Methods used to investigate the Plasmodium falciparum digestive vacuole. Front. Cell. Infect. Microbiol. 2022 11 829823 10.3389/fcimb.2021.829823 35096663
    [Google Scholar]
  45. Tilley L. Straimer J. Gnädig N.F. Ralph S.A. Fidock D.A. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016 32 9 682 696 10.1016/j.pt.2016.05.010 27289273
    [Google Scholar]
  46. Kannan R. Sahal D. Chauhan V.S. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem. Biol. 2002 9 3 321 332 10.1016/S1074‑5521(02)00117‑5 11927257
    [Google Scholar]
  47. Giannangelo C. Siddiqui G. De Paoli A. Anderson B.M. Edgington-Mitchell L.E. Charman S.A. Creek D.J. System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog. 2020 16 6 e1008485 10.1371/journal.ppat.1008485 32589689
    [Google Scholar]
  48. Mengue J.B. Held J. Kreidenweiss A. AQ-13 - An investigational antimalarial drug. Expert Opin. Investig. Drugs 2019 28 3 217 222 10.1080/13543784.2019.1560419 30577704
    [Google Scholar]
  49. Umumararungu T. Nkuranga J.B. Habarurema G. Nyandwi J.B. Mukazayire M.J. Mukiza J. Muganga R. Hahirwa I. Mpenda M. Katembezi A.N. Olawode E.O. Kayitare E. Kayumba P.C. Recent developments in antimalarial drug discovery. Bioorg. Med. Chem. 2023 88-89 117339 10.1016/j.bmc.2023.117339 37236020
    [Google Scholar]
  50. Balestra A.C. Zeeshan M. Rea E. Pasquarello C. Brusini L. Mourier T. Subudhi A.K. Klages N. Arboit P. Pandey R. Brady D. Vaughan S. Holder A.A. Pain A. Ferguson D.J.P. Hainard A. Tewari R. Brochet M. A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. eLife 2020 9 e56474 10.7554/eLife.56474 32568069
    [Google Scholar]
  51. Halbert J. Ayong L. Equinet L. Le Roch K. Hardy M. Goldring D. Reininger L. Waters N. Chakrabarti D. Doerig C. A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. Eukaryot. Cell 2010 9 6 952 959 10.1128/EC.00005‑10 20305001
    [Google Scholar]
  52. Solyakov L. Halbert J. Alam M.M. Semblat J.P. Dorin-Semblat D. Reininger L. Bottrill A.R. Mistry S. Abdi A. Fennell C. Holland Z. Demarta C. Bouza Y. Sicard A. Nivez M.P. Eschenlauer S. Lama T. Thomas D.C. Sharma P. Agarwal S. Kern S. Pradel G. Graciotti M. Tobin A.B. Doerig C. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat. Commun. 2011 2 1 565 10.1038/ncomms1558 22127061
    [Google Scholar]
  53. Kumar S. Gargaro O.R. Kappe S.H.I. Plasmodium falciparum CRK5 is critical for male gametogenesis and infection of the mosquito. MBio 2022 13 5 e02227 e22 10.1128/mbio.02227‑22 36154191
    [Google Scholar]
  54. Le Roch K. Sestier C. Dorin D. Waters N. Kappes B. Chakrabarti D. Meijer L. Doerig C. Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J. Biol. Chem. 2000 275 12 8952 8958 10.1074/jbc.275.12.8952 10722743
    [Google Scholar]
  55. Jirage D. Chen Y. Caridha D. O’Neil M.T. Eyase F. Witola W.H. Mamoun C.B. Waters N.C. The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol. Biochem. Parasitol. 2010 172 1 9 18 10.1016/j.molbiopara.2010.03.009 20332005
    [Google Scholar]
  56. Waters N. Woodard C.L. Prigge S.T. Cyclin H activation and drug susceptibility of the Pfmrk cyclin dependent protein kinase from Plasmodium falciparum. Mol. Biochem. Parasitol. 2000 107 1 45 55 10.1016/S0166‑6851(99)00229‑7 10717301
    [Google Scholar]
  57. Robbins J.A. Absalon S. Streva V.A. Dvorin J.D. The Malaria parasite cyclin H homolog PfCyc1 is required for efficient cytokinesis in blood-stage Plasmodium falciparum. MBio 2017 8 3 e00605 e00617 10.1128/mBio.00605‑17 28611247
    [Google Scholar]
  58. Ganter M. Goldberg J.M. Dvorin J.D. Paulo J.A. King J.G. Tripathi A.K. Paul A.S. Yang J. Coppens I. Jiang R.H.Y. Elsworth B. Baker D.A. Dinglasan R.R. Gygi S.P. Duraisingh M.T. Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Nat. Microbiol. 2017 2 5 17017 10.1038/nmicrobiol.2017.17 28211852
    [Google Scholar]
  59. Eubanks A.L. Perkins M.M. Sylvester K. Ganley J.G. Posfai D. Sanschargrin P.C. Hong J. Sliz P. Derbyshire E.R. In silico screening and evaluation of Plasmodium falciparum protein kinase 5 (PK5) inhibitors. ChemMedChem 2018 13 23 2479 2483 10.1002/cmdc.201800625 30328274
    [Google Scholar]
  60. Bracchi-Ricard V. Barik S. Delvecchio C. Doerig C. Chakrabarti R. Chakrabarti D. PfPK6, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from Plasmodium falciparum. Biochem. J. 2000 347 1 255 263 10.1042/bj3470255 10727426
    [Google Scholar]
  61. Matthews H. Duffy C.W. Merrick C.J. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit. Vectors 2018 11 1 216 10.1186/s13071‑018‑2800‑1 29587837
    [Google Scholar]
  62. Gray K.A. Gresty K.J. Chen N. Zhang V. Gutteridge C.E. Peatey C.L. Chavchich M. Waters N.C. Cheng Q. Correlation between cyclin dependent kinases and artemisinin-induced dormancy in Plasmodium falciparumin vitro. PLoS One 2016 11 6 e0157906 10.1371/journal.pone.0157906 27326764
    [Google Scholar]
  63. Chakraborty A. Understanding the biology of the Plasmodium falciparum apicoplast; An excellent target for antimalarial drug development. Life Sci. 2016 158 104 110 10.1016/j.lfs.2016.06.030 27381078
    [Google Scholar]
  64. Wilson R.J.M.I. Parasite plastids: Approaching the endgame. Biol. Rev. Camb. Philos. Soc. 2005 80 1 129 153 10.1017/S1464793104006591 15727041
    [Google Scholar]
  65. Heath R.J. Rock C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs 2004 5 2 146 153 15043388
    [Google Scholar]
  66. Prigge S.T. He X. Gerena L. Waters N.C. Reynolds K.A. The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry 2003 42 4 1160 1169 10.1021/bi026847k 12549938
    [Google Scholar]
  67. Shears M.J. Botté C.Y. McFadden G.I. Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol. Biochem. Parasitol. 2015 199 1-2 34 50 10.1016/j.molbiopara.2015.03.004 25841762
    [Google Scholar]
  68. van Schaijk B.C.L. Kumar T.R.S. Vos M.W. Richman A. van Gemert G.J. Li T. Eappen A.G. Williamson K.C. Morahan B.J. Fishbaugher M. Kennedy M. Camargo N. Khan S.M. Janse C.J. Sim K.L. Hoffman S.L. Kappe S.H.I. Sauerwein R.W. Fidock D.A. Vaughan A.M. Type I.I. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryot. Cell 2014 13 5 550 559 10.1128/EC.00264‑13 24297444
    [Google Scholar]
  69. Vaughan A.M. O’Neill M.T. Tarun A.S. Camargo N. Phuong T.M. Aly A.S.I. Cowman A.F. Kappe S.H.I. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell. Microbiol. 2009 11 3 506 520 10.1111/j.1462‑5822.2008.01270.x 19068099
    [Google Scholar]
  70. McLeod R. Muench S.P. Rafferty J.B. Kyle D.E. Mui E.J. Kirisits M.J. Mack D.G. Roberts C.W. Samuel B.U. Lyons R.E. Dorris M. Milhous W.K. Rice D.W. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan Fab I. Int. J. Parasitol. 2001 31 2 109 113 10.1016/S0020‑7519(01)00111‑4 11239932
    [Google Scholar]
  71. Ramya T.N.C. Mishra S. Karmodiya K. Surolia N. Surolia A. Inhibitors of nonhousekeeping functions of the apicoplast defy delayed death in Plasmodium falciparum. Antimicrob. Agents Chemother. 2007 51 1 307 316 10.1128/AAC.00808‑06 17060533
    [Google Scholar]
  72. Bommineni G.R. Kapilashrami K. Cummings J.E. Lu Y. Knudson S.E. Gu C. Walker S.G. Slayden R.A. Tonge P.J. Thiolactomycin-based inhibitors of bacterial β-ketoacyl-ACP synthases with in vivo activity. J. Med. Chem. 2016 59 11 5377 5390 10.1021/acs.jmedchem.6b00236 27187871
    [Google Scholar]
  73. Lee P.J. Bhonsle J.B. Gaona H.W. Huddler D.P. Heady T.N. Kreishman-Deitrick M. Bhattacharjee A. McCalmont W.F. Gerena L. Lopez-Sanchez M. Roncal N.E. Hudson T.H. Johnson J.D. Prigge S.T. Waters N.C. Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents. J. Med. Chem. 2009 52 4 952 963 10.1021/jm8008103 19191586
    [Google Scholar]
  74. Biddau M. Sheiner L. Targeting the apicoplast in malaria. Biochem. Soc. Trans. 2019 47 4 973 983 10.1042/BST20170563 31383817
    [Google Scholar]
  75. Singh D. Chaubey S. Habib S. Replication of the Plasmodium falciparum apicoplast DNA initiates within the inverted repeat region. Mol. Biochem. Parasitol. 2003 126 1 9 14 10.1016/S0166‑6851(02)00251‑7 12554079
    [Google Scholar]
  76. Low L.M. Stanisic D.I. Good M.F. Exploiting the apicoplast: Apicoplast-targeting drugs and malaria vaccine development. Microbes Infect. 2018 20 9-10 477 483 10.1016/j.micinf.2017.12.005 29287981
    [Google Scholar]
  77. Pradines B. Rogier C. Fusai T. Mosnier J. Daries W. Barret E. Parzy D. In vitro activities of antibiotics against Plasmodium falciparum are inhibited by iron. Antimicrob. Agents Chemother. 2001 45 6 1746 1750 10.1128/AAC.45.6.1746‑1750.2001 11353621
    [Google Scholar]
  78. Uddin T. McFadden G.I. Goodman C.D. Validation of putative apicoplast-targeting drugs using a chemical supplementation assay in cultured human malaria parasites. Antimicrob. Agents Chemother. 2018 62 1 e01161 e17 10.1128/AAC.01161‑17 29109165
    [Google Scholar]
  79. Fontinha D. Moules I. Prudêncio M. Repurposing drugs to fight hepatic malaria parasites. Molecules 2020 25 15 3409 10.3390/molecules25153409 32731386
    [Google Scholar]
  80. Slater A.F.G. Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 1992 355 6356 167 169 10.1038/355167a0 1729651
    [Google Scholar]
  81. Dahl E.L. Rosenthal P.J. Apicoplast translation, transcription and genome replication: Targets for antimalarial antibiotics. Trends Parasitol. 2008 24 6 279 284 10.1016/j.pt.2008.03.007 18450512
    [Google Scholar]
  82. Gisselberg J.E. Dellibovi-Ragheb T.A. Matthews K.A. Bosch G. Prigge S.T. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog. 2013 9 9 e1003655 10.1371/journal.ppat.1003655 24086138
    [Google Scholar]
  83. Charan M. Choudhary H.H. Singh N. Sadik M. Siddiqi M.I. Mishra S. Habib S. [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite. FEBS J. 2017 284 16 2629 2648 10.1111/febs.14159 28695709
    [Google Scholar]
  84. Röhrich R.C. Englert N. Troschke K. Reichenberg A. Hintz M. Seeber F. Balconi E. Aliverti A. Zanetti G. Köhler U. Pfeiffer M. Beck E. Jomaa H. Wiesner J. Reconstitution of an apicoplast‐localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett. 2005 579 28 6433 6438 10.1016/j.febslet.2005.10.037 16289098
    [Google Scholar]
  85. Altincicek B. Duin E.C. Reichenberg A. Hedderich R. Kollas A.K. Hintz M. Wagner S. Wiesner J. Beck E. Jomaa H. LytB protein catalyzes the terminal step of the 2‐ C ‐methyl‐ D ‐erythritol‐4‐phosphate pathway of isoprenoid biosynthesis. FEBS Lett. 2002 532 3 437 440 10.1016/S0014‑5793(02)03726‑2 12482608
    [Google Scholar]
  86. Kollas A.K. Duin E.C. Eberl M. Altincicek B. Hintz M. Reichenberg A. Henschker D. Henne A. Steinbrecher I. Ostrovsky D.N. Hedderich R. Beck E. Jomaa H. Wiesner J. Functional characterization of GcpE, an essential enzyme of the non‐mevalonate pathway of isoprenoid biosynthesis. FEBS Lett. 2002 532 3 432 436 10.1016/S0014‑5793(02)03725‑0 12482607
    [Google Scholar]
  87. Thipubon P. Uthaipibull C. Kamchonwongpaisan S. Tipsuwan W. Srichairatanakool S. Inhibitory effect of novel iron chelator, 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and green tea extract on growth of Plasmodium falciparum. Malar. J. 2015 14 1 382 10.1186/s12936‑015‑0910‑1 26424148
    [Google Scholar]
  88. Thuma P.E. Olivieri N.F. Mabeza G.F. Biemba G. Parry D. Zulu S. Fassos F.F. McClelland R.A. Koren G. Brittenham G.M. Gordeuk V.R. Assessment of the effect of the oral iron chelator deferiprone on asymptomatic Plasmodium falciparum parasitemia in humans. Am. J. Trop. Med. Hyg. 1998 58 3 358 364 10.4269/ajtmh.1998.58.358 9546419
    [Google Scholar]
  89. Iheanacho E.N. Samuni A. Avramovici-Grisaru S. Sarel S. Spira D.T. Inhibition of Plasmodium falciparum growth by a synthetic iron chelator. Trans. R. Soc. Trop. Med. Hyg. 1990 84 2 213 216 10.1016/0035‑9203(90)90259‑H 2202102
    [Google Scholar]
  90. Heiny S.R. Pautz S. Recker M. Przyborski J.M. Protein Traffic to the Plasmodium falciparum apicoplast: evidence for a sorting branch point at the Golgi. Traffic 2014 15 12 1290 1304 10.1111/tra.12226 25264207
    [Google Scholar]
  91. Parsons M. Karnataki A. Feagin J.E. DeRocher A. Protein trafficking to the apicoplast: Deciphering the apicomplexan solution to secondary endosymbiosis. Eukaryot. Cell 2007 6 7 1081 1088 10.1128/EC.00102‑07 17513565
    [Google Scholar]
  92. Craig E.A. Gambill B.D. Nelson R.J. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol. Rev. 1993 57 2 402 414 10.1128/mr.57.2.402‑414.1993 8336673
    [Google Scholar]
  93. Gitau G.W. Mandal P. Blatch G.L. Przyborski J. Shonhai A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012 17 2 191 202 10.1007/s12192‑011‑0299‑x 22005844
    [Google Scholar]
  94. Florentin A. Cobb D.W. Fishburn J.D. Cipriano M.J. Kim P.S. Fierro M.A. Striepen B. Muralidharan V. PfClpC is an essential clp chaperone required for plastid integrity and Clp protease stability in Plasmodium falciparum. Cell Rep. 2017 21 7 1746 1756 10.1016/j.celrep.2017.10.081 29141210
    [Google Scholar]
  95. El Bakkouri M. Pow A. Mulichak A. Cheung K.L.Y. Artz J.D. Amani M. Fell S. de Koning-Ward T.F. Goodman C.D. McFadden G.I. Ortega J. Hui R. Houry W.A. The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J. Mol. Biol. 2010 404 3 456 477 10.1016/j.jmb.2010.09.051 20887733
    [Google Scholar]
  96. Zininga T. Pooe O.J. Makhado P.B. Ramatsui L. Prinsloo E. Achilonu I. Dirr H. Shonhai A. Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70. Cell Stress Chaperones 2017 22 5 707 715 10.1007/s12192‑017‑0797‑6 28455613
    [Google Scholar]
  97. Zininga T. Shonhai A. Small molecule inhibitors targeting the heat shock protein system of human obligate protozoan parasites. Int. J. Mol. Sci. 2019 20 23 5930 10.3390/ijms20235930 31775392
    [Google Scholar]
  98. Ekland E.H. Schneider J. Fidock D.A. Identifying apicoplast‐targeting antimalarials using high‐throughput compatible approaches. FASEB J. 2011 25 10 3583 3593 10.1096/fj.11‑187401 21746861
    [Google Scholar]
  99. Biddau M. Kumar T.R.S. Henrich P. Laine L.M. Blackburn G.J. Chokkathukalam A. Li T.B. Sim K.L. Hoffman S.L. Barrett M.P. Coombs G.H. McFadden G.I. Fidock D.A. Müller S. Sheiner L. Lipoic acid biosynthesis is essential for Plasmodium falciparum transmission and influences redox response and carbon metabolism of parasite asexual blood stages. Cell Biol. 2020 10.1101/2020.05.17.099630
    [Google Scholar]
  100. Falkard B. Kumar T.R.S. Hecht L.S. Matthews K.A. Henrich P.P. Gulati S. Lewis R.E. Manary M.J. Winzeler E.A. Sinnis P. Prigge S.T. Heussler V. Deschermeier C. Fidock D. A key role for lipoic acid synthesis during Plasmodium liver stage development. Cell. Microbiol. 2013 15 9 1585 1604 10.1111/cmi.12137 23490300
    [Google Scholar]
  101. Rei Yan S.L. Wakasuqui F. Du X. Groves M.R. Wrenger C. Lipoic acid metabolism as a potential chemotherapeutic target against Plasmodium falciparum and Staphylococcus aureus. Front Chem. 2021 9 742175 10.3389/fchem.2021.742175 34805091
    [Google Scholar]
  102. Biddau M. Santha Kumar T.R. Henrich P. Laine L.M. Blackburn G.J. Chokkathukalam A. Li T. Lee Sim K. King L. Hoffman S.L. Barrett M.P. Coombs G.H. McFadden G.I. Fidock D.A. Müller S. Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int. J. Parasitol. 2021 51 6 441 453 10.1016/j.ijpara.2020.10.011 33713652
    [Google Scholar]
  103. Storm J. Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr. Pharm. Des. 2012 18 24 3480 3489 10.2174/138161212801327266 22607141
    [Google Scholar]
  104. Foth B.J. Stimmler L.M. Handman E. Crabb B.S. Hodder A.N. McFadden G.I. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol. Microbiol. 2005 55 1 39 53 10.1111/j.1365‑2958.2004.04407.x 15612915
    [Google Scholar]
  105. Thomsen-Zieger N. Schachtner J. Seeber F. Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett. 2003 547 1-3 80 86 10.1016/S0014‑5793(03)00673‑2 12860390
    [Google Scholar]
  106. Wang M. Wang Q. Gao X. Su Z. Conditional knock-out of lipoic acid protein ligase 1 reveals redundancy pathway for lipoic acid metabolism in Plasmodium berghei malaria parasite. Parasit. Vectors 2017 10 1 315 10.1186/s13071‑017‑2253‑y 28655332
    [Google Scholar]
  107. Allary M. Lu J.Z. Zhu L. Prigge S.T. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol. Microbiol. 2007 63 5 1331 1344 10.1111/j.1365‑2958.2007.05592.x 17244193
    [Google Scholar]
  108. Günther S. Matuschewski K. Müller S. Knockout studies reveal an important role of Plasmodium lipoic acid protein ligase A1 for asexual blood stage parasite survival. PLoS One 2009 4 5 e5510 10.1371/journal.pone.0005510 19434237
    [Google Scholar]
  109. Bansal A. Molina-Cruz A. Brzostowski J. Liu P. Luo Y. Gunalan K. Li Y. Ribeiro J.M.C. Miller L.H. Pf CDPK1 is critical for malaria parasite gametogenesis and mosquito infection. Proc. Natl. Acad. Sci. USA 2018 115 4 774 779 10.1073/pnas.1715443115 29311293
    [Google Scholar]
  110. Kumar S. Haile M.T. Hoopmann M.R. Tran L.T. Michaels S.A. Morrone S.R. Ojo K.K. Reynolds L.M. Kusebauch U. Vaughan A.M. Moritz R.L. Kappe S.H.I. Swearingen K.E. Plasmodium falciparum calcium-dependent protein kinase 4 is critical for male gametogenesis and transmission to the mosquito vector. MBio 2021 12 6 e02575 e21 10.1128/mBio.02575‑21 34724830
    [Google Scholar]
  111. Absalon S. Blomqvist K. Rudlaff R.M. DeLano T.J. Pollastri M.P. Dvorin J.D. Calcium-dependent protein kinase 5 is required for release of egress-specific organelles in Plasmodium falciparum. MBio 2018 9 1 e00130 e18 10.1128/mBio.00130‑18 29487234
    [Google Scholar]
  112. Blomqvist K. Helmel M. Wang C. Absalon S. Labunska T. Rudlaff R.M. Adapa S. Jiang R. Steen H. Dvorin J.D. Influence of Plasmodium falciparum calcium-dependent protein kinase 5 (PfCDPK5) on the late schizont stage phosphoproteome. MSphere 2020 5 1 e00921 e19 10.1128/mSphere.00921‑19 31915223
    [Google Scholar]
  113. Kumar P. Tripathi A. Ranjan R. Halbert J. Gilberger T. Doerig C. Sharma P. Regulation of Plasmodium falciparum development by calcium-dependent protein kinase 7 (PfCDPK7). J. Biol. Chem. 2014 289 29 20386 20395 10.1074/jbc.M114.561670 24895132
    [Google Scholar]
  114. Kumar S. Kumar M. Ekka R. Dvorin J.D. Paul A.S. Madugundu A.K. Gilberger T. Gowda H. Duraisingh M.T. Keshava Prasad T.S. Sharma P. PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nat. Commun. 2017 8 1 63 10.1038/s41467‑017‑00053‑1 28680058
    [Google Scholar]
  115. Maurya R. Tripathi A. Kumar M. Antil N. Yamaryo-Botté Y. Kumar P. Bansal P. Doerig C. Botté C.Y. Prasad T.S.K. Sharma P. PI4‐kinase and PfCDPK7 signaling regulate phospholipid biosynthesis in Plasmodium falciparum. EMBO Rep. 2022 23 2 e54022 10.15252/embr.202154022 34866326
    [Google Scholar]
  116. Siden-Kiamos I. Ecker A. Nybäck S. Louis C. Sinden R.E. Billker O. Plasmodium berghei calcium‐dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol. Microbiol. 2006 60 6 1355 1363 10.1111/j.1365‑2958.2006.05189.x 16796674
    [Google Scholar]
  117. Rai P. Sharma D. Soni R. Khatoon N. Sharma B. Bhatt T.K. Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling. J. Microbiol. 2017 55 4 231 236 10.1007/s12275‑017‑6525‑1 28251546
    [Google Scholar]
  118. Cassera M.B. Gozzo F.C. D’Alexandri F.L. Merino E.F. del Portillo H.A. Peres V.J. Almeida I.C. Eberlin M.N. Wunderlich G. Wiesner J. Jomaa H. Kimura E.A. Katzin A.M. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J. Biol. Chem. 2004 279 50 51749 51759 10.1074/jbc.M408360200 15452112
    [Google Scholar]
  119. Okada M. Rajaram K. Swift R.P. Mixon A. Maschek J.A. Prigge S.T. Sigala P.A. Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. eLife 2022 11 e73208 10.7554/eLife.73208 35257658
    [Google Scholar]
  120. Guggisberg A.M. Amthor R.E. Odom A.R. Isoprenoid biosynthesis in Plasmodium falciparum. Eukaryot. Cell 2014 13 11 1348 1359 10.1128/EC.00160‑14 25217461
    [Google Scholar]
  121. Saggu G.S. Pala Z.R. Garg S. Saxena V. New insight into isoprenoids biosynthesis process and future prospects for drug designing in plasmodium. Front. Microbiol. 2016 7 1421 10.3389/fmicb.2016.01421 27679614
    [Google Scholar]
  122. Howe R. Kelly M. Jimah J. Hodge D. Odom A.R. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryot. Cell 2013 12 2 215 223 10.1128/EC.00073‑12 23223036
    [Google Scholar]
  123. Use of radioactive precursors for biochemical characterization the biosynthesis of isoprenoids in intraerythrocytic stages of Plasmodium falciparum. Radioisotopes - Applications in Bio-Medical Science InTech 2011 10.5772/20582
    [Google Scholar]
  124. Cassera M.B. Merino E.F. Peres V.J. Kimura E.A. Wunderlich G. Katzin A.M. Effect of fosmidomycin on metabolic and transcript profiles of the methylerythritol phosphate pathway in Plasmodium falciparum. Mem. Inst. Oswaldo Cruz 2007 102 3 377 384 10.1590/S0074‑02762007000300019 17568945
    [Google Scholar]
  125. Saggu G.S. Apicoplast journey and its essentiality as a compartment for malaria parasite survival. Front. Cell. Infect. Microbiol. 2022 12 881825 10.3389/fcimb.2022.881825 35463632
    [Google Scholar]
  126. Chakrabarti D. Da Silva T. Barger J. Paquette S. Patel H. Patterson S. Allen C.M. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J. Biol. Chem. 2002 277 44 42066 42073 10.1074/jbc.M202860200 12194969
    [Google Scholar]
  127. Nagaraj V.A. Sundaram B. Varadarajan N.M. Subramani P.A. Kalappa D.M. Ghosh S.K. Padmanaban G. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013 9 8 e1003522 10.1371/journal.ppat.1003522 23935500
    [Google Scholar]
  128. van Dooren G.G. Kennedy A.T. McFadden G.I. The use and abuse of heme in apicomplexan parasites. Antioxid. Redox Signal. 2012 17 4 634 656 10.1089/ars.2012.4539 22320355
    [Google Scholar]
  129. Jomaa H. Wiesner J. Sanderbrand S. Altincicek B. Weidemeyer C. Hintz M. Türbachova I. Eberl M. Zeidler J. Lichtenthaler H.K. Soldati D. Beck E. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999 285 5433 1573 1576 10.1126/science.285.5433.1573 10477522
    [Google Scholar]
  130. Borrmann S. Issifou S. Esser G. Adegnika A.A. Ramharter M. Matsiegui P.B. Oyakhirome S. Mawili-Mboumba D.P. Missinou M.A. Kun J.F.J. Jomaa H. Kremsner P.G. Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J. Infect. Dis. 2004 190 9 1534 1540 10.1086/424603 15478056
    [Google Scholar]
  131. Huy N.T. Kamei K. Kondo Y. Serada S. Eanaori K. Takano R. Tajima K. Hara S. Effect of antifungal azoles on the heme detoxification system of malarial parasite. J. Biochem. 2002 131 3 437 444 10.1093/oxfordjournals.jbchem.a003119 11872173
    [Google Scholar]
  132. Simão-Gurge R.M. Wunderlich G. Cricco J.A. Cubillos E.F.G. Doménech-Carbó A. Cebrián-Torrejón G. Almeida F.G. Cirulli B.A. Katzin A.M. Biosynthesis of heme O in intraerythrocytic stages of Plasmodium falciparum and potential inhibitors of this pathway. Sci. Rep. 2019 9 1 19261 10.1038/s41598‑019‑55506‑y 31848371
    [Google Scholar]
  133. Toyama T. Tahara M. Nagamune K. Arimitsu K. Hamashima Y. Palacpac N.M.Q. Kawaide H. Horii T. Tanabe K. Gibberellin biosynthetic inhibitors make human malaria parasite Plasmodium falciparum cells swell and rupture to death. PLoS One 2012 7 3 e32246 10.1371/journal.pone.0032246 22412858
    [Google Scholar]
  134. Nagaraj V.A. Padmanaban G. Insights on heme synthesis in the malaria parasite. Trends Parasitol. 2017 33 8 583 586 10.1016/j.pt.2017.04.005 28495484
    [Google Scholar]
  135. Ke H. Sigala P.A. Miura K. Morrisey J.M. Mather M.W. Crowley J.R. Henderson J.P. Goldberg D.E. Long C.A. Vaidya A.B. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 2014 289 50 34827 34837 10.1074/jbc.M114.615831 25352601
    [Google Scholar]
  136. Sato S. Clough B. Coates L. Wilson R.J. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 2004 155 1 117 125 10.1078/1434461000169 15144063
    [Google Scholar]
  137. Bonday Z.Q. Taketani S. Gupta P.D. Padmanaban G. Heme biosynthesis by the malarial parasite. Import of delta-aminolevulinate dehydrase from the host red cell. J. Biol. Chem. 1997 272 35 21839 21846 10.1074/jbc.272.35.21839 9268315
    [Google Scholar]
  138. Goldberg D.E. Sigala P.A. Plasmodium heme biosynthesis: To be or not to be essential? PLoS Pathog. 2017 13 9 e1006511 10.1371/journal.ppat.1006511 28957449
    [Google Scholar]
  139. Sigala P.A. Crowley J.R. Henderson J.P. Goldberg D.E. Deconvoluting heme biosynthesis to target blood-stage malaria parasites. eLife 2015 4 e09143 10.7554/eLife.09143 26173178
    [Google Scholar]
  140. Vaid A. Ranjan R. Smythe W.A. Hoppe H.C. Sharma P. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 2010 115 12 2500 2507 10.1182/blood‑2009‑08‑238972 20093402
    [Google Scholar]
  141. Adelusi T.I. Bolaji O.Q. Ojo T.O. Adegun I.P. Adebodun S. Molecular mechanics with generalized born surface area (MMGBSA) calculations and docking studies unravel some antimalarial compounds using heme o synthase as therapeutic target. ChemistrySelect 2023 8 48 e202303686 10.1002/slct.202303686
    [Google Scholar]
  142. van Niekerk D.D. Penkler G.P. du Toit F. Snoep J.L. Targeting glycolysis in the malaria parasite Plasmodium falciparum. FEBS J. 2016 283 4 634 646 10.1111/febs.13615 26648082
    [Google Scholar]
  143. Fisher G.M. Cobbold S.A. Jezewski A. Carpenter E.F. Arnold M. Cowell A.N. Tjhin E.T. Saliba K.J. Skinner-Adams T.S. Lee M.C.S. Odom John A. Winzeler E.A. McConville M.J. Poulsen S.A. Andrews K.T. The key glycolytic enzyme phosphofructokinase is involved in resistance to antiplasmodial glycosides. MBio 2020 11 6 e02842 e20 10.1128/mBio.02842‑20 33293381
    [Google Scholar]
  144. Alam A. Neyaz M.K. Ikramul Hasan S. Exploiting unique structural and functional properties of malarial glycolytic enzymes for antimalarial drug development. Malar. Res. Treat. 2014 2014 1 13 10.1155/2014/451065 25580350
    [Google Scholar]
  145. Lin Y.H. Satani N. Hammoudi N. Yan V.C. Barekatain Y. Khadka S. Ackroyd J.J. Georgiou D.K. Pham C.D. Arthur K. Maxwell D. Peng Z. Leonard P.G. Czako B. Pisaneschi F. Mandal P. Sun Y. Zielinski R. Pando S.C. Wang X. Tran T. Xu Q. Wu Q. Jiang Y. Kang Z. Asara J.M. Priebe W. Bornmann W. Marszalek J.R. DePinho R.A. Muller F.L. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nat. Metab. 2020 2 12 1413 1426 10.1038/s42255‑020‑00313‑3 33230295
    [Google Scholar]
  146. Shivapurkar R. Hingamire T. Kulkarni A.S. Rajamohanan P.R. Reddy D.S. Shanmugam D. Evaluating antimalarial efficacy by tracking glycolysis in Plasmodium falciparum using NMR spectroscopy. Sci. Rep. 2018 8 1 18076 10.1038/s41598‑018‑36197‑3 30584241
    [Google Scholar]
  147. Chan M. Tan D.S.H. Sim T.S. Plasmodium falciparum pyruvate kinase as a novel target for antimalarial drug-screening. Travel Med. Infect. Dis. 2007 5 2 125 131 10.1016/j.tmaid.2006.01.015 17298920
    [Google Scholar]
  148. Averesch N.J.H. Krömer J.O. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds—present and future strain construction strategies. Front. Bioeng. Biotechnol. 2018 6 32 10.3389/fbioe.2018.00032 29632862
    [Google Scholar]
  149. McConkey G.A. Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 1999 43 1 175 177 10.1128/AAC.43.1.175 9869588
    [Google Scholar]
  150. Roberts C.W. Roberts F. Lyons R.E. Kirisits M.J. Mui E.J. Finnerty J. Johnson J.J. Ferguson D.J.P. Coggins J.R. Krell T. Coombs G.H. Milhous W.K. Kyle D.E. Tzipori S. Barnwell J. Dame J.B. Carlton J. McLeod R. The shikimate pathway and its branches in apicomplexan parasites. J. Infect. Dis. 2002 185 s1 Suppl. 1 S25 S36 10.1086/338004 11865437
    [Google Scholar]
  151. Valenciano A.L. Fernández-Murga M.L. Merino E.F. Holderman N.R. Butschek G.J. Shaffer K.J. Tyler P.C. Cassera M.B. Metabolic dependency of chorismate in Plasmodium falciparum suggests an alternative source for the ubiquinone biosynthesis precursor. Sci. Rep. 2019 9 1 13936 10.1038/s41598‑019‑50319‑5 31558748
    [Google Scholar]
  152. Reichau S. Jiao W. Walker S.R. Hutton R.D. Baker E.N. Parker E.J. Potent inhibitors of a shikimate pathway enzyme from Mycobacterium tuberculosis: combining mechanism- and modeling-based design. J. Biol. Chem. 2011 286 18 16197 16207 10.1074/jbc.M110.211649 21454647
    [Google Scholar]
  153. Zulet-González A. Barco-Antoñanzas M. Gil-Monreal M. Royuela M. Zabalza A. Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci. 2020 11 459 10.3389/fpls.2020.00459 32411158
    [Google Scholar]
  154. Maeda H. Dudareva N. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012 63 1 73 105 10.1146/annurev‑arplant‑042811‑105439 22554242
    [Google Scholar]
  155. McRobert L. Jiang S. Stead A. McConkey G.A. Plasmodium falciparum: Interaction of shikimate analogues with antimalarial drugs. Exp. Parasitol. 2005 111 3 178 181 10.1016/j.exppara.2005.07.002 16140296
    [Google Scholar]
  156. Hyde J.E. Exploring the folate pathway in Plasmodium falciparum. Acta Trop. 2005 94 3 191 206 10.1016/j.actatropica.2005.04.002 15845349
    [Google Scholar]
  157. Magnani G. Lomazzi M. Peracchi A. Completing the folate biosynthesis pathway in Plasmodium falciparum: p -aminobenzoate is produced by a highly divergent promiscuous aminodeoxychorismate lyase. Biochem. J. 2013 455 2 149 155 10.1042/BJ20130896 23957380
    [Google Scholar]
  158. Nzila A. Ward S.A. Marsh K. Sims P.F.G. Hyde J.E. Comparative folate metabolism in humans and malaria parasites (part I): Pinters for malaria treatment from cancer chemotherapy. Trends Parasitol. 2005 21 6 292 298 10.1016/j.pt.2005.04.002 15922251
    [Google Scholar]
  159. Cowman A.F. Foote S.J. Chemotherapy and drug resistance in malaria. Int. J. Parasitol. 1990 20 4 503 513 10.1016/0020‑7519(90)90198‑V 2210944
    [Google Scholar]
  160. Kain K.C. Current status and replies to frequently posed questions on atovaquone plus proguanil (Malarone) for the prevention of malaria. BioDrugs 2003 17 Suppl. 1 23 28 10.2165/00063030‑200317001‑00006 12785875
    [Google Scholar]
  161. Riboldi G.P. Zigweid R. Myler P.J. Mayclin S.J. Couñago R.M. Staker B.L. Identification of P218 as a potent inhibitor of Mycobacterium ulcerans DHFR. RSC Med. Chem. 2021 12 1 103 109 10.1039/D0MD00303D 34046602
    [Google Scholar]
  162. Yuthavong Y. Tarnchompoo B. Vilaivan T. Chitnumsub P. Kamchonwongpaisan S. Charman S.A. McLennan D.N. White K.L. Vivas L. Bongard E. Thongphanchang C. Taweechai S. Vanichtanankul J. Rattanajak R. Arwon U. Fantauzzi P. Yuvaniyama J. Charman W.N. Matthews D. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA 2012 109 42 16823 16828 10.1073/pnas.1204556109 23035243
    [Google Scholar]
  163. Rathod P.K. Malaria chemotherapy: Paradigms from pyrimidine metabolism. Biol. Parasit. Tschudi C. Pearce E.J. Boston, MA Springer US 2000 73 93 10.1007/978‑1‑4757‑4622‑8_4
    [Google Scholar]
  164. Belete T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther. 2020 14 3875 3889 10.2147/DDDT.S265602 33061294
    [Google Scholar]
  165. Kamchonwongpaisan S. Quarrell R. Charoensetakul N. Ponsinet R. Vilaivan T. Vanichtanankul J. Tarnchompoo B. Sirawaraporn W. Lowe G. Yuthavong Y. Inhibitors of multiple mutants of Plasmodium falciparum dihydrofolate reductase and their antimalarial activities. J. Med. Chem. 2004 47 3 673 680 10.1021/jm030165t 14736247
    [Google Scholar]
  166. Cobbold S.A. Martin R.E. Kirk K. Methionine transport in the malaria parasite Plasmodium falciparum. Int. J. Parasitol. 2011 41 1 125 135 10.1016/j.ijpara.2010.09.001 20851123
    [Google Scholar]
  167. Asawamahasakda W. Yuthavong Y. The methionine synthesis cycle and salvage of methyltetrahydrofolate from host red cells in the malaria parasite (Plasmodium falciparum). Parasitology 1993 107 1 1 10 10.1017/S0031182000079348 8355992
    [Google Scholar]
  168. Marreiros I.M. Marques S. Parreira A. Mastrodomenico V. Mounce B.C. Harris C.T. Kafsack B.F. Billker O. Zuzarte-Luís V. Mota M.M. A non-canonical sensing pathway mediates Plasmodium adaptation to amino acid deficiency. Commun. Biol. 2023 6 1 205 10.1038/s42003‑023‑04566‑y 36810637
    [Google Scholar]
  169. Musabyimana J.P. Distler U. Sassmannshausen J. Berks C. Manti J. Bennink S. Blaschke L. Burda P.C. Flammersfeld A. Tenzer S. Ngwa C.J. Pradel G. Plasmodium falciparum S-adenosylmethionine synthetase is essential for parasite survival through a complex interaction network with cytoplasmic and nuclear proteins. Microorganisms 2022 10 7 1419 10.3390/microorganisms10071419 35889137
    [Google Scholar]
  170. Anvari B. Leading causes of methotrexate and antimalarial drugs discontinuation in Iranian patients with rheumatoid arthritis. Egypt. Rheumatol. 2016 38 3 147 152 10.1016/j.ejr.2015.12.003
    [Google Scholar]
  171. Imwong M. Russell B. Suwanarusk R. Nzila A. Leimanis M.L. Sriprawat K. Kaewpongsri S. Phyo A.P. Snounou G. Nosten F. Renia L. Methotrexate is highly potent against pyrimethamine-resistant Plasmodium vivax. J. Infect. Dis. 2011 203 2 207 210 10.1093/infdis/jiq024 21288820
    [Google Scholar]
  172. Thera M.A. Sehdev P.S. Coulibaly D. Traore K. Garba M.N. Cissoko Y. Kone A. Guindo A. Dicko A. Beavogui A.H. Djimde A.A. Lyke K.E. Diallo D.A. Doumbo O.K. Plowe C.V. Impact of trimethoprim-sulfamethoxazole prophylaxis on falciparum malaria infection and disease. J. Infect. Dis. 2005 192 10 1823 1829 10.1086/498249 16235184
    [Google Scholar]
  173. Chemaly S.M. Chen C.T. van Zyl R.L. Naturally occurring cobalamins have antimalarial activity. J. Inorg. Biochem. 2007 101 5 764 773 10.1016/j.jinorgbio.2007.01.006 17343914
    [Google Scholar]
  174. Downie M.J. Kirk K. Mamoun C.B. Purine salvage pathways in the intraerythrocytic malaria parasite Plasmodium falciparum. Eukaryot. Cell 2008 7 8 1231 1237 10.1128/EC.00159‑08 18567789
    [Google Scholar]
  175. Frame I.J. Deniskin R. Arora A. Akabas M.H. Purine import into malaria parasites as a target for antimalarial drug development. Ann. N. Y. Acad. Sci. 2015 1342 1 19 28 10.1111/nyas.12568 25424653
    [Google Scholar]
  176. Minnow Y.V.T. Schramm V.L. Purine and pyrimidine pathways as antimalarial targets. Infect. Paolo Piccaluga P. Dis., IntechOpen 2023 10.5772/intechopen.106468
    [Google Scholar]
  177. Babai R. Izrael R. Vértessy B.G. Characterization of the dynamics of Plasmodium falciparum deoxynucleotide-triphosphate pool in a stage-specific manner. Sci. Rep. 2022 12 1 19926 10.1038/s41598‑022‑23807‑4 36402851
    [Google Scholar]
  178. Raman J. Ashok C.S. Subbayya S.I.N. Anand R.P. Selvi S.T. Balaram H. Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferase. Stability studies on the product-activated enzyme. FEBS J. 2005 272 8 1900 1911 10.1111/j.1742‑4658.2005.04620.x 15819884
    [Google Scholar]
  179. Donaldson T. Kim K. Targeting Plasmodium falciparum purine salvage enzymes: A look at structure-based drug development. Infect. Disord. Drug Targets 2010 10 3 191 199 10.2174/187152610791163408 20480551
    [Google Scholar]
  180. Keough D.T. Hocková D. Janeba Z. Wang T.H. Naesens L. Edstein M.D. Chavchich M. Guddat L.W. Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their prodrugs as antimalarial agents. J. Med. Chem. 2015 58 2 827 846 10.1021/jm501416t 25494538
    [Google Scholar]
  181. Shi W. Ting L.M. Kicska G.A. Lewandowicz A. Tyler P.C. Evans G.B. Furneaux R.H. Kim K. Almo S.C. Schramm V.L. Plasmodium falciparum purine nucleoside phosphorylase: Crystal structures, immucillin inhibitors, and dual catalytic function. J. Biol. Chem. 2004 279 18 18103 18106 10.1074/jbc.C400068200 14982926
    [Google Scholar]
  182. Hazleton K.Z. Ho M.C. Cassera M.B. Clinch K. Crump D.R. Rosario I. Jr Merino E.F. Almo S.C. Tyler P.C. Schramm V.L. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Chem. Biol. 2012 19 6 721 730 10.1016/j.chembiol.2012.04.012 22726686
    [Google Scholar]
  183. Cheviet T. Lefebvre-Tournier I. Wein S. Peyrottes S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J. Med. Chem. 2019 62 18 8365 8391 10.1021/acs.jmedchem.9b00182 30964283
    [Google Scholar]
  184. Ting L.M. Shi W. Lewandowicz A. Singh V. Mwakingwe A. Birck M.R. Ringia E.A.T. Bench G. Madrid D.C. Tyler P.C. Evans G.B. Furneaux R.H. Schramm V.L. Kim K. Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J. Biol. Chem. 2005 280 10 9547 9554 10.1074/jbc.M412693200 15576366
    [Google Scholar]
  185. Barrett M. The pentose phosphate pathway and parasitic protozoa. Parasitol. Today 1997 13 1 11 16 10.1016/S0169‑4758(96)10075‑2 15275160
    [Google Scholar]
  186. Allen S.M. Lim E.E. Jortzik E. Preuss J. Chua H.H. MacRae J.I. Rahlfs S. Haeussler K. Downton M.T. McConville M.J. Becker K. Ralph S.A. Plasmodium falciparum glucose‐6‐phosphate dehydrogenase 6‐phosphogluconolactonase is a potential drug target. FEBS J. 2015 282 19 3808 3823 10.1111/febs.13380 26198663
    [Google Scholar]
  187. Zuluaga L. Parra S. Garrido E. López-Muñoz R. Maya J.D. Blair S. Dehydroepiandrosterone effect on Plasmodium falciparum and its interaction with antimalarial drugs. Exp. Parasitol. 2013 133 1 114 120 10.1016/j.exppara.2012.11.002 23178659
    [Google Scholar]
  188. Haeussler K. Fritz-Wolf K. Reichmann M. Rahlfs S. Becker K. Characterization of Plasmodium falciparum 6-Phosphogluconate Dehydrogenase as an Antimalarial Drug Target. J. Mol. Biol. 2018 430 21 4049 4067 10.1016/j.jmb.2018.07.030 30098336
    [Google Scholar]
  189. Karthika A. Hemavathy N. Amala M. Rajamanikandan S. Veerapandian M. Prabhu D. Vetrivel U. Jung Chen C. Jeyaraj Pandian C. Jeyakanthan J. Structural and functional characterization of 6-phosphogluconate dehydrogenase in Plasmodium falciparum (3D7) and identification of its potent inhibitors. J. Biomol. Struct. Dyn. 2024 42 4 2058 2074 10.1080/07391102.2023.2248271 37599457
    [Google Scholar]
  190. Köhler E. Barrach H.J. Neubert D. Inhibition of NADP dependent oxidoreductases by the 6‐aminonicotinamide analogue of NADP. FEBS Lett. 1970 6 3 225 228 10.1016/0014‑5793(70)80063‑1 11947380
    [Google Scholar]
  191. Boateng R.A. Tastan Bishop Ö. Musyoka T.M. Characterisation of plasmodial transketolases and identification of potential inhibitors: An in silico study. Malar. J. 2020 19 1 442 10.1186/s12936‑020‑03512‑1 33256744
    [Google Scholar]
  192. Hikosaka K. Komatsuya K. Suzuki S. Kita K. Mitochondria of malaria parasites as a drug target. Overv. Samie A. Trop. Dis., InTech 2015 10.5772/61283
    [Google Scholar]
  193. Painter H.J. Morrisey J.M. Vaidya A.B. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother. 2010 54 12 5281 5287 10.1128/AAC.00937‑10 20855748
    [Google Scholar]
  194. Fisher N. Antoine T. Ward S.A. Biagini G.A. Mitochondrial electron transport chain of Plasmodium falciparum. Encycl. Malar. Hommel M. Kremsner P.G. New York Springer 2014 1 14 10.1007/978‑1‑4614‑8757‑9_12‑1
    [Google Scholar]
  195. Nixon G.L. Pidathala C. Shone A.E. Antoine T. Fisher N. O’Neill P.M. Ward S.A. Biagini G.A. Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med. Chem. 2013 5 13 1573 1591 10.4155/fmc.13.121 24024949
    [Google Scholar]
  196. Biagini G.A. Fisher N. Shone A.E. Mubaraki M.A. Srivastava A. Hill A. Antoine T. Warman A.J. Davies J. Pidathala C. Amewu R.K. Leung S.C. Sharma R. Gibbons P. Hong D.W. Pacorel B. Lawrenson A.S. Charoensutthivarakul S. Taylor L. Berger O. Mbekeani A. Stocks P.A. Nixon G.L. Chadwick J. Hemingway J. Delves M.J. Sinden R.E. Zeeman A.M. Kocken C.H.M. Berry N.G. O’Neill P.M. Ward S.A. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc. Natl. Acad. Sci. USA 2012 109 21 8298 8303 10.1073/pnas.1205651109 22566611
    [Google Scholar]
  197. Ke H. Ganesan S.M. Dass S. Morrisey J.M. Pou S. Nilsen A. Riscoe M.K. Mather M.W. Vaidya A.B. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One 2019 14 4 e0214023 10.1371/journal.pone.0214023 30964863
    [Google Scholar]
  198. Orr A.L. Ashok D. Sarantos M.R. Ng R. Shi T. Gerencser A.A. Hughes R.E. Brand M.D. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One 2014 9 2 e89938 10.1371/journal.pone.0089938 24587137
    [Google Scholar]
  199. Lunev S. Batista F.A. Bosch S.S. Wrenger C. Groves M.R. Identification and validation of novel drug targets for the treatment of Plasmodium falciparum malaria: New insights. Current Topics in Malaria. Rodriguez-Morales A.J. InTech 2016 10.5772/65659
    [Google Scholar]
  200. Mi-Ichi F. Miyadera H. Kobayashi T. Takamiya S. Waki S. Iwata S. Shibata S. Kita K. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann. N. Y. Acad. Sci. 2005 1056 1 46 54 10.1196/annals.1352.037 16387676
    [Google Scholar]
  201. Ito T. Kajita S. Fujii M. Shinohara Y. Plasmodium Parasite Malate-Quinone Oxidoreductase Functionally Complements a Yeast Deletion Mutant of Mitochondrial Malate Dehydrogenase. Microbiol. Spectr. 2023 11 3 e00168 e23 10.1128/spectrum.00168‑23 37036365
    [Google Scholar]
  202. Esser L. Xia D. Mitochondrial cytochrome bc1 complex as validated drug target: A structural perspective. Trop. Med. Infect. Dis. 2024 9 2 39 10.3390/tropicalmed9020039 38393128
    [Google Scholar]
  203. Sheokand P.K. Mühleip A. Sheiner L. Plasmodium falciparum mitochondrial complex III, the target of atovaquone, is essential for progression to the transmissible sexual stages. Preprints 2024
    [Google Scholar]
  204. Amporndanai K. Pinthong N. O’Neill P.M. Hong W.D. Amewu R.K. Pidathala C. Berry N.G. Leung S.C. Ward S.A. Biagini G.A. Hasnain S.S. Antonyuk S.V. Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials. Biology 2022 11 8 1109 10.3390/biology11081109 35892964
    [Google Scholar]
  205. Biagini G.A. Fisher N. Berry N. Stocks P.A. Meunier B. Williams D.P. Bonar-Law R. Bray P.G. Owen A. O’Neill P.M. Ward S.A. Acridinediones: selective and potent inhibitors of the malaria parasite mitochondrial bc1 complex. Mol. Pharmacol. 2008 73 5 1347 1355 10.1124/mol.108.045120 18319379
    [Google Scholar]
  206. Capper M.J. O’Neill P.M. Fisher N. Strange R.W. Moss D. Ward S.A. Berry N.G. Lawrenson A.S. Hasnain S.S. Biagini G.A. Antonyuk S.V. Antimalarial 4(1H)-pyridones bind to the Q i site of cytochrome bc1. Proc. Natl. Acad. Sci. USA 2015 112 3 755 760 10.1073/pnas.1416611112 25564664
    [Google Scholar]
  207. Jenkins B.J. Daly T.M. Morrisey J.M. Mather M.W. Vaidya A.B. Bergman L.W. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS One 2016 11 3 e0152197 10.1371/journal.pone.0152197 27015086
    [Google Scholar]
  208. Kumar S. Bhardwaj T.R. Prasad D.N. Singh R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother. 2018 104 8 27 10.1016/j.biopha.2018.05.009 29758416
    [Google Scholar]
  209. Nurkanto A. Imamura R. Rahmawati Y. Prabandari E.E. Waluyo D. Annoura T. Yamamoto K. Sekijima M. Nishimura Y. Okabe T. Shiba T. Shibata N. Kojima H. Duffy J. Nozaki T. Dephospho-Coenzyme A. Dephospho-Coenzyme A. Kinase Is an Exploitable Drug Target against Plasmodium falciparum: Identification of Selective Inhibitors by High-Throughput Screening of a Large Chemical Compound Library. Antimicrob. Agents Chemother. 2022 66 11 e00420 e00422 10.1128/aac.00420‑22 36314787
    [Google Scholar]
  210. Agrawal P. Kumari S. Mohmmed A. Malhotra P. Sharma U. Sahal D. Identification of novel, potent, and selective compounds against malaria using glideosomal-associated protein 50 as a drug target. ACS Omega 2023 8 41 38506 38523 10.1021/acsomega.3c05323 37867646
    [Google Scholar]
  211. Field S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: Great promise or disappointment? Ther. Adv. Chronic Dis. 2015 6 4 170 184 10.1177/2040622315582325 26137207
    [Google Scholar]
  212. Nina P.B. Morrisey J.M. Ganesan S.M. Ke H. Pershing A.M. Mather M.W. Vaidya A.B. ATP synthase complex of Plasmodium falciparum: Dimeric assembly in mitochondrial membranes and resistance to genetic disruption. J. Biol. Chem. 2011 286 48 41312 41322 10.1074/jbc.M111.290973 21984828
    [Google Scholar]
  213. Krungkrai S.R. Krungkrai J. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target. Asian Pac. J. Trop. Med. 2016 9 6 525 534 10.1016/j.apjtm.2016.04.012 27262062
    [Google Scholar]
  214. Cassera M.B. Zhang Y. Hazleton K.Z. Schramm V.L. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr. Top. Med. Chem. 2011 11 16 2103 2115 10.2174/156802611796575948 21619511
    [Google Scholar]
  215. Hartuti E.D. Sakura T. Tagod M.S.O. Yoshida E. Wang X. Mochizuki K. Acharjee R. Matsuo Y. Tokumasu F. Mori M. Waluyo D. Shiomi K. Nozaki T. Hamano S. Shiba T. Kita K. Inaoka D.K. Identification of 3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Int. J. Mol. Sci. 2021 22 13 7236 10.3390/ijms22137236 34281290
    [Google Scholar]
  216. Kokkonda S. El Mazouni F. White K.L. White J. Shackleford D.M. Lafuente-Monasterio M.J. Rowland P. Manjalanagara K. Joseph J.T. Garcia-Pérez A. Fernandez J. Gamo F.J. Waterson D. Burrows J.N. Palmer M.J. Charman S.A. Rathod P.K. Phillips M.A. Isoxazolopyrimidine-based inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity. ACS Omega 2018 3 8 9227 9240 10.1021/acsomega.8b01573 30197997
    [Google Scholar]
  217. Phillips M.A. White K.L. Kokkonda S. Deng X. White J. El Mazouni F. Marsh K. Tomchick D.R. Manjalanagara K. Rudra K.R. Wirjanata G. Noviyanti R. Price R.N. Marfurt J. Shackleford D.M. Chiu F.C.K. Campbell M. Jimenez-Diaz M.B. Bazaga S.F. Angulo-Barturen I. Martinez M.S. Lafuente-Monasterio M. Kaminsky W. Silue K. Zeeman A.M. Kocken C. Leroy D. Blasco B. Rossignol E. Rueckle T. Matthews D. Burrows J.N. Waterson D. Palmer M.J. Rathod P.K. Charman S.A. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect. Dis. 2016 2 12 945 957 10.1021/acsinfecdis.6b00144 27641613
    [Google Scholar]
  218. Leban J. Kralik M. Mies J. Baumgartner R. Gassen M. Tasler S. Biphenyl-4-ylcarbamoyl thiophene carboxylic acids as potent DHODH inhibitors. Bioorg. Med. Chem. Lett. 2006 16 2 267 270 10.1016/j.bmcl.2005.10.011 16246558
    [Google Scholar]
  219. Dickerman B.K. Elsworth B. Cobbold S.A. Nie C.Q. McConville M.J. Crabb B.S. Gilson P.R. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci. Rep. 2016 6 1 37502 10.1038/srep37502 27874068
    [Google Scholar]
  220. Olszewski K.L. Mather M.W. Morrisey J.M. Garcia B.A. Vaidya A.B. Rabinowitz J.D. Llinás M. Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature 2010 466 7307 774 778 10.1038/nature09301 20686576
    [Google Scholar]
  221. MacRae J.I. Dixon M.W.A. Dearnley M.K. Chua H.H. Chambers J.M. Kenny S. Bottova I. Tilley L. McConville M.J. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013 11 1 67 10.1186/1741‑7007‑11‑67 23763941
    [Google Scholar]
  222. Olszewski K.L. Llinás M. Central carbon metabolism of Plasmodium parasites. Mol. Biochem. Parasitol. 2011 175 2 95 103 10.1016/j.molbiopara.2010.09.001 20849882
    [Google Scholar]
  223. Ebstie Y.A. Abay S.M. Tadesse W.T. Ejigu D.A. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: The evidence to date. Drug Des. Devel. Ther. 2016 10 2387 2399 10.2147/DDDT.S61443 27528800
    [Google Scholar]
  224. Lu K.Y. Derbyshire E.R. Tafenoquine: A step toward malaria elimination. Biochemistry 2020 59 8 911 920 10.1021/acs.biochem.9b01105 32073254
    [Google Scholar]
  225. Lindblom J.C.R. Zhang X. Lehane A.M. A pH fingerprint assay to identify inhibitors of multiple validated and potential antimalarial drug targets. ACS Infect. Dis. 2024 10 4 1185 1200 10.1021/acsinfecdis.3c00588 38499199
    [Google Scholar]
  226. Huang J. Yuan Y. Zhao N. Pu D. Tang Q. Zhang S. Luo S. Yang X. Wang N. Xiao Y. Zhang T. Liu Z. Sakata-Kato T. Jiang X. Kato N. Yan N. Yin H. Orthosteric-allosteric dual inhibitors of PfHT1 as selective antimalarial agents. Proc. Natl. Acad. Sci. USA 2021 118 3 e2017749118 10.1073/pnas.2017749118 33402433
    [Google Scholar]
  227. Kraft T.E. Armstrong C. Heitmeier M.R. Odom A.R. Hruz P.W. The glucose transporter PfHT1 is an antimalarial target of the HIV protease inhibitor lopinavir. Antimicrob. Agents Chemother. 2015 59 10 6203 6209 10.1128/AAC.00899‑15 26248369
    [Google Scholar]
  228. Wichers J.S. van Gelder C. Fuchs G. Ruge J.M. Pietsch E. Ferreira J.L. Safavi S. von Thien H. Burda P.C. Mesén-Ramirez P. Spielmann T. Strauss J. Gilberger T.W. Bachmann A. Characterization of apicomplexan amino acid transporters (ApiATs) in the malaria parasite Plasmodium falciparum. MSphere 2021 6 6 e00743 e21 10.1128/mSphere.00743‑21 34756057
    [Google Scholar]
  229. Heitmeier M.R. Hresko R.C. Edwards R.L. Prinsen M.J. Ilagan M.X.G. Odom John A.R. Hruz P.W. Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. PLoS One 2019 14 5 e0216457 10.1371/journal.pone.0216457 31071153
    [Google Scholar]
  230. Endo T. Takemae H. Sharma I. Furuya T. Multipurpose drugs active against both Plasmodium spp. and Microorganisms: Potential application for new drug development. Front. Cell. Infect. Microbiol. 2021 11 797509 10.3389/fcimb.2021.797509 35004357
    [Google Scholar]
  231. Fedele A.O. Proud C.G. Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling. Biosci. Rep. 2020 40 4 BSR20200905 10.1042/BSR20200905 32285908
    [Google Scholar]
  232. Murithi J.M. Pascal C. Bath J. Boulenc X. Gnädig N.F. Pasaje C.F.A. Rubiano K. Yeo T. Mok S. Klieber S. Desert P. Jiménez-Díaz M.B. Marfurt J. Rouillier M. Cherkaoui-Rbati M.H. Gobeau N. Wittlin S. Uhlemann A.C. Price R.N. Wirjanata G. Noviyanti R. Tumwebaze P. Cooper R.A. Rosenthal P.J. Sanz L.M. Gamo F.J. Joseph J. Singh S. Bashyam S. Augereau J.M. Giraud E. Bozec T. Vermat T. Tuffal G. Guillon J.M. Menegotto J. Sallé L. Louit G. Cabanis M.J. Nicolas M.F. Doubovetzky M. Merino R. Bessila N. Angulo-Barturen I. Baud D. Bebrevska L. Escudié F. Niles J.C. Blasco B. Campbell S. Courtemanche G. Fraisse L. Pellet A. Fidock D.A. Leroy D. The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance. Sci. Transl. Med. 2021 13 603 eabg6013 10.1126/scitranslmed.abg6013 34290058
    [Google Scholar]
  233. Sanchez C. The malaria food channel. Nat. Rev. Microbiol. 2011 9 7 484 10.1038/nrmicro2606 21677682
    [Google Scholar]
  234. Gaur A.H. Panetta J.C. Smith A.M. Dallas R.H. Freeman B.B. III Stewart T.B. Tang L. John E. Branum K.C. Patel N.D. Ost S. Heine R.N. Richardson J.L. Hammill J.T. Bebrevska L. Gusovsky F. Maki N. Yanagi T. Flynn P.M. McCarthy J.S. Chalon S. Guy R.K. Combining SJ733, an oral ATP4 inhibitor of Plasmodium falciparum, with the pharmacokinetic enhancer cobicistat: An innovative approach in antimalarial drug development. EBioMedicine 2022 80 104065 10.1016/j.ebiom.2022.104065 35598441
    [Google Scholar]
  235. Ho C.M. Beck J.R. Lai M. Cui Y. Goldberg D.E. Egea P.F. Zhou Z.H. Malaria parasite translocon structure and mechanism of effector export. Nature 2018 561 7721 70 75 10.1038/s41586‑018‑0469‑4 30150771
    [Google Scholar]
  236. Matthews K. Kalanon M. Chisholm S.A. Sturm A. Goodman C.D. Dixon M.W.A. Sanders P.R. Nebl T. Fraser F. Haase S. McFadden G.I. Gilson P.R. Crabb B.S. de Koning-Ward T.F. TheP lasmodium translocon of exported proteins (PTEX) component thioredoxin‐2 is important for maintaining normal blood‐stage growth. Mol. Microbiol. 2013 89 6 1167 1186 10.1111/mmi.12334 23869529
    [Google Scholar]
  237. Ahiya A.I. Bhatnagar S. Morrisey J.M. Beck J.R. Vaidya A.B. Dramatic consequences of reducing erythrocyte membrane cholesterol on Plasmodium falciparum. Microbiol. Spectr. 2022 10 1 e00158 e22 10.1128/spectrum.00158‑22 35196803
    [Google Scholar]
  238. Istvan E.S. Das S. Bhatnagar S. Beck J.R. Owen E. Llinas M. Ganesan S.M. Niles J.C. Winzeler E. Vaidya A.B. Goldberg D.E. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife 2019 8 e40529 10.7554/eLife.40529 30888318
    [Google Scholar]
  239. Lyu M. Su C.C. Kazura J.W. Yu E.W. Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT. EMBO Rep. 2021 22 3 e51628 10.15252/embr.202051628 33471955
    [Google Scholar]
  240. Peng X. Wang N. Zhu A. Xu H. Li J. Zhou Y. Wang C. Xiao Q. Guo L. Liu F. Jia Z. Duan H. Hu J. Yuan W. Geng J. Yan C. Jiang X. Deng D. Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biol. 2021 19 9 e3001386 10.1371/journal.pbio.3001386 34499638
    [Google Scholar]
  241. Kandepedu N. Gonzàlez Cabrera D. Eedubilli S. Taylor D. Brunschwig C. Gibhard L. Njoroge M. Lawrence N. Paquet T. Eyermann C.J. Spangenberg T. Basarab G.S. Street L.J. Chibale K. Identification, characterization, and optimization of 2,8-Disubstituted-1,5-naphthyridines as Novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria. J. Med. Chem. 2018 61 13 5692 5703 10.1021/acs.jmedchem.8b00648 29889526
    [Google Scholar]
  242. Brunschwig C. Lawrence N. Taylor D. Abay E. Njoroge M. Basarab G.S. Le Manach C. Paquet T. Cabrera D.G. Nchinda A.T. de Kock C. Wiesner L. Denti P. Waterson D. Blasco B. Leroy D. Witty M.J. Donini C. Duffy J. Wittlin S. White K.L. Charman S.A. Jiménez-Díaz M.B. Angulo-Barturen I. Herreros E. Gamo F.J. Rochford R. Mancama D. Coetzer T.L. van der Watt M.E. Reader J. Birkholtz L.M. Marsh K.C. Solapure S.M. Burke J.E. McPhail J.A. Vanaerschot M. Fidock D.A. Fish P.V. Siegl P. Smith D.A. Wirjanata G. Noviyanti R. Price R.N. Marfurt J. Silue K.D. Street L.J. Chibale K. UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria. Antimicrob. Agents Chemother. 2018 62 9 e00012 e00018 10.1128/AAC.00012‑18 29941635
    [Google Scholar]
  243. Chakrabarti M. Joshi N. Kumari G. Singh P. Shoaib R. Munjal A. Kumar V. Behl A. Abid M. Garg S. Gupta S. Singh S. Interaction of Plasmodium falciparum apicortin with α- and β-tubulin is critical for parasite growth and survival. Sci. Rep. 2021 11 1 4688 10.1038/s41598‑021‑83513‑5 33633135
    [Google Scholar]
  244. Kumari G. Jain R. Kumar Sah R. Kalia I. Vashistha M. Singh P. Prasad Singh A. Samby K. Burrows J. Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem. Pharmacol. 2022 203 115154 10.1016/j.bcp.2022.115154 35798201
    [Google Scholar]
  245. Morrissette N. Abbaali I. Ramakrishnan C. Hehl A.B. The tubulin superfamily in apicomplexan parasites. Microorganisms 2023 11 706 10.3390/microorganisms11030706
    [Google Scholar]
  246. Zhang G. Niu G. Hooker-Romera D. Shabani S. Ramelow J. Wang X. Butler N.S. James A.A. Li J. Targeting plasmodium α-tubulin-1 to block malaria transmission to mosquitoes. Front. Cell. Infect. Microbiol. 2023 13 1132647 10.3389/fcimb.2023.1132647 37009496
    [Google Scholar]
  247. Fennell B.J. Naughton J.A. Dempsey E. Bell A. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: Tubulin as a specific antimalarial target. Mol. Biochem. Parasitol. 2006 145 2 226 238 10.1016/j.molbiopara.2005.08.020 16406111
    [Google Scholar]
  248. Hirst W.G. Fachet D. Kuropka B. Weise C. Saliba K.J. Reber S. Purification of functional Plasmodium falciparum tubulin allows for the identification of parasite-specific microtubule inhibitors. Curr. Biol. 2022 32 4 919 926.e6 10.1016/j.cub.2021.12.049 35051355
    [Google Scholar]
  249. Mauer S. Camargo N. Abatiyow B.A. Gargaro O.R. Kappe S.H.I. Kumar S. Plasmodium microtubule-binding protein EB1 is critical for partitioning of nuclei in male gametogenesis. MBio 2023 14 4 e00822 e00823 10.1128/mbio.00822‑23 37535401
    [Google Scholar]
  250. Talman A.M. Domarle O. McKenzie F. Ariey F. Robert V. Gametocytogenesis: The puberty of Plasmodium falciparum. Malar. J. 2004 3 1 24 10.1186/1475‑2875‑3‑24 15253774
    [Google Scholar]
  251. Kiszewski A.E. Blocking Plasmodium falciparum malaria transmission with drugs: The gametocytocidal and sporontocidal properties of current and prospective antimalarials. Pharmaceuticals 2010 4 1 44 68 10.3390/ph4010044
    [Google Scholar]
  252. Chawla J. Oberstaller J. Adams J.H. Targeting gametocytes of the malaria parasite Plasmodium falciparum in a functional genomics era: Next steps. Pathogens 2021 10 3 346 10.3390/pathogens10030346 33809464
    [Google Scholar]
  253. Dash M. Sachdeva S. Bansal A. Sinha A. Gametogenesis in Plasmodium: Delving deeper to connect the dots. Front. Cell. Infect. Microbiol. 2022 12 877907 10.3389/fcimb.2022.877907 35782151
    [Google Scholar]
  254. Laurens M.B. RTS,S/AS01 vaccine (Mosquirix™): An overview. Hum. Vaccin. Immunother. 2020 16 3 480 489 10.1080/21645515.2019.1669415 31545128
    [Google Scholar]
  255. Macraild C.A. Anders R.F. Foley M. Norton R.S. Apical membrane antigen 1 as an anti-malarial drug target. Curr. Top. Med. Chem. 2011 11 16 2039 2047 10.2174/156802611796575885 21619512
    [Google Scholar]
  256. Fernandes P. Loubens M. Le Borgne R. Marinach C. Ardin B. Briquet S. Vincensini L. Hamada S. Hoareau-Coudert B. Verbavatz J.M. Weiner A. Silvie O. The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts. PLoS Pathog. 2022 18 6 e1010643 10.1371/journal.ppat.1010643 35731833
    [Google Scholar]
  257. Dluzewski A.R. Ling I.T. Hopkins J.M. Grainger M. Margos G. Mitchell G.H. Holder A.A. Bannister L.H. Formation of the food vacuole in Plasmodium falciparum: A potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)). PLoS One 2008 3 8 e3085 10.1371/journal.pone.0003085 18769730
    [Google Scholar]
  258. Jäschke A. Coulibaly B. Remarque E.J. Bujard H. Epp C. Merozoite Surface protein 1 from Plasmodium falciparum is a major target of opsonizing antibodies in individuals with acquired immunity against Malaria. Clin. Vaccine Immunol. 2017 24 11 e00155 e17 10.1128/CVI.00155‑17 28877929
    [Google Scholar]
  259. Collins C.R. Hackett F. Howell S.A. Snijders A.P. Russell M.R.G. Collinson L.M. Blackman M.J. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020 9 e61121 10.7554/eLife.61121 33287958
    [Google Scholar]
  260. Nava S. White A.C. Jr Castellanos-González A. Cryptosporidium parvum subtilisin-like serine protease (SUB1) is crucial for parasite egress from host cells. Infect. Immun. 2019 87 5 e00784 e18 10.1128/IAI.00784‑18 30782859
    [Google Scholar]
  261. Gallenti R. Poklepovich T. Florin-Christensen M. Schnittger L. The repertoire of serine rhomboid proteases of piroplasmids of importance to animal and human health. Int. J. Parasitol. 2021 51 6 455 462 10.1016/j.ijpara.2020.10.010 33610524
    [Google Scholar]
  262. Taylor H.M. McRobert L. Grainger M. Sicard A. Dluzewski A.R. Hopp C.S. Holder A.A. Baker D.A. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot. Cell 2010 9 1 37 45 10.1128/EC.00186‑09 19915077
    [Google Scholar]
  263. Vanaerschot M. Murithi J.M. Pasaje C.F.A. Ghidelli-Disse S. Dwomoh L. Bird M. Spottiswoode N. Mittal N. Arendse L.B. Owen E.S. Wicht K.J. Siciliano G. Bösche M. Yeo T. Kumar T.R.S. Mok S. Carpenter E.F. Giddins M.J. Sanz O. Ottilie S. Alano P. Chibale K. Llinás M. Uhlemann A.C. Delves M. Tobin A.B. Doerig C. Winzeler E.A. Lee M.C.S. Niles J.C. Fidock D.A. Inhibition of resistance-refractory P. falciparum Kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity. Cell Chem. Biol. 2020 27 7 806 816.e8 10.1016/j.chembiol.2020.04.001 32359426
    [Google Scholar]
  264. Kim C. Sharma R. Cyclic nucleotide selectivity of protein kinase G isozymes. Protein Sci. 2021 30 2 316 327 10.1002/pro.4008 33271627
    [Google Scholar]
  265. Cheuka P.M. Centani L. Arendse L.B. Fienberg S. Wambua L. Renga S.S. Dziwornu G.A. Kumar M. Lawrence N. Taylor D. Wittlin S. Coertzen D. Reader J. van der Watt M. Birkholtz L.M. Chibale K. New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of Plasmodium Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase. ACS Infect. Dis. 2021 7 1 34 46 10.1021/acsinfecdis.0c00481 33319990
    [Google Scholar]
  266. Baker D.A. Stewart L.B. Large J.M. Bowyer P.W. Ansell K.H. Jiménez-Díaz M.B. El Bakkouri M. Birchall K. Dechering K.J. Bouloc N.S. Coombs P.J. Whalley D. Harding D.J. Smiljanic-Hurley E. Wheldon M.C. Walker E.M. Dessens J.T. Lafuente M.J. Sanz L.M. Gamo F.J. Ferrer S.B. Hui R. Bousema T. Angulo-Barturén I. Merritt A.T. Croft S.L. Gutteridge W.E. Kettleborough C.A. Osborne S.A. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat. Commun. 2017 8 1 430 10.1038/s41467‑017‑00572‑x 28874661
    [Google Scholar]
  267. Le Bihan A. de Kanter R. Angulo-Barturen I. Binkert C. Boss C. Brun R. Brunner R. Buchmann S. Burrows J. Dechering K.J. Delves M. Ewerling S. Ferrer S. Fischli C. Gamo-Benito F.J. Gnädig N.F. Heidmann B. Jiménez-Díaz M.B. Leroy D. Martínez M.S. Meyer S. Moehrle J.J. Ng C.L. Noviyanti R. Ruecker A. Sanz L.M. Sauerwein R.W. Scheurer C. Schleiferboeck S. Sinden R. Snyder C. Straimer J. Wirjanata G. Marfurt J. Price R.N. Weller T. Fischli W. Fidock D.A. Clozel M. Wittlin S. Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose-efficacy modeling. PLoS Med. 2016 13 10 e1002138 10.1371/journal.pmed.1002138 27701420
    [Google Scholar]
  268. John G.K. Douglas N.M. von Seidlein L. Nosten F. Baird J.K. White N.J. Price R.N. Primaquine radical cure of Plasmodium vivax: A critical review of the literature. Malar. J. 2012 11 1 280 10.1186/1475‑2875‑11‑280 22900786
    [Google Scholar]
  269. Nebl T. De Veer M.J. Schofield L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 2005 130 S1 Suppl. S45 S62 10.1017/S0031182005008152 16281992
    [Google Scholar]
  270. Jonsdottir T.K. Elsworth B. Cobbold S. Gabriela M. Ploeger E. Parkyn Schneider M. Charnaud S.C. Dans, M.G.; McConville, M.; Bullen, H.E.; Crabb, B.S.; Gilson, P.R. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog. 2023 19 7 e1011006 10.1371/journal.ppat.1011006 37523385
    [Google Scholar]
  271. Adovelande J. Delèze J. Schrével J. Synergy between two calcium channel blockers, verapamil and fantofarone (SR33557), in reversing chloroquine resistance in Plasmodium falciparum. Biochem. Pharmacol. 1998 55 4 433 440 10.1016/S0006‑2952(97)00482‑6 9514077
    [Google Scholar]
  272. Joy S. Thirunavukkarasu L. Agrawal P. Singh A. Sagar B.K.C. Manjithaya R. Surolia N. Basal and starvation-induced autophagy mediates parasite survival during intraerythrocytic stages of Plasmodium falciparum. Cell Death Discov. 2018 4 1 43 10.1038/s41420‑018‑0107‑9 30302277
    [Google Scholar]
  273. Hain A.U.P. Bosch J. Autophagy in Plasmodium, a multifunctional pathway? Comput. Struct. Biotechnol. J. 2013 8 11 e201308002 10.5936/csbj.201308002 24688742
    [Google Scholar]
  274. Leleu I. Alloo J. Cazenave P.A. Roland J. Pied S. Autophagy pathways in the genesis of plasmodium-derived microvesicles: A double-edged sword? Life 2022 12 3 415 10.3390/life12030415 35330166
    [Google Scholar]
  275. Iqbal M.S. Siddiqui A.A. Alam A. Goyal M. Banerjee C. Sarkar S. Mazumder S. De R. Nag S. Saha S.J. Bandyopadhyay U. Expression, purification and characterization of Plasmodium falciparum vacuolar protein sorting 29. Protein Expr. Purif. 2016 120 7 15 10.1016/j.pep.2015.12.004
    [Google Scholar]
  276. Agrawal P. Manjithaya R. Surolia N. Autophagy‐related protein Pf ATG18 participates in food vacuole dynamics and autophagy‐like pathway in Plasmodium falciparum. Mol. Microbiol. 2020 113 4 766 782 10.1111/mmi.14441 31863491
    [Google Scholar]
  277. Wiser M.F. The digestive vacuole of the malaria parasite: A specialized lysosome. Pathogens 2024 13 3 182 10.3390/pathogens13030182 38535526
    [Google Scholar]
  278. Al-Bari M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 2017 5 1 e00293 10.1002/prp2.293 28596841
    [Google Scholar]
  279. Alder A. Sanchez C.P. Russell M.R.G. Collinson L.M. Lanzer M. Blackman M.J. Gilberger T.W. Matz J.M. The role of Plasmodium V-ATPase in vacuolar physiology and antimalarial drug uptake. Proc. Natl. Acad. Sci. USA 2023 120 30 e2306420120 10.1073/pnas.2306420120 37463201
    [Google Scholar]
  280. Yang Y. Hu L. Zheng H. Mao C. Hu W. Xiong K. Wang F. Liu C. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 2013 34 5 625 635 10.1038/aps.2013.5 23524572
    [Google Scholar]
  281. Chaudhari R. Sharma S. Patankar S. Glutathione and thioredoxin systems of the malaria parasite Plasmodium falciparum: Partners in crime? Biochem. Biophys. Res. Commun. 2017 488 1 95 100 10.1016/j.bbrc.2017.05.015 28479253
    [Google Scholar]
  282. Lushchak V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012 2012 736837 10.1155/2012/736837
    [Google Scholar]
  283. Kanzok S.M. Schirmer R.H. Türbachova I. Iozef R. Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J. Biol. Chem. 2000 275 51 40180 40186 10.1074/jbc.M007633200 11013257
    [Google Scholar]
  284. McCarty S. Schellenberger A. Goodwin D. Fuanta N. Tekwani B. Calderón A. Plasmodium falciparum Thioredoxin reductase (PfTrxR) and its role as a target for new antimalarial discovery. Molecules 2015 20 6 11459 11473 10.3390/molecules200611459 26111176
    [Google Scholar]
  285. Singh D.V. Misra K. Curcuminoids as inhibitors of thioredoxin reductase: A receptor based pharmacophore study with distance mapping of the active site. Bioinformation 2009 4 5 187 192 10.6026/97320630004187 20461157
    [Google Scholar]
  286. Sannella A.R. Casini A. Gabbiani C. Messori L. Bilia A.R. Vincieri F.F. Majori G. Severini C. New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: Mechanistic and pharmacological implications. FEBS Lett. 2008 582 6 844 847 10.1016/j.febslet.2008.02.028 18294965
    [Google Scholar]
  287. Färber P.M. Arscott L.D. Williams C.H. Jr Becker K. Schirmer R.H. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett. 1998 422 3 311 314 10.1016/S0014‑5793(98)00031‑3 9498806
    [Google Scholar]
  288. Lu G. Nagbanshi M. Goldau N. Mendes Jorge M. Meissner P. Jahn A. Mockenhaupt F.P. Müller O. Efficacy and safety of methylene blue in the treatment of malaria: A systematic review. BMC Med. 2018 16 1 59 10.1186/s12916‑018‑1045‑3 29690878
    [Google Scholar]
  289. Schirmer R.H. Coulibaly B. Stich A. Scheiwein M. Merkle H. Eubel J. Becker K. Becher H. Müller O. Zich T. Schiek W. Kouyaté B. Methylene blue as an antimalarial agent. Redox Rep. 2003 8 5 272 275 10.1179/135100003225002899 14962363
    [Google Scholar]
  290. Campbell T.L. De Silva E.K. Olszewski K.L. Elemento O. Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 2010 6 10 e1001165 10.1371/journal.ppat.1001165 21060817
    [Google Scholar]
  291. Wang M. Tang T. Li R. Huang Z. Ling D. Zheng L. Ding Y. Liu T. Xu W. Zhu F. Min H. Boonhok R. Mao F. Zhu J. Li X. Jiang L. Li J. Drug repurposing of quisinostat to discover novel Plasmodium falciparum HDAC1 inhibitors with enhanced triple-stage antimalarial activity and improved safety. J. Med. Chem. 2022 65 5 4156 4181 10.1021/acs.jmedchem.1c01993 35175762
    [Google Scholar]
  292. Andrews K.T. Tran T.N. Lucke A.J. Kahnberg P. Le G.T. Boyle G.M. Gardiner D.L. Skinner-Adams T.S. Fairlie D.P.K.P. Gt L. Gm B. Dl G. Ts S-A. Dp F. Potent antimalarial activity of histone deacetylase inhibitor analogues. Antimicrob. Agents Chemother. 2008 52 4 1454 1461 10.1128/AAC.00757‑07
    [Google Scholar]
  293. Thompson T.A. Chahine Z. Le Roch K.G. The role of long noncoding RNAs in malaria parasites. Trends Parasitol. 2023 39 7 517 531 10.1016/j.pt.2023.03.016 37121862
    [Google Scholar]
  294. Doolan D.L. Dobaño C. Baird J.K. Acquired immunity to malaria. Clin. Microbiol. Rev. 2009 22 1 13 36 10.1128/CMR.00025‑08 19136431
    [Google Scholar]
  295. Long C.A. Zavala F. Immune responses in Malaria. Cold Spring Harb. Perspect. Med. 2017 7 8 a025577 10.1101/cshperspect.a025577 28389518
    [Google Scholar]
  296. Robson K.J. Frevert U. Reckmann I. Cowan G. Beier J. Scragg I.G. Takehara K. Bishop D.H. Pradel G. Sinden R. Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes. EMBO J. 1995 14 16 3883 3894 10.1002/j.1460‑2075.1995.tb00060.x 7664729
    [Google Scholar]
  297. Noland G.S. Jansen P. Vulule J.M. Park G.S. Ondigo B.N. Kazura J.W. Moormann A.M. John C.C. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood-stage antigens. Acta Trop. 2015 142 47 56 10.1016/j.actatropica.2014.10.011 25446174
    [Google Scholar]
  298. Shukla S. Mani A. Immunoinformatics and vaccine development. Unraveling New Front. Chaudhary A. Sethi S.K. Verma A. Singapore Springer Nature 2024 115 131 10.1007/978‑981‑97‑7123‑3_6
    [Google Scholar]
  299. Bonam S.R. Rénia L. Tadepalli G. Bayry J. Kumar H.M.S. Plasmodium falciparum Malaria vaccines and vaccine adjuvants. Vaccines 2021 9 10 1072 10.3390/vaccines9101072 34696180
    [Google Scholar]
  300. Sun C. Zhou B. The molecular and cellular action properties of artemisinins: What has yeast told us? Microb. Cell 2016 3 5 196 205 10.15698/mic2016.05.498 28357355
    [Google Scholar]
  301. Ang K.K.H. Holmes M.J. Higa T. Hamann M.T. Kara U.A.K. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob. Agents Chemother. 2000 44 6 1645 1649 10.1128/AAC.44.6.1645‑1649.2000 10817722
    [Google Scholar]
  302. Miyaoka H. Shimomura M. Kimura H. Yamada Y. Kim H.S. Yusuke W. Antimalarial activity of kalihinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 1998 54 44 13467 13474 10.1016/S0040‑4020(98)00818‑7
    [Google Scholar]
  303. Lu Z. Ding Y. Li X.C. Djigbenou D.R. Grimberg B.T. Ferreira D. Ireland C.M. Van Wagoner R.M. 3-Bromohomofascaplysin A, a fascaplysin analogue from a Fijian Didemnum sp. ascidian. Bioorg. Med. Chem. 2011 19 22 6604 6607 10.1016/j.bmc.2011.05.046 21696970
    [Google Scholar]
  304. Uadia P.O. Ezeamuzie I.C. Ladan M.J. Gerrets R. Antimalarial activity of cyclosporins A, C and D. Afr. J. Med. Med. Sci. 1994 23 1 47 51 7839946
    [Google Scholar]
  305. Keita A. Franetich J.F. Carraz M. Valentin L. Bordessoules M. Baron L. Bigeard P. Dupuy F. Geay V. Tefit M. Sarrasin V. Michel S. Lavazec C. Houzé S. Mazier D. Soulard V. Porée F.H. Duval R. Potent antiplasmodial derivatives of dextromethorphan reveal the Ent-morphinan pharmacophore of tazopsine-type alkaloids. Pharmaceutics 2022 14 2 372 10.3390/pharmaceutics14020372 35214104
    [Google Scholar]
  306. Houël E. Stien D. Bourdy G. Deharo E. Quassinoids: Anticancer and antimalarial activities. Nat. Prod., Springer Berlin Heidelberg, Berlin. Ramawat K.G. Mérillon J-M. Heidelberg 2013 3775 3802 10.1007/978‑3‑642‑22144‑6_161
    [Google Scholar]
  307. Forkuo A.D. Ansah C. Mensah K.B. Annan K. Gyan B. Theron A. Mancama D. Wright C.W. In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine. Malar. J. 2017 16 1 496 10.1186/s12936‑017‑2142‑z 29282057
    [Google Scholar]
  308. Mensah K.B. Benneh C. Forkuo A.D. Ansah C. Cryptolepine, the main alkaloid of the antimalarial Cryptolepis sanguinolenta (Lindl.) schlechter, induces malformations in zebrafish embryos. Biochem. Res. Int. 2019 2019 7076986 10.1155/2019/7076986
    [Google Scholar]
  309. Raju R. Khalil Z.G. Piggott A.M. Blumenthal A. Gardiner D.L. Skinner-Adams T.S. Capon R.J. Mollemycin A. Mollemycin A. An antimalarial and antibacterial glyco-hexadepsipeptide-polyketide from an Australian marine-derived Streptomyces sp. (CMB-M0244). Org. Lett. 2014 16 6 1716 1719 10.1021/ol5003913 24611932
    [Google Scholar]
  310. Bürstner N. Roggo S. Ostermann N. Blank J. Delmas C. Freuler F. Gerhartz B. Hinniger A. Hoepfner D. Liechty B. Mihalic M. Murphy J. Pistorius D. Rottmann M. Thomas J.R. Schirle M. Schmitt E.K. Gift from nature: Cyclomarin A kills mycobacteria and malaria parasites by distinct modes of action. ChemBioChem 2015 16 17 2433 2436 10.1002/cbic.201500472 26472355
    [Google Scholar]
  311. Prashar C. Thakur N. Chakraborti S. Areeb Hussain S.S. Vashisht K. Pandey K.C. The landscape of nature-derived antimalarials-potential of marine natural products in countering the evolving Plasmodium. Front. Drug Discov. 2022 2 1065231 10.3389/fddsv.2022.1065231
    [Google Scholar]
  312. Kishore V. Yarla N. Bishayee A. Putta S. Malla R. Neelapu N. Challa S. Das S. Shiralgi Y. Hegde G. Dhananjaya B. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr. Top. Med. Chem. 2017 17 8 845 857 10.2174/1568026616666160927150452 27697058
    [Google Scholar]
  313. Indradi R.B. Muhaimin M. Barliana M.I. Khatib A. Potential plant-based new antiplasmodial agent used in Papua Island, Indonesia. Plants 2023 12 9 1813 10.3390/plants12091813 37176870
    [Google Scholar]
  314. Mishra K. Dash A.P. Dey N. Andrographolide: A novel antimalarial diterpene lactone compound from Andrographis paniculata and its interaction with curcumin and artesunate. J. Trop. Med. 2011 2011 1 6 10.1155/2011/579518 21760808
    [Google Scholar]
  315. Achan J. Talisuna A.O. Erhart A. Yeka A. Tibenderana J.K. Baliraine F.N. Rosenthal P.J. D’Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011 10 1 144 10.1186/1475‑2875‑10‑144 21609473
    [Google Scholar]
  316. Luzzi G.A. Peto T.E.A. Adverse effects of antimalarials. An update. Drug Saf. 1993 8 4 295 311 10.2165/00002018‑199308040‑00004 8481216
    [Google Scholar]
  317. Silva P.U.J. Oliveira M.B. Vieira W. Cardoso S.V. Blumenberg C. Franco A. Siqueira W.L. Paranhos L.R. Oral pigmentation as an adverse effect of chloroquine and hydroxychloroquine use. Medicine 2022 101 11 e29044 10.1097/MD.0000000000029044 35356915
    [Google Scholar]
  318. Chatio S. Aborigo R. Adongo P.B. Anyorigiya T. Dalinjong P.A. Akweongo P. Oduro A. Factors influencing adverse events reporting within the health care system: The case of artemisinin-based combination treatments in northern Ghana. Malar. J. 2016 15 1 125 10.1186/s12936‑016‑1172‑2 26921239
    [Google Scholar]
  319. Issa M.S. Warsame M. Mahamat M.H.T. Saleh I.D.M. Boulotigam K. Djimrassengar H. Issa A.H. Abdelkader O. Hassoumi M. Djimadoum M. Doderer-Lang C. Ndihiokubwayo J.B. Rasmussen C. Menard D. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Chad: Clinical and genetic surveillance. Malar. J. 2023 22 1 240 10.1186/s12936‑023‑04644‑w 37612601
    [Google Scholar]
  320. Florimond C. de Laval F. Early A.M. Sauthier S. Lazrek Y. Pelleau S. Monteiro W.M. Agranier M. Taudon N. Morin F. Magris M. Lacerda M.V.G. Viana G.M.R. Herrera S. Adhin M.R. Ferreira M.U. Woodrow C.J. Awab G.R. Cox H. Ade M.P. Mosnier E. Djossou F. Neafsey D.E. Ringwald P. Musset L. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in The Guianas: A descriptive epidemiological study. Lancet Infect. Dis. 2024 24 2 161 171 10.1016/S1473‑3099(23)00502‑9 37858325
    [Google Scholar]
  321. Pasay C.J. Rockett R. Sekuloski S. Griffin P. Marquart L. Peatey C. Wang C.Y.T. O’Rourke P. Elliott S. Baker M. Möhrle J.J. McCarthy J.S. Piperaquine monotherapy of drug-susceptible Plasmodium falciparum infection results in rapid clearance of parasitemia but is followed by the appearance of gametocytemia. J. Infect. Dis. 2016 214 1 105 113 10.1093/infdis/jiw128 27056954
    [Google Scholar]
  322. Ashley E.A. Recht J. White N.J. Primaquine: the risks and the benefits. Malar. J. 2014 13 1 418 10.1186/1475‑2875‑13‑418 25363455
    [Google Scholar]
  323. Braga C.B.E. Martins A.C. Cayotopa A.D.E. Klein W.W. Schlosser A.R. da Silva A.F. de Souza M.N. Andrade B.W.B. Filgueira-Júnior J.A. Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mâncio Lima, Acre, Brazil). Interdiscip. Perspect. Infect. Dis. 2015 2015 346853 10.1155/2015/346853
    [Google Scholar]
  324. Taylor W.R.J. Thriemer K. von Seidlein L. Yuentrakul P. Assawariyathipat T. Assefa A. Auburn S. Chand K. Chau N.H. Cheah P.Y. Dong L.T. Dhorda M. Degaga T.S. Devine A. Ekawati L.L. Fahmi F. Hailu A. Hasanzai M.A. Hien T.T. Khu H. Ley B. Lubell Y. Marfurt J. Mohammad H. Moore K.A. Naddim M.N. Pasaribu A.P. Pasaribu S. Promnarate C. Rahim A.G. Sirithiranont P. Solomon H. Sudoyo H. Sutanto I. Thanh N.V. Tuyet-Trinh N.T. Waithira N. Woyessa A. Yamin F.Y. Dondorp A. Simpson J.A. Baird J.K. White N.J. Day N.P. Price R.N. Short-course primaquine for the radical cure of Plasmodium vivax malaria: A multicentre, randomised, placebo-controlled non-inferiority trial. Lancet 2019 394 10202 929 938 10.1016/S0140‑6736(19)31285‑1 31327563
    [Google Scholar]
  325. Baird J.K. Tafenoquine for travelers’ malaria: evidence, rationale and recommendations. J. Travel Med. 2018 25 1 tay110 10.1093/jtm/tay110 30380095
    [Google Scholar]
  326. Ahmad S.S. Rahi M. Ranjan V. Sharma A. Mefloquine as a prophylaxis for malaria needs to be revisited. Int. J. Parasitol. Drugs Drug Resist. 2021 17 23 26 10.1016/j.ijpddr.2021.06.003 34339933
    [Google Scholar]
  327. Koko V.S. Warsame M. Vonhm B. Jeuronlon M.K. Menard D. Ma L. Taweh F. Tehmeh L. Nyansaiye P. Pratt O.J. Parwon S. Kamara P. Asinya M. Kollie A. Ringwald P. Artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Liberia: in vivo efficacy and frequency of molecular markers. Malar. J. 2022 21 1 134 10.1186/s12936‑022‑04140‑7 35477399
    [Google Scholar]
  328. Bouchaud O. Imbert P. Touze J.E. Dodoo A.N.O. Danis M. Legros F. Fatal cardiotoxicity related to halofantrine: A review based on a worldwide safety data base. Malar. J. 2009 8 1 289 10.1186/1475‑2875‑8‑289 20003315
    [Google Scholar]
  329. Monlun E. Le Metayer P. Szwandt S. Neau D. Longy-Boursier M. Horton J. Le Bras M. Cardiac complications of halofantrine: A prospective study of 20 patients. Trans. R. Soc. Trop. Med. Hyg. 1995 89 4 430 433 10.1016/0035‑9203(95)90041‑1 7570888
    [Google Scholar]
  330. Chu W.Y. Dorlo T.P.C. Pyronaridine: A review of its clinical pharmacology in the treatment of malaria. J. Antimicrob. Chemother. 2023 78 10 2406 2418 10.1093/jac/dkad260 37638690
    [Google Scholar]
  331. Croft S.L. Duparc S. Arbe-Barnes S.J. Craft J.C. Shin C.S. Fleckenstein L. Borghini-Fuhrer I. Rim H.J. Review of pyronaridine anti-malarial properties and product characteristics. Malar. J. 2012 11 1 270 10.1186/1475‑2875‑11‑270 22877082
    [Google Scholar]
  332. Nordmann T. Borrmann S. Ramharter M. Drug-induced hypersensitivity to artemisinin-based therapies for malaria. Trends Parasitol. 2022 38 2 136 146 10.1016/j.pt.2021.08.011 34561157
    [Google Scholar]
  333. Nosten F. White N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 2007 77 6_Suppl)(Suppl. 181 192 10.4269/ajtmh.2007.77.181 18165491
    [Google Scholar]
  334. Ashton T.M. Fokas E. Kunz-Schughart L.A. Folkes L.K. Anbalagan S. Huether M. Kelly C.J. Pirovano G. Buffa F.M. Hammond E.M. Stratford M. Muschel R.J. Higgins G.S. McKenna W.G. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat. Commun. 2016 7 1 12308 10.1038/ncomms12308 27453292
    [Google Scholar]
  335. Björkman A. Phillips-Howard P.A. Adverse reactions to sulfa drugs: implications for malaria chemotherapy. Bull. World Health Organ. 1991 69 3 297 304 1893504
    [Google Scholar]
  336. Marealle A.I. Mbwambo D.P. Mikomangwa W.P. Kilonzi M. Mlyuka H.J. Mutagonda R.F. A decade since sulfonamide-based anti-malarial medicines were limited for intermittent preventive treatment of malaria among pregnant women in Tanzania. Malar. J. 2018 17 1 409 10.1186/s12936‑018‑2565‑1 30400908
    [Google Scholar]
  337. Njau J.D. Kabanywanyi A.M. Goodman C.A. MacArthur J.R. Kapella B.K. Gimnig J.E. Kahigwa E. Bloland P.B. Abdulla S.M. Kachur S.P. Adverse drug events resulting from use of drugs with sulphonamide-containing anti-malarials and artemisinin-based ingredients: findings on incidence and household costs from three districts with routine demographic surveillance systems in rural Tanzania. Malar. J. 2013 12 1 236 10.1186/1475‑2875‑12‑236 23844934
    [Google Scholar]
  338. Health and Medicine Division, National Academies of Sciences, Engineering, and Medicine, Assessment of Long-Term Health Effects of Antimalarial Drugs When Used for Prophylaxis. Washington, D.C. National Academies Press 2020 10.17226/25688
    [Google Scholar]
  339. Gaillard T. Madamet M. Pradines B. Tetracyclines in malaria. Malar. J. 2015 14 1 445 10.1186/s12936‑015‑0980‑0 26555664
    [Google Scholar]
  340. Baumgärtner F. Jourdan J. Scheurer C. Blasco B. Campo B. Mäser P. Wittlin S. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J. 2017 16 1 45 10.1186/s12936‑017‑1696‑0 28122617
    [Google Scholar]
  341. Gunjan S. Sharma T. Yadav K. Chauhan B.S. Singh S.K. Siddiqi M.I. Tripathi R. Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of Plasmodium. Front. Cell. Infect. Microbiol. 2018 8 256 10.3389/fcimb.2018.00256 30094226
    [Google Scholar]
  342. Shafiq N. Rajagopalan S. Kushwaha H.N. Mittal N. Chandurkar N. Bhalla A. Kaur S. Pandhi P. Puri G.D. Achuthan S. Pareek A. Singh S.K. Srivastava J.S. Gaur S.P.S. Malhotra S. Single ascending dose safety and pharmacokinetics of CDRI-97/78: First-in-human study of a novel antimalarial drug. Malar. Res. Treat. 2014 2014 372521 10.1155/2014/372521
    [Google Scholar]
  343. Nagelschmitz J. Voith B. Wensing G. Roemer A. Fugmann B. Haynes R.K. Kotecka B.M. Rieckmann K.H. Edstein M.D. First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob. Agents Chemother. 2008 52 9 3085 3091 10.1128/AAC.01585‑07 18559649
    [Google Scholar]
  344. Obaldia N. III Kotecka B.M. Edstein M.D. Haynes R.K. Fugmann B. Kyle D.E. Rieckmann K.H. Evaluation of artemisone combinations in Aotus monkeys infected with Plasmodium falciparum. Antimicrob. Agents Chemother. 2009 53 8 3592 3594 10.1128/AAC.00471‑09 19506062
    [Google Scholar]
  345. Chien H.D. Pantaleo A. Kesely K.R. Noomuna P. Putt K.S. Tuan T.A. Low P.S. Turrini F.M. Imatinib augments standard malaria combination therapy without added toxicity. J. Exp. Med. 2021 218 10 e20210724 10.1084/jem.20210724 34436509
    [Google Scholar]
  346. Iqbal A. Chakraborty J. Choudhuri S. Naik A. Bhattacharyya M. CML-004: Imatinib is protective against falciparum malaria: A case control study from a tertiary care centre in west bengal. Clin. Lymphoma Myeloma Leuk. 2020 20 S229 10.1016/S2152‑2650(20)30485‑7
    [Google Scholar]
  347. Koller R. Mombo-Ngoma G. Grobusch M.P. The early preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound. Expert Opin. Investig. Drugs 2018 27 10 803 810 10.1080/13543784.2018.1524871 30223692
    [Google Scholar]
  348. Ogutu B. Yeka A. Kusemererwa S. Thompson R. Tinto H. Toure A.O. Uthaisin C. Verma A. Kibuuka A. Lingani M. Lourenço C. Mombo-Ngoma G. Nduba V. N’Guessan T.L. Nassa G.J.W. Nyantaro M. Tina L.O. Singh P.K. El Gaaloul M. Marrast A.C. Chikoto H. Csermak K. Demin I. Mehta D. Pathan R. Risterucci C. Su G. Winnips C. Kaguthi G. Fofana B. Grobusch M.P. Ganaplacide (KAF156) plus lumefantrine solid dispersion formulation combination for uncomplicated Plasmodium falciparum malaria: An open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial. Lancet Infect. Dis. 2023 23 9 1051 1061 10.1016/S1473‑3099(23)00209‑8 37327809
    [Google Scholar]
  349. Bouwman S.A.M. Zoleko-Manego R. Renner K.C. Schmitt E.K. Mombo-Ngoma G. Grobusch M.P. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med. Infect. Dis. 2020 36 101765 10.1016/j.tmaid.2020.101765
    [Google Scholar]
  350. Ndayisaba G. Yeka A. Asante K.P. Grobusch M.P. Karita E. Mugerwa H. Asiimwe S. Oduro A. Fofana B. Doumbia S. Jain J.P. Barsainya S. Kullak-Ublick G.A. Su G. Schmitt E.K. Csermak K. Gandhi P. Hughes D. Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: A randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa. Malar. J. 2021 20 1 478 10.1186/s12936‑021‑04009‑1 34930267
    [Google Scholar]
  351. Schmitt E.K. Ndayisaba G. Yeka A. Asante K.P. Grobusch M.P. Karita E. Mugerwa H. Asiimwe S. Oduro A. Fofana B. Doumbia S. Su G. Csermak Renner K. Venishetty V.K. Sayyed S. Straimer J. Demin I. Barsainya S. Boulton C. Gandhi P. Efficacy of cipargamin (KAE609) in a randomized, phase II dose-escalation study in adults in sub-saharan africa with uncomplicated Plasmodium falciparum malaria. Clin. Infect. Dis. 2022 74 10 1831 1839 10.1093/cid/ciab716 34410358
    [Google Scholar]
  352. McCarthy J.S. Yalkinoglu Ö. Odedra A. Webster R. Oeuvray C. Tappert A. Bezuidenhout D. Giddins M.J. Dhingra S.K. Fidock D.A. Marquart L. Webb L. Yin X. Khandelwal A. Bagchus W.M. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: A first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infect. Dis. 2021 21 12 1713 1724 10.1016/S1473‑3099(21)00252‑8 34715032
    [Google Scholar]
  353. Rottmann M. Jonat B. Gumpp C. Dhingra S.K. Giddins M.J. Yin X. Badolo L. Greco B. Fidock D.A. Oeuvray C. Spangenberg T. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob. Agents Chemother. 2020 64 4 e02181 e19 10.1128/AAC.02181‑19 32041711
    [Google Scholar]
  354. Paquet T. Le Manach C. Cabrera D.G. Younis Y. Henrich P.P. Abraham T.S. Lee M.C.S. Basak R. Ghidelli-Disse S. Lafuente-Monasterio M.J. Bantscheff M. Ruecker A. Blagborough A.M. Zakutansky S.E. Zeeman A.M. White K.L. Shackleford D.M. Mannila J. Morizzi J. Scheurer C. Angulo-Barturen I. Martínez M.S. Ferrer S. Sanz L.M. Gamo F.J. Reader J. Botha M. Dechering K.J. Sauerwein R.W. Tungtaeng A. Vanachayangkul P. Lim C.S. Burrows J. Witty M.J. Marsh K.C. Bodenreider C. Rochford R. Solapure S.M. Jiménez-Díaz M.B. Wittlin S. Charman S.A. Donini C. Campo B. Birkholtz L.M. Hanson K.K. Drewes G. Kocken C.H.M. Delves M.J. Leroy D. Fidock D.A. Waterson D. Street L.J. Chibale K. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 2017 9 387 eaad9735 10.1126/scitranslmed.aad9735 28446690
    [Google Scholar]
  355. Sinxadi P. Donini C. Johnstone H. Langdon G. Wiesner L. Allen E. Duparc S. Chalon S. McCarthy J.S. Lorch U. Chibale K. Möhrle J. Barnes K.I. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor mmv390048 in healthy volunteers. Antimicrob. Agents Chemother. 2020 64 4 e01896 e19 10.1128/AAC.01896‑19 31932368
    [Google Scholar]
  356. Chughlay M.F. El Gaaloul M. Donini C. Campo B. Berghmans P.J. Lucardie A. Marx M.W. Cherkaoui-Rbati M.H. Langdon G. Angulo-Barturen I. Viera S. Rosanas-Urgell A. Van Geertruyden J.P. Chalon S. Chemoprotective antimalarial activity of P218 against Plasmodium falciparum: A randomized, placebo-controlled volunteer infection study. Am. J. Trop. Med. Hyg. 2021 104 4 1348 1358 10.4269/ajtmh.20‑1165 33556040
    [Google Scholar]
  357. Posayapisit N. Pengon J. Prommana P. Shoram M. Yuthavong Y. Uthaipibull C. Kamchonwongpaisan S. Jupatanakul N. Transgenic pyrimethamine-resistant plasmodium falciparum reveals transmission-blocking potency of P218, a novel antifolate candidate drug. Int. J. Parasitol. 2021 51 8 635 642 10.1016/j.ijpara.2020.12.002 33713651
    [Google Scholar]
  358. Alaithan H. Kumar N. Islam M.Z. Liappis A.P. Nava V.E. Novel therapeutics for malaria. Pharmaceutics 2023 15 7 1800 10.3390/pharmaceutics15071800 37513987
    [Google Scholar]
  359. Leitgeb A.M. Charunwatthana P. Rueangveerayut R. Uthaisin C. Silamut K. Chotivanich K. Sila P. Moll K. Lee S.J. Lindgren M. Holmer E. Färnert A. Kiwuwa M.S. Kristensen J. Herder C. Tarning J. Wahlgren M. Dondorp A.M. Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria. PLoS One 2017 12 12 e0188754 10.1371/journal.pone.0188754 29244851
    [Google Scholar]
  360. Varo R. Crowley V.M. Mucasse H. Sitoe A. Bramugy J. Serghides L. Weckman A.M. Erice C. Bila R. Vitorino P. Mucasse C. Valente M. Ajanovic S. Balanza N. Zhong K. Derpsch Y. Gladstone M. Mayor A. Bassat Q. Kain K.C. Adjunctive rosiglitazone treatment for severe pediatric malaria: A randomized placebo-controlled trial in Mozambican children. Int. J. Infect. Dis. 2024 139 34 40 10.1016/j.ijid.2023.11.031 38013152
    [Google Scholar]
  361. Lacerda M.V.G. Llanos-Cuentas A. Krudsood S. Lon C. Saunders D.L. Mohammed R. Yilma D. Batista Pereira D. Espino F.E.J. Mia R.Z. Chuquiyauri R. Val F. Casapía M. Monteiro W.M. Brito M.A.M. Costa M.R.F. Buathong N. Noedl H. Diro E. Getie S. Wubie K.M. Abdissa A. Zeynudin A. Abebe C. Tada M.S. Brand F. Beck H.P. Angus B. Duparc S. Kleim J.P. Kellam L.M. Rousell V.M. Jones S.W. Hardaker E. Mohamed K. Clover D.D. Fletcher K. Breton J.J. Ugwuegbulam C.O. Green J.A. Koh G.C.K.W. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 2019 380 3 215 228 10.1056/NEJMoa1710775 30650322
    [Google Scholar]
  362. Maier J.D. Siegfried S. Gültekin N. Stanga Z. Baird J.K. Grobusch M.P. Schlagenhauf P. Efficacy and safety of tafenoquine for malaria chemoprophylaxis (1998-2020): A systematic review and meta-analysis. Travel Med. Infect. Dis. 2021 39 101908 10.1016/j.tmaid.2020.101908 33227500
    [Google Scholar]
  363. Llanos-Cuentas A. Casapia M. Chuquiyauri R. Hinojosa J.C. Kerr N. Rosario M. Toovey S. Arch R.H. Phillips M.A. Rozenberg F.D. Bath J. Ng C.L. Cowell A.N. Winzeler E.A. Fidock D.A. Baker M. Möhrle J.J. Hooft van Huijsduijnen R. Gobeau N. Araeipour N. Andenmatten N. Rückle T. Duparc S. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: A proof-of-concept, open-label, phase 2a study. Lancet Infect. Dis. 2018 18 8 874 883 10.1016/S1473‑3099(18)30309‑8 29909069
    [Google Scholar]
  364. Sulyok M. Rückle T. Roth A. Mürbeth R.E. Chalon S. Kerr N. Samec S.S. Gobeau N. Calle C.L. Ibáñez J. Sulyok Z. Held J. Gebru T. Granados P. Brückner S. Nguetse C. Mengue J. Lalremruata A. Sim B.K.L. Hoffman S.L. Möhrle J.J. Kremsner P.G. Mordmüller B. DSM265 for Plasmodium falciparum chemoprophylaxis: A randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect. Dis. 2017 17 6 636 644 10.1016/S1473‑3099(17)30139‑1 28363637
    [Google Scholar]
  365. Domes R. Frosch T. Investigations on the novel antimalarial ferroquine in biomimetic solutions using deep uv resonance raman spectroscopy and density functional theory. Anal. Chem. 2023 95 19 7630 7639 10.1021/acs.analchem.3c00539 37141178
    [Google Scholar]
  366. Tse E.G. Korsik M. Todd M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019 18 1 93 10.1186/s12936‑019‑2724‑z 30902052
    [Google Scholar]
  367. Taft B.R. Yokokawa F. Kirrane T. Mata A.C. Huang R. Blaquiere N. Waldron G. Zou B. Simon O. Vankadara S. Chan W.L. Ding M. Sim S. Straimer J. Guiguemde A. Lakshminarayana S.B. Jain J.P. Bodenreider C. Thompson C. Lanshoeft C. Shu W. Fang E. Qumber J. Chan K. Pei L. Chen Y.L. Schulz H. Lim J. Abas S.N. Ang X. Liu Y. Angulo-Barturen I. Jiménez-Díaz M.B. Gamo F.J. Crespo-Fernandez B. Rosenthal P.J. Cooper R.A. Tumwebaze P. Aguiar A.C.C. Campo B. Campbell S. Wagner J. Diagana T.T. Sarko C. Discovery and preclinical pharmacology of ine963, a potent and fast-acting blood-stage antimalarial with a high barrier to resistance and potential for single-dose cures in uncomplicated malaria. J. Med. Chem. 2022 65 5 3798 3813 10.1021/acs.jmedchem.1c01995 35229610
    [Google Scholar]
  368. Bopp S. Pasaje C.F.A. Summers R.L. Magistrado-Coxen P. Schindler K.A. Corpas-Lopez V. Yeo T. Mok S. Dey S. Smick S. Nasamu A.S. Demas A.R. Milne R. Wiedemar N. Corey V. Gomez-Lorenzo M.D.G. Franco V. Early A.M. Lukens A.K. Milner D. Furtado J. Gamo F.J. Winzeler E.A. Volkman S.K. Duffey M. Laleu B. Fidock D.A. Wyllie S. Niles J.C. Wirth D.F. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat. Commun. 2023 14 1 1455 10.1038/s41467‑023‑36921‑2 36927839
    [Google Scholar]
  369. Ghoghari A.M. Patel H.V. Nayak N.N. Mansuri T.H. Pillai S.M. Jain M.R. Patel H.B. Kansagra K. Resta I.D. Möhrle J. Parmar D.V. Simultaneous estimation of ZY-19489 and its active metabolite ZY-20486 in human plasma using LC-MS/MS, a novel antimalarial compound. Bioanalysis 2021 13 23 1761 1777 10.4155/bio‑2021‑0194 34779650
    [Google Scholar]
  370. Gaillard T. Dormoi J. Madamet M. Pradines B. Macrolides and associated antibiotics based on similar mechanism of action like lincosamides in malaria. Malar. J. 2016 15 1 85 10.1186/s12936‑016‑1114‑z 26873741
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266348099250108065838
Loading
/content/journals/ctmc/10.2174/0115680266348099250108065838
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test