Skip to content
2000
image of Antimicrobial Plant Peptides: Structure, Classification, Mechanism And Therapeutic Potential

Abstract

Humans, animals, and plants possess small polypeptides known as antimicrobial peptides (AMPs), which are often positively charged. They are tiny, mostly basic peptides with a molecular weight of 2 to 9 kDa. They are a crucial part of plants' innate defense system, acting as effector molecules that provide a resistance barrier against pests and diseases. Plants have been found to contain antimicrobial peptides belonging to numerous families, including plant defensins, thionins, cyclotides, and others. An increase in pathogen resistance is achieved through the transgenic overexpression of the relevant genes, while pathogen mutants that are susceptible to peptides exhibit decreased pathogenicity. For many organisms, AMPs exhibit a wide range of antimicrobial activity against various pathogens and serve as a crucial line of defense. This review raises awareness about plant antimicrobial peptides (AMPs) as potential therapeutic agents in the pharmaceutical and medical fields, including treating fungal and bacterial diseases. It also provides a broad synopsis of the main AMP families found in plants, their mechanisms of action, and the factors that influence their antimicrobial activities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266345963250121112522
2025-03-17
2025-04-22
Loading full text...

Full text loading...

References

  1. Ishaq N. Bilal M. Iqbal H.M.N. Medicinal potentialities of plant defensins: A review with applied perspectives. Medicines 2019 6 1 29 10.3390/medicines6010029 30791451
    [Google Scholar]
  2. Yang X. Li J. Li X. She R. Pei Y. Isolation and characterization of a novel thermostable non-specific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicus Houtt) seeds. Peptides 2006 27 12 3122 3128 10.1016/j.peptides.2006.07.019 16979797
    [Google Scholar]
  3. Campos D.C.O. Costa A.S. Luz P.B. Soares P.M.G. Alencar N.M.N. Oliveira H.D. Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines. Int. J. Biol. Macromol. 2017 103 1121 1129 10.1016/j.ijbiomac.2017.05.148 28559184
    [Google Scholar]
  4. Albersheim P. Valent B.S. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biol. 1978 78 3 627 643 10.1083/jcb.78.3.627 359568
    [Google Scholar]
  5. Vance C.P. Kirk T.K. Sherwood R.T. Lignification as a mechanism of disease resistance. Annual Rev. Phytopathol. 1981 18 259 288
    [Google Scholar]
  6. Aist J.R. Papillae and related wound plugs of plant cells. Annu. Rev. Phytopathol. 1976 14 1 145 163 10.1146/annurev.py.14.090176.001045
    [Google Scholar]
  7. Hammerschmidt R. Nuckles E.M. Kuć J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 1982 20 1 73 82 10.1016/0048‑4059(82)90025‑X
    [Google Scholar]
  8. Mani S. Bhatt S.B. Vasudevan V. Prabhu D. Rajamanikandan S. Velusamy P. Ramasamy P. Raman P. The updated review on plant peptides and their applications in human health. Int. J. Pept. Res. Ther. 2022 28 5 135 10.1007/s10989‑022‑10437‑7 35911180
    [Google Scholar]
  9. Tavormina P. Coninck D.B. Nikonorova N. Smet D.I. Cammue B.P.A. The plant peptidome: An expanding repertoire of structural features and biological functions. Plant Cell 2015 27 8 2095 2118 10.1105/tpc.15.00440 26276833
    [Google Scholar]
  10. Kaur K. Dattajirao V. Shrivastava V. Bhardwaj U. Isolation and characterization of chitosan-producing bacteria from beaches of chennai, India. Enzyme Res. 2012 2012 1 6 10.1155/2012/421683 22919468
    [Google Scholar]
  11. Hernandez J.F. Gagnon J. Chiche L. Nguyen T.M. Andrieu J.P. Heitz A. Hong T.T. Pham T.T.C. Nguyen L.D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 2000 39 19 5722 5730 10.1021/bi9929756 10801322
    [Google Scholar]
  12. Yadav S. Batra J. Mechanism of Anti-HIV activity of ribosome inactivating protein, saporin. Protein Pept. Lett. 2015 22 6 497 503 10.2174/0929866522666150428120701 25925771
    [Google Scholar]
  13. Naider F. Anglister J. Peptides in the treatment of AIDS. Curr. Opin. Struct. Biol. 2009 19 4 473 482 10.1016/j.sbi.2009.07.003 19632107
    [Google Scholar]
  14. Kinghorn A.D. Chai H-B. Kinghorn A.D. Discovery of new anticancer agents from higher plants. Front. Biosci. 2012 S4 1 142 156 10.2741/s257 22202049
    [Google Scholar]
  15. Girish K.S. Machiah K.D. Ushanandini S. Kumar H.K. Nagaraju S. Govindappa M. Vedavathi M. Kemparaju K. Antimicrobial properties of a non‐toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J. Basic Microbiol. 2006 46 5 365 374 10.1002/jobm.200510108 17009292
    [Google Scholar]
  16. Park J.S. Hwang D.J. Lee S.M. Kim Y.T. Choi S.B. Cho K.J. Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album. Mol. Cells 2004 17 1 73 80 10.1016/S1016‑8478(23)13009‑3 15055531
    [Google Scholar]
  17. Walsh M.J. Dodd J.E. Hautbergue G.M. Ribosome-inactivating proteins. Virulence 2013 4 8 774 784 10.4161/viru.26399 24071927
    [Google Scholar]
  18. Huang L.S. Huang P.L. Kung H.F. Li B.Q. Huang P.L. Huang P. Huang H.I. Chen H.C. TAP 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. 1991 88 15 6570 6574 10.1073/pnas.88.15.6570 1713684
    [Google Scholar]
  19. Leader B. Baca Q.J. Golan D.E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008 7 1 21 39 10.1038/nrd2399 18097458
    [Google Scholar]
  20. Liu Y. Luo J. Xu C. Ren F. Peng C. Wu G. Zhao J. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol. 2000 122 4 1015 1024 10.1104/pp.122.4.1015 10759497
    [Google Scholar]
  21. Mazalovska M. Kouokam J.C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. BioMed Res. Int. 2018 2018 1 12 10.1155/2018/3750646 29854749
    [Google Scholar]
  22. Irvin J.D. Uckun F.M. Pokeweed antiviral protein: Ribosome inactivation and therapeutic applications. Pharmacol. Ther. 1992 55 3 279 302 10.1016/0163‑7258(92)90053‑3 1492120
    [Google Scholar]
  23. Wang G. Natural antimicrobial peptides as promising anti-HIV candidates. Curr. Top. Pept. Protein Res. 2012 13 93 110 26834391
    [Google Scholar]
  24. Barbieri L. Aron G.M. Irvin J.D. Stirpe F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem. J. 1982 203 1 55 59 10.1042/bj2030055 7103950
    [Google Scholar]
  25. Pelegrini B.P. Sarto D.R.P. Silva O.N. Franco O.L. Grossi-de-Sa M.F. Antibacterial peptides from plants: What they are and how they probably work. Biochem. Res. Int. 2011 2011 1 9 10.1155/2011/250349 21403856
    [Google Scholar]
  26. Gerlach S. Mondal D. The bountiful biological activities of cyclotides. Chronicl. Young Sci. 2012 3 3 169 169 10.4103/2229‑5186.99559
    [Google Scholar]
  27. Zhou P. Yang X.-L. Wang X.-G. Hu B. Zhang L. Zhang W. Si H.-R. Zhu Y. Li B. Huang C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020 579 270 273
    [Google Scholar]
  28. O’Keefe B.R. Giomarelli B. Barnard D.L. Shenoy S.R. Chan P.K.S. McMahon J.B. Palmer K.E. Barnett B.W. Meyerholz D.K. Lenane W.C.L. McCray P.B. Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol. 2010 84 5 2511 2521 10.1128/JVI.02322‑09 20032190
    [Google Scholar]
  29. Millet J.K. Séron K. Labitt R.N. Danneels A. Palmer K.E. Whittaker G.R. Dubuisson J. Belouzard S. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 2016 133 1 8 10.1016/j.antiviral.2016.07.011 27424494
    [Google Scholar]
  30. Luo Z. Su K. Zhang X. Potential of plant proteins digested in silico by gastrointestinal enzymes as nutritional supplement for COVID-19 patients. Plant Foods Hum. Nutr. 2020 75 4 583 591 10.1007/s11130‑020‑00850‑y 32870435
    [Google Scholar]
  31. Deepthi B. Sowjanya K. Lidiya B. Bhargavi R.S. Babu P.S. A modern review of diabetes mellitus: An annihilatory metabolic disorder. J. Sil. Vit. Pharmacol. 2017 3 100014 10.21767/2469‑6692.100014
    [Google Scholar]
  32. Ledesma H.B. Hsieh C.C. Chemopreventive role of food-derived proteins and peptides: A review. Crit. Rev. Food Sci. Nutr. 2017 57 11 2358 2376 10.1080/10408398.2015.1057632 26565142
    [Google Scholar]
  33. Kannan A. Hettiarachchy N.S. Lay J.O. Liyanage R. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 2010 31 9 1629 1634 10.1016/j.peptides.2010.05.018 20594954
    [Google Scholar]
  34. Matsubayashi Y. Post-translational modifications in secreted peptide hormones in plants. Plant Cell Physiol. 2011 52 1 5 13 10.1093/pcp/pcq169 21071428
    [Google Scholar]
  35. Park S. Yoo K.O. Marcussen T. Backlund A. Jacobsson E. Rosengren K.J. Doo I. Göransson U. Cyclotide evolution: Insights from the analyses of their precursor sequences, structures and distribution in violets (Viola). Front. Plant Sci. 2017 8 2058 10.3389/fpls.2017.02058 29326730
    [Google Scholar]
  36. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002 415 6870 389 395 10.1038/415389a 11807545
    [Google Scholar]
  37. Mukherjee S. Hooper L.V. Antimicrobial defense of the intestine. Immunity 2015 42 1 28 39 10.1016/j.immuni.2014.12.028 25607457
    [Google Scholar]
  38. Tyagi C. Marik T. Vágvölgyi C. Kredics L. Ötvös F. Accelerated molecular dynamics applied to the peptaibol folding problem. Int. J. Mol. Sci. 2019 20 17 4268 10.3390/ijms20174268 31480404
    [Google Scholar]
  39. Tang S.S. Prodhan Z.H. Biswas S.K. Le C.F. Sekaran S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018 154 94 105 10.1016/j.phytochem.2018.07.002 30031244
    [Google Scholar]
  40. Tam J. Wang S. Wong K. Tan W. Antimicrobial peptides from plants. Pharmaceuticals 2015 8 4 711 757 10.3390/ph8040711 26580629
    [Google Scholar]
  41. Kohn E. Shirley D. Arotsky L. Picciano A. Ridgway Z. Urban M. Carone B. Caputo G. Role of cationic side chains in the antimicrobial activity of C18G. Molecules 2018 23 2 329 10.3390/molecules23020329 29401708
    [Google Scholar]
  42. Ciociola T. Giovati L. Conti S. Magliani W. Santinoli C. Polonelli L. Natural and synthetic peptides with antifungal activity. Future Med. Chem. 2016 8 12 1413 1433 10.4155/fmc‑2016‑0035 27502155
    [Google Scholar]
  43. Melo M.N. Ferre R. Castanho M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 2009 7 3 245 250 10.1038/nrmicro2095 19219054
    [Google Scholar]
  44. Groisman E.A. How bacteria resist killing by host-defense peptides. Trends Microbiol. 1994 2 11 444 449 10.1016/0966‑842X(94)90802‑8 7866702
    [Google Scholar]
  45. Yazici A. Ortucu S. Taskin M. Marinelli L. Natural-based antibiofilm and antimicrobial peptides from microorganisms. Curr. Top. Med. Chem. 2019 18 24 2102 2107 10.2174/1568026618666181112143351 30417789
    [Google Scholar]
  46. Moyer T.B. Heil L.R. Kirkpatrick C.L. Goldfarb D. Lefever W.A. Parsley N.C. Wommack A.J. Hicks L.M. PepSAVI-MS reveals a proline-rich antimicrobial peptide in Amaranthus tricolor. J. Nat. Prod. 2019 82 10 2744 2753 10.1021/acs.jnatprod.9b00352 31557021
    [Google Scholar]
  47. Lee J.H. Seo M. Lee H.J. Baek M. Kim I.W. Kim S.Y. Kim M.A. Kim S.H. Hwang J.S. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, allomyrina dichotoma. J Microbiol Biotechnol. 2019 29 5 687 695
    [Google Scholar]
  48. Kim Y.H. Kim Y.S. Park C.H. Chung I.Y. Yoo J.M. Kim J.G. Lee B.J. Kang S.S. Cho G.J. Choi W.S. Protein kinase C-δ mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes 2008 57 8 2181 2190 10.2337/db07‑1431 18443201
    [Google Scholar]
  49. Li B. Lyu P. Xie S. Qin H. Pu W. Xu H. Chen T. Shaw C. Ge L. Kwok H.F. LFB: A novel antimicrobial brevinin-like peptide from the skin secretion of the fujian large headed frog, Limnonectes fujianensi. Biomolecules 2019 9 6 242 10.3390/biom9060242 31234333
    [Google Scholar]
  50. Hoek V.M.L. Prickett M.D. Settlage R.E. Kang L. Michalak P. Vliet K.A. Bishop B.M. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics 2019 20 1 684 10.1186/s12864‑019‑6029‑y 31470795
    [Google Scholar]
  51. Braun M.S. Sporer F. Zimmermann S. Wink M. Birds, feather-degrading bacteria and preen glands: The antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol. Ecol. 2018 94 9 fiy117 10.1093/femsec/fiy117 29901706
    [Google Scholar]
  52. Wang A. Chao T. Ji Z. Xuan R. Liu S. Guo M. Wang G. Wang J. Transcriptome analysis reveals potential immune function-related regulatory genes/pathways of female Lubo goat submandibular glands at different developmental stages. PeerJ 2020 8 e9947 10.7717/peerj.9947 33083113
    [Google Scholar]
  53. Mattick A.T.R. Hirsch A. Further observations on an inhibitory substance (Nisin) from lactic streptococci. Lancet. 1947 2 6462 5 8
    [Google Scholar]
  54. Gharsallaoui A. Oulahal N. Joly C. Degraeve P. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Crit. Rev. Food Sci. Nutr. 2016 56 8 1262 1274 10.1080/10408398.2013.763765 25675115
    [Google Scholar]
  55. Shin J.M. Gwak J.W. Kamarajan P. Fenno J.C. Rickard A.H. Kapila Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016 120 6 1449 1465 10.1111/jam.13033 26678028
    [Google Scholar]
  56. Kitagawa N. Otani T. Inai T. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anat. Sci. Int. 2019 94 2 163 171 10.1007/s12565‑018‑0462‑x 30353456
    [Google Scholar]
  57. Alkotaini B. Anuar N. Kadhum A.A.H. Sani A.A.A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J. Ind. Microbiol. Biotechnol. 2013 40 6 571 579 10.1007/s10295‑013‑1259‑5 23508455
    [Google Scholar]
  58. Yi T. Huang Y. Chen Y. Production of an antimicrobial peptide AN5-1 in Escherichia coli and its dual mechanisms against bacteria. Chem. Biol. Drug Des. 2015 85 5 598 607 10.1111/cbdd.12449 25311453
    [Google Scholar]
  59. Gutierrez G.E. Mayer M.J. Cotter P.D. Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2019 10 1 1 21 10.1080/19490976.2018.1455790 29584555
    [Google Scholar]
  60. Pushpanathan P. Mathew G.S. Selvarajan S. Seshadri K.G. Srikanth P. Gut microbiota and its mysteries. Indian J. Med. Microbiol. 2019 37 2 268 277 10.4103/ijmm.IJMM_19_373 31745030
    [Google Scholar]
  61. Essig A. Hofmann D. Münch D. Gayathri S. Künzler M. Kallio P.T. Sahl H.G. Wider G. Schneider T. Aebi M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J. Biol. Chem. 2014 289 50 34953 34964 10.1074/jbc.M114.599878 25342741
    [Google Scholar]
  62. Srivastava S. Dashora K. Ameta K.L. Singh N.P. Enshasy E.H.A. Pagano M.C. Hesham A.E.L. Sharma G.D. Sharma M. Bhargava A. Cysteine‐rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother. Res. 2021 35 1 256 277 10.1002/ptr.6823 32940412
    [Google Scholar]
  63. Taveira G.B. Mello É.O. Souza S.B. Monteiro R.M. Ramos A.C. Carvalho A.O. Rodrigues R. Okorokov L.A. Gomes V.M. Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of caspases and extracellular H+ flux. Biosci. Rep. 2018 38 2 BSR20180119 10.1042/BSR20180119 29599127
    [Google Scholar]
  64. Hao G. Bakker M.G. Kim H.S. Enhanced resistance to Fusarium graminearum in transgenic arabidopsis plants expressing a modified plant thionin. Phytopathology 2020 110 5 1056 1066 10.1094/PHYTO‑12‑19‑0447‑R 32043419
    [Google Scholar]
  65. Li J. Hu S. Jian W. Xie C. Yang X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 2021 62 1 5 10.1186/s40529‑021‑00312‑x 33914180
    [Google Scholar]
  66. Gourbal B. Pinaud S. Beckers G.J.M. Van Der Meer J.W.M. Conrath U. Netea M.G. Innate immune memory: An evolutionary perspective. Immunol. Rev. 2018 283 1 21 40 10.1111/imr.12647 29664574
    [Google Scholar]
  67. Wu Q. Patočka J. Kuča K. Insect antimicrobial peptides, a mini review. Toxins 2018 10 11 461 10.3390/toxins10110461 30413046
    [Google Scholar]
  68. Loch G. Zinke I. Mori T. Carrera P. Schroer J. Takeyama H. Hoch M. Antimicrobial peptides extend lifespan in Drosophila. PLoS One 2017 12 5 e0176689 10.1371/journal.pone.0176689 28520752
    [Google Scholar]
  69. Hanson M.A. Lemaitre B. New insights on Drosophila antimicrobial peptide function in host defense and beyond. Curr. Opin. Immunol. 2020 62 22 30 10.1016/j.coi.2019.11.008 31835066
    [Google Scholar]
  70. Chowdhury M. Li C.F. He Z. Lu Y. Liu X.S. Wang Y.F. Ip Y.T. Strand M.R. Yu X.Q. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila. J. Biol. Chem. 2019 294 26 10172 10181 10.1074/jbc.RA118.006804 31088910
    [Google Scholar]
  71. Ageitos J.M. Pérez S.A. Mata C.P. Villa T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017 133 117 138 10.1016/j.bcp.2016.09.018 27663838
    [Google Scholar]
  72. Muncaster S. Kraakman K. Gibbons O. Mensink K. Forlenza M. Jacobson G. Bird S. Antimicrobial peptides within the Yellowtail Kingfish (Seriola lalandi). Dev. Comp. Immunol. 2018 80 67 80 10.1016/j.dci.2017.04.014 28433529
    [Google Scholar]
  73. Avila E.E. Functions of antimicrobial peptides in vertebrates. Curr. Protein Pept. Sci. 2017 18 11 1098 1119 27526932
    [Google Scholar]
  74. Harten V.R.M. Woudenbergh V.E. Dijk V.A. Haagsman H.P. Cathelicidins: Immunomodulatory antimicrobials. Vaccines 2018 6 3 63 10.3390/vaccines6030063 30223448
    [Google Scholar]
  75. Chen C. Wang A. Zhang F. Zhang M. Yang H. Li J. Su P. Chen Y. Yu H. Wang Y. The protective effect of fish-derived cathelicidins on bacterial infections in zebrafish, Danio rerio. Fish Shellfish Immunol. 2019 92 519 527 10.1016/j.fsi.2019.06.029 31202967
    [Google Scholar]
  76. Patocka J. Nepovimova E. Klimova B. Wu Q. Kuca K. Antimicrobial peptides: Amphibian host defense peptides. Curr. Med. Chem. 2019 26 32 5924 5946 10.2174/0929867325666180713125314 30009702
    [Google Scholar]
  77. Wei L. Yang J. He X. Mo G. Hong J. Yan X. Lin D. Lai R. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J. Med. Chem. 2013 56 9 3546 3556 10.1021/jm4004158 23594231
    [Google Scholar]
  78. Peinado P.C. Dias S.A. Domingues M.M. Benfield A.H. Freire J.M. Baptista R.G. Gaspar D. Castanho M.A.R.B. Craik D.J. Henriques S.T. Veiga A.S. Andreu D. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 2018 293 5 1536 1549 10.1074/jbc.RA117.000125 29255091
    [Google Scholar]
  79. Rajasekaran G. Kumar S.D. Yang S. Shin S.Y. The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities. Eur. J. Med. Chem. 2019 182 111623 10.1016/j.ejmech.2019.111623 31473417
    [Google Scholar]
  80. Coorens M. Schneider V.A.F. Groot D.A.M. Dijk V.A. Meijerink M. Wells J.M. Scheenstra M.R. Veldhuizen E.J.A. Haagsman H.P. Cathelicidins inhibit Escherichia coli –induced TLR2 and TLR4 activation in a viability-dependent manner. J. Immunol. 2017 199 4 1418 1428 10.4049/jimmunol.1602164 28710255
    [Google Scholar]
  81. Schneider V.A.F. Coorens M. Ordonez S.R. Bokhoven T.J.L.M. Posthuma G. Dijk V.A. Haagsman H.P. Veldhuizen E.J.A. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci. Rep. 2016 6 1 32948 10.1038/srep32948 27624595
    [Google Scholar]
  82. Speirs Y.M. Drouin D. Cavalcante P.A. Barkema H.W. Cobo E.R. Host defense cathelicidins in cattle: Types, production, bioactive functions and potential therapeutic and diagnostic applications. Int. J. Antimicrob. Agents 2018 51 6 813 821 10.1016/j.ijantimicag.2018.02.006 29476808
    [Google Scholar]
  83. Huynh E. Penney J. Caswell J. Li J. Protective effects of protegrin in dextran sodium sulfate-induced murine colitis. Front. Pharmacol. 2019 10 156 10.3389/fphar.2019.00156 30873029
    [Google Scholar]
  84. Harman R.M. Yang S. He M.K. Van de Walle G.R. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res. Ther. 2017 8 1 157 10.1186/s13287‑017‑0610‑6 28676123
    [Google Scholar]
  85. Reczyńska D. Zalewska M. Czopowicz M. Kaba J. Zwierzchowski L. Bagnicka E. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. Vet. Res. 2018 49 1 113 10.1186/s13567‑018‑0607‑x 30424807
    [Google Scholar]
  86. Panteleev P.V. Bolosov I.A. Kalashnikov A.À. Kokryakov V.N. Shamova O.V. Emelianova A.A. Balandin S.V. Ovchinnikova T.V. Combined antibacterial effects of goat cathelicidins with different mechanisms of action. Front. Microbiol. 2018 9 2983 10.3389/fmicb.2018.02983 30555455
    [Google Scholar]
  87. Tedde V. Bronzo V. Puggioni G.M.G. Pollera C. Casula A. Curone G. Moroni P. Uzzau S. Addis M.F. Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation. J. Dairy Res. 2019 86 2 217 221 10.1017/S0022029919000335 31156071
    [Google Scholar]
  88. Nakazawa M. Maeda S. Omori M. Kaji K. Yokoyama N. Nakagawa T. Chambers J.K. Uchida K. Ohno K. Yonezawa T. Matsuki N. Duodenal expression of antimicrobial peptides in dogs with idiopathic inflammatory bowel disease and intestinal lymphoma. Vet. J. 2019 249 47 52 10.1016/j.tvjl.2019.05.006 31239164
    [Google Scholar]
  89. Lima D.M.S.F. Silva D.R.A. Silva D.M.F. Silva D.P.A.B. Costa R.M.P.B. Teixeira J.A.C. Porto A.L.F. Cavalcanti M.T.H. Brazilian kefir-fermented sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics Antimicrob. Proteins 2018 10 3 446 455 10.1007/s12602‑017‑9365‑8 29285743
    [Google Scholar]
  90. Peng H. Purkerson J.M. Schwaderer A.L. Schwartz G.J. Metabolic acidosis stimulates the production of the antimicrobial peptide cathelicidin in rabbit urine. Am. J. Physiol. Renal Physiol. 2017 313 5 F1061 F1067 10.1152/ajprenal.00701.2016 28747361
    [Google Scholar]
  91. Nagaoka I. Tamura H. Reich J. Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model. Int. J. Mol. Sci. 2020 21 17 5973 10.3390/ijms21175973 32825174
    [Google Scholar]
  92. Fruitwala S. Naccache E.D.W. Chang T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019 88 163 172 10.1016/j.semcdb.2018.02.023
    [Google Scholar]
  93. Pace B.T. Lackner A.A. Porter E. Pahar B. The role of defensins in HIV pathogenesis. Mediators Inflamm. 2017 2017 1 12 10.1155/2017/5186904 28839349
    [Google Scholar]
  94. Contreras G. Shirdel I. Braun M.S. Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. Dev. Comp. Immunol. 2020 104 103556 10.1016/j.dci.2019.103556 31747541
    [Google Scholar]
  95. Pasupuleti M. Schmidtchen A. Malmsten M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol. 2012 32 2 143 171 10.3109/07388551.2011.594423 22074402
    [Google Scholar]
  96. Gurao A. Kashyap S.K. Singh R. β-defensins: An innate defense for bovine mastitis. Vet. World 2017 10 8 990 998 10.14202/vetworld.2017.990‑998 28919695
    [Google Scholar]
  97. Wang R. Ma D. Lin L. Zhou C. Han Z. Shao Y. Liao W. Liu S. Identification and characterization of an avian β-defensin orthologue, avian β-defensin 9, from quails. Appl. Microbiol. Biotechnol. 2010 87 4 1395 1405 10.1007/s00253‑010‑2591‑6 20396878
    [Google Scholar]
  98. Pei J. Jiang L. Antimicrobial peptide from mucus of Andrias davidianus : Screening and purification by magnetic cell membrane separation technique. Int. J. Antimicrob. Agents 2017 50 1 41 46 10.1016/j.ijantimicag.2017.02.013 28461043
    [Google Scholar]
  99. Chang Y.L. Wang Z. Igawa S. Choi J.E. Werbel T. Nardo D.A. Lipocalin 2: A new antimicrobial in mast cells. Int. J. Mol. Sci. 2019 20 10 2380 10.3390/ijms20102380 31091692
    [Google Scholar]
  100. Schneider J.J. Unholzer A. Schaller M. Korting S.M. Korting H.C. Human defensins. J. Mol. Med. 2005 83 8 587 595 10.1007/s00109‑005‑0657‑1 15821901
    [Google Scholar]
  101. Mohammed I. Said D.G. Dua H.S. Human antimicrobial peptides in ocular surface defense. Prog. Retin. Eye Res. 2017 61 1 22 10.1016/j.preteyeres.2017.03.004 28587935
    [Google Scholar]
  102. Soares R.C. Penna C.P.H. Moraes D.V.C.S. Vecchi D.R. Clavaud C. Breton L. Braz A.S.K. Paulino L.C. Dysbiotic bacterial and fungal communities not restricted to clinically affected skin sites in dandruff. Front. Cell. Infect. Microbiol. 2016 6 157 10.3389/fcimb.2016.00157 27909689
    [Google Scholar]
  103. da Silva P.F. Machado M.C.C. The dual role of cathelicidins in systemic inflammation. Immunol. Lett. 2017 182 57 60 10.1016/j.imlet.2017.01.004 28082134
    [Google Scholar]
  104. Varga J.F.A. Marinos B.M.P. Katzenback B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol. 2019 9 3128 10.3389/fimmu.2018.03128 30692997
    [Google Scholar]
  105. Pei J. Feng Z. Ren T. Sun H. Han H. Jin W. Dang J. Tao Y. Purification, characterization and application of a novel antimicrobial peptide from Andrias davidianus blood. Lett. Appl. Microbiol. 2018 66 1 38 43 10.1111/lam.12823 29130500
    [Google Scholar]
  106. Hui C-Y. Guo Y. Zhang W. Yang X.Q. Gao C.X. Yang X-Y. Isolation and characterization of antimicrobial peptides from healthy male urine. Pak. J. Pharm. Sci. 2017 30 2 363 367 28649057
    [Google Scholar]
  107. Correia A. Weimann A. Protein antibiotics: Mind your language. Nat. Rev. Microbiol. 2021 19 1 7 7 10.1038/s41579‑020‑00485‑5 33219332
    [Google Scholar]
  108. Somma D.A. Moretta A. Canè C. Cirillo A. Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules 2020 10 4 652 10.3390/biom10040652 32340301
    [Google Scholar]
  109. Dennison S.R. Harris F. Mura M. Phoenix D.A. An atlas of anionic antimicrobial peptides from amphibians. Curr. Protein Pept. Sci. 2018 19 8 823 838 10.2174/1389203719666180226155035 29484989
    [Google Scholar]
  110. Almarwani B. Phambu N. Hamada Y.Z. Meya S.A. Interactions of an anionic antimicrobial peptide with Zinc(II): Application to bacterial mimetic membranes. Langmuir 2020 36 48 14554 14562 10.1021/acs.langmuir.0c02306 33227202
    [Google Scholar]
  111. Miller A. Witkiewicz M.A. Mikołajczyk A. Wątły J. Wilcox D. Witkowska D. Rowińska-Żyrek M. Zn-enhanced Asp-rich antimicrobial peptides: N-Terminal coordination by Zn(II) and Cu(II), which distinguishes Cu(II) binding to different peptides. Int. J. Mol. Sci. 2021 22 13 6971 10.3390/ijms22136971 34203496
    [Google Scholar]
  112. Teixeira V. Feio M.J. Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012 51 2 149 177 10.1016/j.plipres.2011.12.005 22245454
    [Google Scholar]
  113. Gennaro R. Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000 55 1 31 49 10.1002/1097‑0282(2000)55:1<31::AID‑BIP40>3.0.CO;2‑9 10931440
    [Google Scholar]
  114. Lewies A. Wentzel J. Jacobs G. Plessis D.L. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules 2015 20 8 15392 15433 10.3390/molecules200815392 26305243
    [Google Scholar]
  115. Mookherjee N. Anderson M.A. Haagsman H.P. Davidson D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020 19 5 311 332 10.1038/s41573‑019‑0058‑8 32107480
    [Google Scholar]
  116. Aidoukovitch A. Dahl S. Fält F. Nebel D. Svensson D. Tufvesson E. Nilsson B.O. Antimicrobial peptide LL‐37 and its pro‐form, hCAP18, in desquamated epithelial cells of human whole saliva. Eur. J. Oral Sci. 2020 128 1 1 6 10.1111/eos.12664 31825534
    [Google Scholar]
  117. Fabisiak A. Murawska N. Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol. Rep. 2016 68 4 802 808 10.1016/j.pharep.2016.03.015 27117377
    [Google Scholar]
  118. Johansson J. Gudmundsson G.H. Rottenberg M.E. Berndt K.D. Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 1998 273 6 3718 3724 10.1074/jbc.273.6.3718 9452503
    [Google Scholar]
  119. Koehbach J. Craik D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci. 2019 40 7 517 528 10.1016/j.tips.2019.04.012 31230616
    [Google Scholar]
  120. Zhao H. Mode of action of antimicrobial peptides [Academic Dissertation]. Helsinki: University of Helsinki 2003
    [Google Scholar]
  121. Mattar E.H. Almehdar H.A. Yacoub H.A. Uversky V.N. Redwan E.M. Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine Growth Factor Rev. 2016 28 95 111 10.1016/j.cytogfr.2015.11.002 26598808
    [Google Scholar]
  122. Lehrer R.I. Lu W. α‐Defensins in human innate immunity. Immunol. Rev. 2012 245 1 84 112 10.1111/j.1600‑065X.2011.01082.x 22168415
    [Google Scholar]
  123. Tai K.P. Le V.V. Selsted M.E. Ouellette A.J. Hydrophobic determinants of α-defensin bactericidal activity. Infect. Immun. 2014 82 6 2195 2202 10.1128/IAI.01414‑13 24614658
    [Google Scholar]
  124. Koehbach J. Structure-activity relationships of insect defensins. Front Chem. 2017 5 45 10.3389/fchem.2017.00045 28748179
    [Google Scholar]
  125. Guyot N. Meudal H. Trapp S. Iochmann S. Silvestre A. Jousset G. Labas V. Reverdiau P. Loth K. Hervé V. Aucagne V. Delmas A.F. Godbert R.S. Landon C. Structure, function, and evolution of Gga -AvBD11, the archetype of the structural avian-double-β-defensin family. Proc. Natl. Acad. Sci. 2020 117 1 337 345 10.1073/pnas.1912941117 31871151
    [Google Scholar]
  126. Sitaram N. Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr. Med. Chem. 2006 13 6 679 696 10.2174/092986706776055689 16529559
    [Google Scholar]
  127. Selsted M. Theta-defensins: Cyclic antimicrobial peptides produced by binary ligation of truncated α-defensins. Curr. Protein Pept. Sci. 2004 5 5 365 371 10.2174/1389203043379459 15544531
    [Google Scholar]
  128. Conibear A.C. Rosengren K.J. Daly N.L. Henriques S.T. Craik D.J. The cyclic cystine ladder in θ-defensins is important for structure and stability, but not antibacterial activity. J. Biol. Chem. 2013 288 15 10830 10840 10.1074/jbc.M113.451047 23430740
    [Google Scholar]
  129. Holani R. Shah C. Haji Q. Inglis G.D. Uwiera R.R.E. Cobo E.R. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp. Immunol. Microbiol. Infect. Dis. 2016 49 95 101 10.1016/j.cimid.2016.10.004 27865272
    [Google Scholar]
  130. Flores H.J.L. Rodriguez M.C. Arellanez G.A. Morales A.A. Avila E.E. Effect of recombinant prophenin 2 on the integrity and viability of Trichomonas vaginalis. BioMed Res. Int. 2015 2015 1 8 10.1155/2015/430436 25815316
    [Google Scholar]
  131. Smirnova M.P. Kolodkin N.I. Kolobov A.A. Afonin V.G. Afonina I.V. Stefanenko L.I. Shpen’ V.M. Shamova O.V. Kolobov A.A. Indolicidin analogs with broad-spectrum antimicrobial activity and low hemolytic activity. Peptides 2020 132 170356 10.1016/j.peptides.2020.170356 32593681
    [Google Scholar]
  132. Khurshid Z. Najeeb S. Mali M. Moin S.F. Raza S.Q. Zohaib S. Sefat F. Zafar M.S. Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharm. J. 2017 25 1 25 31 10.1016/j.jsps.2016.04.027 28223859
    [Google Scholar]
  133. Starling S. A new way out for lysozyme. Nat. Rev. Gastroenterol. Hepatol. 2017 14 10 567 567 10.1038/nrgastro.2017.118 28831185
    [Google Scholar]
  134. Ragland S.A. Criss A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017 13 9 e1006512 10.1371/journal.ppat.1006512 28934357
    [Google Scholar]
  135. Zhang W. Su J. Xu H. Yu S. Liu Y. Zhang Y. Sun L. Yue Y. Zhou X. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells. PLoS One 2017 12 6 e0179672 10.1371/journal.pone.0179672 28617852
    [Google Scholar]
  136. Ibrahim H.R. Thomas U. Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem. 2001 276 47 43767 43774 10.1074/jbc.M106317200 11560930
    [Google Scholar]
  137. Harford C. Sarkar B. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: Metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 1997 30 3 123 130 10.1021/ar9501535
    [Google Scholar]
  138. Portelinha J. Duay S.S. Yu S.I. Heilemann K. Libardo M.D.J. Juliano S.A. Klassen J.L. Boza A.A.M. Antimicrobial peptides and copper(II) ions: Novel therapeutic opportunities. Chem. Rev. 2021 121 4 2648 2712 10.1021/acs.chemrev.0c00921 33524257
    [Google Scholar]
  139. Wende C. Kulak N. Fluorophore ATCUN complexes: Combining agent and probe for oxidative DNA cleavage. Chem. Commun. 2015 51 62 12395 12398 10.1039/C5CC04508H 26143739
    [Google Scholar]
  140. Heinrich J. König N.F. Sobottka S. Sarkar B. Kulak N. Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity. J. Inorg. Biochem. 2019 194 223 232 10.1016/j.jinorgbio.2019.01.016 30877897
    [Google Scholar]
  141. Enoki T.A. Silva M.I. Lorenzon E.N. Cilli E.M. Perez K.R. Riske K.A. Lamy M.T. Antimicrobial peptide K 0 -W 6 -Hya1 induces stable structurally modified lipid domains in anionic membranes. Langmuir 2018 34 5 2014 2025 10.1021/acs.langmuir.7b03408 29284086
    [Google Scholar]
  142. Lin T.Y. Weibel D.B. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol. 2016 100 10 4255 4267 10.1007/s00253‑016‑7468‑x 27026177
    [Google Scholar]
  143. Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015 16 1 1 18 10.1111/tra.12230 25243850
    [Google Scholar]
  144. Florek O.B. Clifton L.A. Wilde M. Arnold T. Green R.J. Frazier R.A. Lipid composition in fungal membrane models: Effect of lipid fluidity. Acta Crystallogr. D Struct. Biol. 2018 74 12 1233 1244 10.1107/S2059798318009440 30605137
    [Google Scholar]
  145. Renne M.F. Kroon D.A.I.P.M. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 2018 592 8 1330 1345 10.1002/1873‑3468.12944 29265372
    [Google Scholar]
  146. Baxter A.A. Lay F.T. Poon I.K.H. Kvansakul M. Hulett M.D. Tumor cell membrane-targeting cationic antimicrobial peptides: Novel insights into mechanisms of action and therapeutic prospects. Cell. Mol. Life Sci. 2017 74 20 3809 3825 10.1007/s00018‑017‑2604‑z 28770291
    [Google Scholar]
  147. Degroote G.S. Guérardel Y. Delannoy P. Gangliosides: Structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 2017 18 13 1146 1154 10.1002/cbic.201600705 28295942
    [Google Scholar]
  148. Vicente C.M. Silva D.D.A. Sartorio P.V. Silva T.D. Saad S.S. Nader H.B. Forones N.M. Toma L. Heparan sulfate proteoglycans in human colorectal cancer. Anal. Cell. Pathol. 2018 2018 1 10 10.1155/2018/8389595 30027065
    [Google Scholar]
  149. Matsuzaki K. Murase O. Fujii N. Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 1995 34 19 6521 6526 10.1021/bi00019a033 7538786
    [Google Scholar]
  150. Matsuzaki K. Murase O. Fujii N. Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996 35 35 11361 11368 10.1021/bi960016v 8784191
    [Google Scholar]
  151. Omardien S. Drijfhout J.W. Vaz F.M. Wenzel M. Hamoen L.W. Zaat S.A.J. Brul S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim. Biophys. Acta Biomembr. 2018 1860 11 2404 2415 10.1016/j.bbamem.2018.06.004 29902419
    [Google Scholar]
  152. Lohner K. Prossnigg F. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochim. Biophys. Acta Biomembr. 2009 1788 8 1656 1666 10.1016/j.bbamem.2009.05.012 19481533
    [Google Scholar]
  153. Lipkin R.B. Lazaridis T. Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs. J. Membr. Biol. 2015 248 3 469 486 10.1007/s00232‑014‑9759‑4 25430621
    [Google Scholar]
  154. Oren Z. Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 1998 47 6 451 463 10.1002/(SICI)1097‑0282(1998)47:6<451::AID‑BIP4>3.0.CO;2‑F 10333737
    [Google Scholar]
  155. Shenkarev Z.O. Balandin S.V. Trunov K.I. Paramonov A.S. Sukhanov S.V. Barsukov L.I. Arseniev A.S. Ovchinnikova T.V. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: Oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 2011 50 28 6255 6265 10.1021/bi200746t 21627330
    [Google Scholar]
  156. Lyu Y. Fitriyanti M. Narsimhan G. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids Surf. B Biointerfaces 2019 173 121 127 10.1016/j.colsurfb.2018.09.049 30278360
    [Google Scholar]
  157. Mardirossian M. Grzela R. Giglione C. Meinnel T. Gennaro R. Mergaert P. Scocchi M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 2014 21 12 1639 1647 10.1016/j.chembiol.2014.10.009 25455857
    [Google Scholar]
  158. Mardirossian M. Pérébaskine N. Benincasa M. Gambato S. Hofmann S. Huter P. Müller C. Hilpert K. Innis C.A. Tossi A. Wilson D.N. The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem. Biol. 2018 25 5 530 539.e7 10.1016/j.chembiol.2018.02.004 29526712
    [Google Scholar]
  159. Le C.F. Gudimella R. Razali R. Manikam R. Sekaran S.D. Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci. Rep. 2016 6 1 26828 10.1038/srep26828 27225022
    [Google Scholar]
  160. Kragol G. Lovas S. Varadi G. Condie B.A. Hoffmann R. Otvos L. Jr The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001 40 10 3016 3026 10.1021/bi002656a 11258915
    [Google Scholar]
  161. Le C.F. Fang C.M. Sekaran S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017 61 4 e02340-16 10.1128/AAC.02340‑16 28167546
    [Google Scholar]
  162. Wrońska A.K. Boguś M.I. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS One 2020 15 2 e0228556 10.1371/journal.pone.0228556 32027696
    [Google Scholar]
  163. Subbalakshmi C. Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 1998 160 1 91 96 10.1111/j.1574‑6968.1998.tb12896.x 9495018
    [Google Scholar]
  164. He S. Zhang J. Li N. Zhou S. Yue B. Zhang M. A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellfish Immunol. 2017 60 466 473 10.1016/j.fsi.2016.11.029 27840169
    [Google Scholar]
  165. Shu H. Chen H. Wang X. Hu Y. Yun Y. Zhong Q. Chen W. Chen W. Antimicrobial activity and proposed action mechanism of 3-carene against Brochothrix thermosphacta and Pseudomonas fluorescens. Molecules 2019 24 18 3246 10.3390/molecules24183246 31489899
    [Google Scholar]
  166. Lutkenhaus J. Regulation of cell division in E. coli. Trends Genet. 1990 6 1 22 25 10.1016/0168‑9525(90)90045‑8 2183414
    [Google Scholar]
  167. Li L. Sun J. Xia S. Tian X. Cheserek M.J. Le G. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: Intracellular DNA binding and cell cycle arrest. Appl. Microbiol. Biotechnol. 2016 100 7 3245 3253 10.1007/s00253‑015‑7265‑y 26743655
    [Google Scholar]
  168. Cruz G.F. Araujo D.I. Torres M.D.T. Nunez F.C. Oliveira V.X. Jr Ambrosio F.N. Lombello C.B. Almeida D.V. Silva F.D. Garcia W. Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. J. Inorg. Organomet. Polym. Mater. 2020 30 7 2464 2474 10.1007/s10904‑019‑01427‑2
    [Google Scholar]
  169. Helmerhorst E.J. Troxler R.F. Oppenheim F.G. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc. Natl. Acad. Sci. 2001 98 25 14637 14642 10.1073/pnas.141366998 11717389
    [Google Scholar]
  170. Lobo B.M. Molina A. Solano R. Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002 29 1 23 32 10.1046/j.1365‑313x.2002.01191.x 12060224
    [Google Scholar]
  171. Zélicourt D.A. Letousey P. Thoiron S. Campion C. Simoneau P. Elmorjani K. Marion D. Simier P. Delavault P. Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta 2007 226 3 591 600 10.1007/s00425‑007‑0507‑1 17375322
    [Google Scholar]
  172. Broekaert W.F. Cammue B.P.A. Bolle D.M.F.C. Thevissen K. Samblanx D.G.W. Osborn R.W. Nielson K. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 1997 16 3 297 323 10.1080/07352689709701952
    [Google Scholar]
  173. Caleya D.R.F. Pascual G.B. Olmedo G.F. Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl. Microbiol. 1972 23 5 998 1000 10.1128/am.23.5.998‑1000.1972 5031563
    [Google Scholar]
  174. Nguyen G.K.T. Zhang S. Nguyen N.T.K. Nguyen P.Q.T. Chiu M.S. Hardjojo A. Tam J.P. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J. Biol. Chem. 2011 286 27 24275 24287 10.1074/jbc.M111.229922 21596752
    [Google Scholar]
  175. Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005 3 3 238 250 10.1038/nrmicro1098 15703760
    [Google Scholar]
  176. Li Y. Xiang Q. Zhang Q. Huang Y. Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 2012 37 2 207 215 10.1016/j.peptides.2012.07.001 22800692
    [Google Scholar]
  177. Carvalho A.O. Gomes V.M. Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 2009 30 5 1007 1020 10.1016/j.peptides.2009.01.018 19428780
    [Google Scholar]
  178. Lay F. Anderson M. Defensins--components of the innate immune system in plants. Curr. Protein Pept. Sci. 2005 6 1 85 101 10.2174/1389203053027575 15638771
    [Google Scholar]
  179. Kushmerick C. Castro S.M. Cruz S.J. Bloch C. Jr Beirão P.S.L. Functional and structural features of γ‐zeathionins, a new class of sodium channel blockers. FEBS Lett. 1998 440 3 302 306 10.1016/S0014‑5793(98)01480‑X 9872391
    [Google Scholar]
  180. Spelbrink R.G. Dilmac N. Allen A. Smith T.J. Shah D.M. Hockerman G.H. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 2004 135 4 2055 2067 10.1104/pp.104.040873 15299136
    [Google Scholar]
  181. Havenga B. Ndlovu T. Clements T. Reyneke B. Waso M. Khan W. Exploring the antimicrobial resistance profiles of WHO critical priority list bacterial strains. BMC Microbiol. 2019 19 1 303 10.1186/s12866‑019‑1687‑0 31870288
    [Google Scholar]
  182. Cocci P. Roncarati A. Capriotti M. Mosconi G. Palermo F.A. Transcriptional alteration of gene biomarkers in hemocytes of wild Ostrea edulis with molecular evidence of infections with Bonamia spp. and/or Marteilia refringens parasites. Pathogens 2020 9 5 323 10.3390/pathogens9050323 32357566
    [Google Scholar]
  183. Zahedifard F. Lee H. No J.H. Salimi M. Seyed N. Asoodeh A. Rafati S. Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp. Parasitol. 2020 209 107823 10.1016/j.exppara.2019.107823 31862270
    [Google Scholar]
  184. Hegedüs N. Marx F. Antifungal proteins: More than antimicrobials? Fungal Biol. Rev. 2013 26 4 132 145 10.1016/j.fbr.2012.07.002 23412850
    [Google Scholar]
  185. Xiao S. Cui P. Shi W. Zhang Y. Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC Compl. Med. Ther. 2020 20 1 99 10.1186/s12906‑020‑02898‑4 32209108
    [Google Scholar]
  186. Taggar R. Jangra M. Dwivedi A. Bansal K. Patil P.B. Bhattacharyya M.S. Nandanwar H. Sahoo D.K. Bacteriocin isolated from the natural inhabitant of Allium cepa against Staphylococcus aureus. World J. Microbiol. Biotechnol. 2021 37 2 20 10.1007/s11274‑020‑02989‑x 33427970
    [Google Scholar]
  187. Park H.K. Ha M.H. Park S.G. Kim M.N. Kim B.J. Kim W. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One 2012 7 2 e32847 10.1371/journal.pone.0032847 22393454
    [Google Scholar]
  188. Wang D. Chen J. Zhu J. Mou Y. Novel cyclotides from Hedyotis Biflora has potent bactericidal activity against gram-negative bacteria and E. Coli drug resistance. Int. J. Clin. Exp. Med. 2016 9 9521 9526
    [Google Scholar]
  189. Noonan J. Williams W. Shan X. Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize. Int. J. Mol. Sci. 2017 18 9 1938 10.3390/ijms18091938 28914754
    [Google Scholar]
  190. Faull K.F. Higginson J. Waring A.J. Johnson J. To T. Whitelegge J.P. Stevens R.L. Fluharty C.B. Fluharty A.L. Disulfide connectivity in cerebroside sulfate activator is not necessary for biological activity or α-helical content but is necessary for trypsin resistance and strong ligand binding. Arch. Biochem. Biophys. 2000 376 2 266 274 10.1006/abbi.2000.1714 10775412
    [Google Scholar]
  191. Sohail A.A. Gaikwad M. Khadka P. Saaranen M.J. Ruddock L.W. Production of extracellular matrix proteins in the cytoplasm of E. coli: Making giants in tiny factories. Int. J. Mol. Sci. 2020 21 3 688 10.3390/ijms21030688 31973001
    [Google Scholar]
  192. Khoo K.K. Norton R.S. Role of disulfide bonds in peptide and protein conformation. Amino acids, peptides and proteins in organic chemistry: Analysis and function of amino acids and peptides. Wiley-VCH Verlag GmbH & Co. KGaA 2011 395 417
    [Google Scholar]
  193. Xiao J. Zhang H. Niu L. Wang X. Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography. J. Agric. Food Chem. 2011 59 4 1145 1151 10.1021/jf103876b 21268582
    [Google Scholar]
  194. Prabhu S. Dennison S.R. Mura M. Lea R.W. Snape T.J. Harris F. Cn ‐AMP2 from green coconut water is an anionic anticancer peptide. J. Pept. Sci. 2014 20 12 909 915 10.1002/psc.2684 25234689
    [Google Scholar]
  195. Hammami R. Hamida B.J. Vergoten G. Fliss I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res. 2009 37 Database D963 D968 10.1093/nar/gkn655 18836196
    [Google Scholar]
  196. Egorov T.A. Odintsova T.I. Pukhalsky V.A. Grishin E.V. Diversity of wheat anti-microbial peptides. Peptides 2005 26 11 2064 2073 10.1016/j.peptides.2005.03.007 16269343
    [Google Scholar]
  197. Yili A. Maksimov V. Ma Q-L. Gao Y-H. Veshkurova O. Salikhov S. Aisa H.A. Antimicrobial peptides from the plants. J. Pharm. Pharmacol. 2014 2 627 641
    [Google Scholar]
  198. Wong J.H. Ng T.B. Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill). Peptides 2003 24 7 963 968 10.1016/S0196‑9781(03)00192‑X 14499273
    [Google Scholar]
  199. Ngai P.H.K. Ng T.B. A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides 2004 25 2 171 176 10.1016/j.peptides.2003.12.012 15062997
    [Google Scholar]
  200. Thomma B. Cammue B. Thevissen K. Plant defensins. Planta 2002 216 2 193 202 10.1007/s00425‑002‑0902‑6 12447532
    [Google Scholar]
  201. Almeida L.F.D. Paula J.F. Almeida R.V.D. Williams D.W. Hebling J. Cavalcanti Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016 74 5 393 398 10.3109/00016357.2016.1166261 27098375
    [Google Scholar]
  202. Thevissen K. Warnecke D.C. François I.E.J.A. Leipelt M. Heinz E. Ott C. Zähringer U. Thomma B.P.H.J. Ferket K.K.A. Cammue B.P.A. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 2004 279 6 3900 3905 10.1074/jbc.M311165200 14604982
    [Google Scholar]
  203. Park H.C. Kang H.Y. Chun J.H. Koo C.J. Cheong H.Y. Kim Y.C. Kim C.M. Chung S.W. Kim C.J. Yoo H.J. Koo D.Y. Koo C.S. Lim O.C. Lee Y.S. Cho J.M. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol. Biol. 2002 50 1 57 68 10.1023/A:1016005231852 12139009
    [Google Scholar]
  204. Yokoyama S. Kato K. Koba A. Minami Y. Watanabe K. Yagi F. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides 2008 29 12 2110 2117 10.1016/j.peptides.2008.08.007 18778743
    [Google Scholar]
  205. Morita H. Yun Y.S. Takeya K. Itokawa H. Yamada K. Segetalins B. Segetalins B, C and D, three new cyclic peptides from Vaccaria segetalis. Tetrahedron 1995 51 21 6003 6014 10.1016/0040‑4020(95)00278‑G
    [Google Scholar]
  206. Morita H. Sato Y. Kobayashi J. Cyclosquamosins A – G, cyclic peptides from the seeds of Annona squamosa. Tetrahedron 1999 55 24 7509 7518 10.1016/S0040‑4020(99)00372‑5
    [Google Scholar]
  207. Morita H. Yun Y.S. Takeya K. Itokawa H. Shirota O. Thionation of segetalins A and B, cyclic peptides with estrogen-like activity from seeds of Vaccaria segetalis. Bioorg. Med. Chem. 1997 5 3 631 636 10.1016/S0968‑0896(97)00001‑1 9113340
    [Google Scholar]
  208. Cammue B.P. Bolle D.M.F. Terras F.R. Proost P. Damme V.J. Rees S.B. Vanderleyden J. Broekaert W.F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem. 1992 267 4 2228 2233 10.1016/S0021‑9258(18)45866‑8 1733929
    [Google Scholar]
  209. Cammue B. Thevissen K. Hendriks M. Eggermont K. Goderis I.J. Proost P. Damme V.J. Osborn R.W. Guerbette F. Kader J.C. Broekaert W.F. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 1995 109 2 445 455 10.1104/pp.109.2.445 7480341
    [Google Scholar]
  210. Park C.J. Park C.B. Hong S.S. Lee H.S. Lee S.Y. Kim S.C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris. Plant Mol. Biol. 2000 44 2 187 197 10.1023/A:1006431320677 11117262
    [Google Scholar]
  211. Tailor R.H. Acland D.P. Attenborough S. Cammue B.P.A. Evans I.J. Osborn R.W. Ray J.A. Rees S.B. Broekaert W.F. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 1997 272 39 24480 24487 10.1074/jbc.272.39.24480 9305910
    [Google Scholar]
  212. Thevissen K. François I.E.J.A. Sijtsma L. Amerongen A. Schaaper W.M.M. Meloen R. Trumpie P.T. Broekaert W.F. Cammue B.P.A. Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 2005 26 7 1113 1119 10.1016/j.peptides.2005.01.008 15949628
    [Google Scholar]
  213. Wang P. Bang J.K. Kim H.J. Kim J.K. Kim Y. Shin S.Y. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 2009 30 12 2144 2149 10.1016/j.peptides.2009.09.020 19778562
    [Google Scholar]
  214. Castro M. Fontes W. Plant defense and antimicrobial peptides. Protein Pept. Lett. 2005 12 1 11 16 10.2174/0929866053405832 15638798
    [Google Scholar]
  215. Shao F. Hu Z. Xiong Y.M. Huang Q.Z. Wang C.G. Zhu R.H. Wang D.C. A new antifungal peptide from the seeds of Phytolacca americana: Characterization, amino acid sequence and cDNA cloning. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1999 1430 2 262 268 10.1016/S0167‑4838(99)00013‑8 10082954
    [Google Scholar]
  216. Lerche M.H. Kragelund B.B. Bech L.M. Poulsen F.M. Barley lipid-transfer protein complexed with palmitoyl CoA: The structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 1997 5 2 291 306 10.1016/S0969‑2126(97)00186‑X 9032083
    [Google Scholar]
  217. Segura A. Moreno M. Madueño F. Molina A. Olmedo G.F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant Microbe Interact. 1999 12 1 16 23 10.1094/MPMI.1999.12.1.16 9885189
    [Google Scholar]
  218. Lipkin A. Anisimova V. Nikonorova A. Babakov A. Krause E. Bienert M. Grishin E. Egorov T. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 2005 66 20 2426 2431 10.1016/j.phytochem.2005.07.015 16126239
    [Google Scholar]
  219. van der Weerden N.L. Bleackley M.R. Anderson M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci. 2013 70 19 3545 3570 10.1007/s00018‑013‑1260‑1 23381653
    [Google Scholar]
  220. Koo J.C. Lee S.Y. Chun H.J. Cheong Y.H. Choi J.S. Kawabata S. Miyagi M. Tsunasawa S. Ha K.S. Bae D.W. Han C. Lee B.L. Cho M.J. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1998 1382 1 80 90 10.1016/S0167‑4838(97)00148‑9 9507071
    [Google Scholar]
  221. Ángeles L.H. Cisneros S.E. Zárate L.L. Gómez V.E. Meza L.J.E. Zarzosa O.A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol. Lett. 2008 30 10 1713 1719 10.1007/s10529‑008‑9756‑8 18563581
    [Google Scholar]
  222. Bernhard R.A. Marr A.G. The oxidation of terpenes. I. Mechanism and reaction products of D‐limonene autoxidation. J. Food Sci. 1960 25 4 517 530 10.1111/j.1365‑2621.1960.tb00363.x
    [Google Scholar]
  223. Koike M. Okamoto T. Tsuda S. Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem. Biophys. Res. Commun. 2002 298 1 46 53 10.1016/S0006‑291X(02)02391‑4 12379218
    [Google Scholar]
  224. Mirouze M. Sels J. Richard O. Czernic P. Loubet S. Jacquier A. François I.E.J.A. Cammue B.P.A. Lebrun M. Berthomieu P. Marquès L. A putative novel role for plant defensins: A defensin from the zinc hyper‐accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 2006 47 3 329 342 10.1111/j.1365‑313X.2006.02788.x 16792695
    [Google Scholar]
  225. Kong J.L. Du X.B. Fan C.X. Xu J.F. Zheng X.J. Determination of primary structure of a novel peptide from mistletoe and its antitumor activity. Yao Xue Xue Bao 2004 39 10 813 817 15700822
    [Google Scholar]
  226. Li S.S. Gullbo J. Lindholm P. Larsson R. Thunberg E. Samuelsson G. Bohlin L. Claeson P. Ligatoxin B, a new cytotoxic protein with a novel helix–turn–helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J. 2002 366 2 405 413 10.1042/bj20020221 12049612
    [Google Scholar]
  227. Nahirñak V. Almasia N.I. Fernandez P.V. Hopp H.E. Estevez J.M. Carrari F. Rovere V.C. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiol. 2012 158 1 252 263 10.1104/pp.111.186544 22080603
    [Google Scholar]
  228. Lin P. Wong J.H. Ng T.B. A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci. Rep. 2010 30 2 101 109 10.1042/BSR20090004 19335335
    [Google Scholar]
  229. Ireland D.C. Colgrave M.L. Craik D.J. A novel suite of cyclotides from Viola odorata : Sequence variation and the implications for structure, function and stability. Biochem. J. 2006 400 1 1 12 10.1042/BJ20060627 16872274
    [Google Scholar]
  230. Herrmann A. Svangård E. Claeson P. Gullbo J. Bohlin L. Göransson U. Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cell. Mol. Life Sci. 2006 63 2 235 245 10.1007/s00018‑005‑5486‑4 16389447
    [Google Scholar]
  231. Wang S.Y. Wu J.H. Ng T.B. Ye X.Y. Rao P.F. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 2004 25 8 1235 1242 10.1016/j.peptides.2004.06.004 15350690
    [Google Scholar]
  232. Daly N.L. Craik D.J. Bioactive cystine knot proteins. Curr. Opin. Chem. Biol. 2011 15 3 362 368 10.1016/j.cbpa.2011.02.008 21362584
    [Google Scholar]
  233. Tam J.P. Lu Y.A. Yang J.L. Chiu K.W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. 1999 96 16 8913 8918 10.1073/pnas.96.16.8913 10430870
    [Google Scholar]
  234. Witherup K.M. Bogusky M.J. Anderson P.S. Ramjit H. Ransom R.W. Wood T. Sardana M. Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J. Nat. Prod. 1994 57 12 1619 1625 10.1021/np50114a002 7714530
    [Google Scholar]
  235. Jennings C.V. Rosengren K.J. Daly N.L. Plan M. Stevens J. Scanlon M.J. Waine C. Norman D.G. Anderson M.A. Craik D.J. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: Do Möbius strips exist in nature? Biochemistry 2005 44 3 851 860 10.1021/bi047837h 15654741
    [Google Scholar]
  236. Souza D.M.W.R. Desafio de plantas transgênicas de laranja hamlin (Citrus Sinensis L. Osbeck) superexpressando os genes CDR-1 Ou PDF2. 2 Ou GLT1 à infecção com xanthomonas citri subsp. Citri ou candidatus liberibacter asiaticus. PhD Thesis, Universidade de São Paulo 2023
    [Google Scholar]
  237. Franco O.L. Murad A.M. Leite J.R. Mendes P.A.M. Prates M.V. Bloch C. Jr Identification of a cowpea γ‐thionin with bactericidal activity. FEBS J. 2006 273 15 3489 3497 10.1111/j.1742‑4658.2006.05349.x 16824043
    [Google Scholar]
  238. Zhang Y. Lewis K. Fabatins: New antimicrobial plant peptides. FEMS Microbiol. Lett. 1997 149 1 59 64 10.1111/j.1574‑6968.1997.tb10308.x 9103978
    [Google Scholar]
  239. Fujimura M. Ideguchi M. Minami Y. Watanabe K. Tadera K. Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci. Biotechnol. Biochem. 2005 69 3 642 645 10.1271/bbb.69.642 15784998
    [Google Scholar]
  240. Vernon L.P. Evett G.E. Zeikus R.D. Gray W.R. A toxic thionin from Pyrularia pubera: Purification, properties, and amino acid sequence. Arch. Biochem. Biophys. 1985 238 1 18 29 10.1016/0003‑9861(85)90136‑5 3985614
    [Google Scholar]
  241. Bloch C. Jr Richardson M. A new family of small (5 kDa) protein inhibitors of insect α‐amylases from seeds or sorghum ( Sorghum bicolor (L) Moench) have sequence homologies with wheat γ‐purothionins. FEBS Lett. 1991 279 1 101 104 10.1016/0014‑5793(91)80261‑Z 1995329
    [Google Scholar]
  242. Moreno M. Segura A. Olmedo G.F. Pseudothionin‐St1, a potato peptide active against potato pathogens. Eur. J. Biochem. 1994 223 1 135 139 10.1111/j.1432‑1033.1994.tb18974.x 8033886
    [Google Scholar]
  243. Segura A. Moreno M. Molina A. Olmedo G.F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998 435 2-3 159 162 10.1016/S0014‑5793(98)01060‑6 9762899
    [Google Scholar]
  244. Zottich U. Cunha D.M. Carvalho A.O. Dias G.B. Silva N.C.M. Santos I.S. Nacimento D.V.V. Miguel E.C. Machado O.L.T. Gomes V.M. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta, Gen. Subj. 2011 1810 4 375 383 10.1016/j.bbagen.2010.12.002 21167915
    [Google Scholar]
  245. Murad A.M. Pelegrini P.B. Neto S.M. Franco O.L. Novel findings of defensins and their utilization in construction of transgenic plants. Transgenic Plant J. 2007 1 39 48
    [Google Scholar]
  246. Wong J.H. Zhang X.Q. Wang H.X. Ng T.B. A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides 2006 27 9 2075 2081 10.1016/j.peptides.2006.03.020 16687191
    [Google Scholar]
  247. Zu Y. Yu H. Liang L. Fu Y. Efferth T. Liu X. Wu N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 2010 15 5 3200 3210 10.3390/molecules15053200 20657472
    [Google Scholar]
  248. Ma D.Z. Wang H.X. Ng T.B. A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans. Peptides 2009 30 12 2089 2094 10.1016/j.peptides.2009.08.017 19720103
    [Google Scholar]
  249. Yount N.Y. Yeaman M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. 2004 101 19 7363 7368 10.1073/pnas.0401567101 15118082
    [Google Scholar]
  250. Wong J.H. Ng T.B. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides 2005 26 11 2086 2092 10.1016/j.peptides.2005.03.004 16269344
    [Google Scholar]
  251. Ortan A. Campeanu G.H. Pirvu D.C. Popescu L. Studies concerning the entrapment of anethum graveolens essential oil in liposomes. Rom. Biotechnol. Lett. 2009 14 4411 4417
    [Google Scholar]
  252. Porto W.F. Franco O.L. Theoretical structural insights into the snakin/GASA family. Peptides 2013 44 163 167 10.1016/j.peptides.2013.03.014 23578978
    [Google Scholar]
  253. Martins J.C. Maes D. Loris R. Pepermans H.A.M. Wyns L. Willem R. Verheyden P. H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J. Mol. Biol. 1996 258 2 322 333 10.1006/jmbi.1996.0253 8627629
    [Google Scholar]
  254. Fujimura M. Minami Y. Watanabe K. Tadera K. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci. Biotechnol. Biochem. 2003 67 8 1636 1642 10.1271/bbb.67.1636 12951494
    [Google Scholar]
  255. Verheyden P. Pletinckx J. Maes D. Pepermans H.A.M. Wyns L. Willem R. Martins J. 1 H NMR study of the interaction of N, N ′, N ″‐triacetyl chitotriose with Ac‐AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. FEBS Lett. 1995 370 3 245 249 10.1016/0014‑5793(95)00835‑W 7656986
    [Google Scholar]
  256. Van den Bergh K.P.B. Rougé P. Proost P. Coosemans J. Krouglova T. Engelborghs Y. Peumans W.J. Damme V.E.J.M. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Planta 2004 219 2 221 232 10.1007/s00425‑004‑1238‑1 15048569
    [Google Scholar]
  257. Goyal R.K. Mattoo A.K. Plant antimicrobial peptides. Host defense peptides and their potential as therapeutic agents. Epand R.M. Cham Springer International Publishing 2016 111 136 10.1007/978‑3‑319‑32949‑9_5
    [Google Scholar]
  258. Weinhold A. Dorcheh K.E. Li R. Rameshkumar N. Baldwin I.T. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. eLife 2018 7 e28715 10.7554/eLife.28715 29661271
    [Google Scholar]
  259. Marcus J.P. Green J.L. Goulter K.C. Manners J.M. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J. 1999 19 6 699 710 10.1046/j.1365‑313x.1999.00569.x 10571855
    [Google Scholar]
  260. Fant F. Vranken W.F. Borremans F.A.M. The three-dimensional solution structure ofAesculus hippocastanum antimicrobial protein 1 determined by1H nuclear magnetic resonance. Proteins 1999 37 3 388 403 10.1002/(SICI)1097‑0134(19991115)37:3<388::AID‑PROT7>3.0.CO;2‑F 10591099
    [Google Scholar]
  261. Wang H.X. Ng T.B. Dendrocin, a distinctive antifungal protein from bamboo shoots. Biochem. Biophys. Res. Commun. 2003 307 3 750 755 10.1016/S0006‑291X(03)01229‑4 12893287
    [Google Scholar]
  262. Wang H. Ng T.B. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem. Biophys. Res. Commun. 2000 279 2 407 411 10.1006/bbrc.2000.3929 11118300
    [Google Scholar]
  263. Lopez J. Tait S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer 2015 112 6 957 962 10.1038/bjc.2015.85 25742467
    [Google Scholar]
  264. Kerenga B.K. McKenna J.A. Harvey P.J. Quimbar P. Ceron G.D. Lay F.T. Phan T.K. Veneer P.K. Vasa S. Parisi K. Shafee T.M.A. van der Weerden N.L. Hulett M.D. Craik D.J. Anderson M.A. Bleackley M.R. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front. Microbiol. 2019 10 795 10.3389/fmicb.2019.00795 31031739
    [Google Scholar]
  265. Tavares L. Noreña C.P.Z. Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food Bioprocess Technol. 2020 13 8 1405 1420 10.1007/s11947‑020‑02480‑3
    [Google Scholar]
  266. Tikotskaia K.M. Investigation of the vitamin P activity of a soluble preparation of rutin. Biull. Eksp. Biol. Med. 1958 45 4 32 35 13535899
    [Google Scholar]
  267. Lay F.T. Brugliera F. Anderson M.A. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003 131 3 1283 1293 10.1104/pp.102.016626 12644678
    [Google Scholar]
  268. Castagnaro A. Maraña C. Carbonero P. Olmedo G.F. Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J. Mol. Biol. 1992 224 4 1003 1009 10.1016/0022‑2836(92)90465‑V 1569564
    [Google Scholar]
  269. Khan M.S.A. Ahmad I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 2012 140 2 416 423 10.1016/j.jep.2012.01.045 22326355
    [Google Scholar]
  270. Terras F.R.G. Goderis I.J. Leuven V.F. Vanderleyden J. Cammue B.P.A. Broekaert W.F. in vitro antifungal activity of a radish ( Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 1992 100 2 1055 1058 10.1104/pp.100.2.1055 16653017
    [Google Scholar]
  271. Gao A.G. Hakimi S.M. Mittanck C.A. Wu Y. Woerner B.M. Stark D.M. Shah D.M. Liang J. Rommens C.M.T. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol. 2000 18 12 1307 1310 10.1038/82436 11101813
    [Google Scholar]
  272. Maitra N. Cushman J.C. Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late-embryogenesis-abundant protein. Plant Physiol. 1994 106 2 805 806 10.1104/pp.106.2.805 7991700
    [Google Scholar]
  273. Zhu S. Gao B. Tytgat J. Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cell. Mol. Life Sci. 2005 62 19-20 2257 2269 10.1007/s00018‑005‑5200‑6 16143827
    [Google Scholar]
  274. Huang W. Vernon L.P. Bell J.D. Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera. Toxicon 1994 32 7 789 797 10.1016/0041‑0101(94)90004‑3 7940586
    [Google Scholar]
  275. Huang R.H. Xiang Y. Liu X.Z. Zhang Y. Hu Z. Wang D.C. Two novel antifungal peptides distinct with a five‐disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 2002 521 1-3 87 90 10.1016/S0014‑5793(02)02829‑6 12067732
    [Google Scholar]
  276. Coninck D.B. Cammue B.P.A. Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol. Rev. 2013 26 4 109 120 10.1016/j.fbr.2012.10.002
    [Google Scholar]
  277. Wijesundara N.M. Rupasinghe H.P.V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microb. Pathog. 2018 117 118 127 10.1016/j.micpath.2018.02.026 29452197
    [Google Scholar]
  278. Khan S.R. Iqbal A. Malak R. Shehryar K. Attia S. Ahmed T. Khan A.M. Arif M. Mii M. Plant defensins: Types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019 9 192
    [Google Scholar]
  279. Arnold R.J. Donnelly A. Altieri L. Wong K.S. Sung J. Assessment of outcomes and parental effect on Quality-of-Life endpoints in the management of atopic dermatitis. Manag. Care Interface 2007 20 2 18 23 17405577
    [Google Scholar]
  280. Wong C.T.T. Taichi M. Nishio H. Nishiuchi Y. Tam J.P. Optimal oxidative folding of the novel antimicrobial cyclotide from Hedyotis biflora requires high alcohol concentrations. Biochemistry 2011 50 33 7275 7283 10.1021/bi2007004 21776968
    [Google Scholar]
  281. Lacerda A.F. Vasconcelos Ã.A.R. Pelegrini P.B. Grossi de Sa M.F. Antifungal defensins and their role in plant defense. Front. Microbiol. 2014 5 116 10.3389/fmicb.2014.00116 24765086
    [Google Scholar]
  282. Michaelson D. Rayner J. Couto M. Ganz T. Cationic defensins arise from charge-neutralized propeptides: A mechanism for avoiding leukocyte autocytotoxicity? J. Leukoc. Biol. 1992 51 6 634 639 10.1002/jlb.51.6.634 1613398
    [Google Scholar]
  283. Matasyoh J.C. Kiplimo J.J. Karubiu N.M. Hailstorks T.P. Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chem. 2007 101 3 1183 1187 10.1016/j.foodchem.2006.03.021
    [Google Scholar]
  284. Silverstein K.A.T. Graham M.A. Paape T.D. VandenBosch K.A. Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol. 2005 138 2 600 610 10.1104/pp.105.060079 15955924
    [Google Scholar]
  285. Kobayashi Y. Takashima H. Tamaoki H. Kyogoku Y. Lambert P. Kuroda H. Chino N. Watanabe T.X. Kimura T. Sakakibara S. Moroder L. The cystine‐stabilized α‐helix: A common structural motif of ion‐channel blocking neurotoxic peptides. Biopolymers 1991 31 10 1213 1220 10.1002/bip.360311009 1724185
    [Google Scholar]
  286. Bontems F. Roumestand C. Gilquin B. Ménez A. Toma F. Refined structure of charybdotoxin: Common motifs in scorpion toxins and insect defensins. Science 1991 254 5037 1521 1523 10.1126/science.1720574 1720574
    [Google Scholar]
  287. Camps F.J.C. Three-dimensional model of the insect-directed scorption toxin fromAndroctonus australis hector and its implication for the evolution of scorption toxins in general. J. Mol. Evol. 1989 29 1 63 67 10.1007/BF02106182 2504931
    [Google Scholar]
  288. Almeida D.M. Wethington E. Kessler R.C. The daily inventory of stressful events: An interview-based approach for measuring daily stressors. Assessment 2002 9 1 41 55 10.1177/1073191102091006 11911234
    [Google Scholar]
  289. Janssen B.J.C. Schirra H.J. Lay F.T. Anderson M.A. Craik D.J. Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry 2003 42 27 8214 8222 10.1021/bi034379o 12846570
    [Google Scholar]
  290. Landon C. Vovelle F. Sodano P. Pajon A. The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs ‐AFP2, a plant antifungal protein. J. Pept. Res. 2000 56 4 231 238 10.1034/j.1399‑3011.2000.00757.x 11083062
    [Google Scholar]
  291. Liu Y.J. Cheng C.S. Lai S.M. Hsu M.P. Chen C.S. Lyu P.C. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 2006 63 4 777 786 10.1002/prot.20962 16544327
    [Google Scholar]
  292. Song X. Zhou Z. Wang J. Wu F. Gong W. Purification, characterization and preliminary crystallographic studies of a novel plant defensin from Pachyrrhizus erosus seeds. Acta Crystallogr. D Biol. Crystallogr. 2004 60 6 1121 1124 10.1107/S0907444904007395 15159575
    [Google Scholar]
  293. Song S. Laipis P.J. Berns K.I. Flotte T.R. Effect Of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc. Natl. Acad. Sci. 2001 98 7 4084 4088 10.1073/pnas.061014598 11274433
    [Google Scholar]
  294. Ntui V.O. Thirukkumaran G. Azadi P. Khan R.S. Nakamura I. Mii M. Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep. 2010 29 9 943 954 10.1007/s00299‑010‑0880‑2 20552202
    [Google Scholar]
  295. Kanzaki H. Nirasawa S. Saitoh H. Ito M. Nishihara M. Terauchi R. Nakamura I. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor. Appl. Genet. 2002 105 6 809 814 10.1007/s00122‑001‑0817‑9 12582903
    [Google Scholar]
  296. Lin P. Xia L. Wong J.H. Ng T.B. Ye X. Wang S. Xiangzhu S. Lipid transfer proteins from Brassica campestris and mung bean surpass mung bean chitinase in exploitability. J. Pept. Sci. 2007 13 10 642 648 10.1002/psc.893 17726719
    [Google Scholar]
  297. Jha S. Chattoo B.B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 2010 19 3 373 384 10.1007/s11248‑009‑9315‑7 19690975
    [Google Scholar]
  298. Terras F.R. Eggermont K. Kovaleva V. Raikhel N.V. Osborn R.W. Kester A. Rees S.B. Torrekens S. Leuven V.F. Vanderleyden J. Small cysteine-rich antifungal proteins from radish: Their role in host defense. Plant Cell 1995 7 5 573 588 7780308
    [Google Scholar]
  299. Choi W.S. Yan M. Nusinow D. Gralla J.D. In vitro transcription and start site selection in Schizosaccharomyces pombe. J. Mol. Biol. 2002 319 5 1005 1013 10.1016/S0022‑2836(02)00329‑7 12079343
    [Google Scholar]
  300. Kazan K. Schenk P.M. Wilson I. Manners J.M. DNA microarrays: New tools in the analysis of plant defence responses. Mol. Plant Pathol. 2001 2 3 177 185 10.1046/j.1364‑3703.2001.00061.x 20573005
    [Google Scholar]
  301. Braicu C. Pilecki V. Balacescu O. Irimie A. Neagoe B.I. The relationships between biological activities and structure of flavan-3-ols. Int. J. Mol. Sci. 2011 12 12 9342 9353 10.3390/ijms12129342 22272136
    [Google Scholar]
  302. Gaspar Y.M. McKenna J.A. McGinness B.S. Hinch J. Poon S. Connelly A.A. Anderson M.A. Heath R.L. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J. Exp. Bot. 2014 65 6 1541 1550 10.1093/jxb/eru021 24502957
    [Google Scholar]
  303. Anuradha S.T. Divya K. Jami S.K. Kirti P.B. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep. 2008 27 11 1777 1786 10.1007/s00299‑008‑0596‑8 18758784
    [Google Scholar]
  304. Bacharach A.L. Coates M.Ė. Middleton T.R. A biological test for vitamin P activity. Biochem. J. 1942 36 5-6 407 412 10.1042/bj0360407b 16747541
    [Google Scholar]
  305. Romero A. Alamillo J.M. Olmedo G.F. Processing of thionin precursors in barley leaves by a vacuolar proteinase. Eur. J. Biochem. 1997 243 1-2 202 208 10.1111/j.1432‑1033.1997.0202a.x 9030740
    [Google Scholar]
  306. Stevens C. Titarenko E. Hargreaves J.A. Gurr S.J. Defence-related gene activation during an incompatible interaction between Stagonospora (Septoria) nodorum and barley (Hordeum vulgare L.) coleoptile cells. Plant Mol. Biol. 1996 31 4 741 749 10.1007/BF00019462 8806405
    [Google Scholar]
  307. Thevissen K. Ghazi A. Samblanx D.G.W. Brownlee C. Osborn R.W. Broekaert W.F. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. 1996 271 25 15018 15025 10.1074/jbc.271.25.15018 8663029
    [Google Scholar]
  308. Fischer S.G. Apel K. Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol. Gen. Genet. 1994 245 3 380 389 10.1007/BF00290119 7816048
    [Google Scholar]
  309. Ball E.D. Tinkham E.R. Flock R. Vorhies C.T. The grasshoppers and other orthoptera of Arizona The University of Arizona 1942
    [Google Scholar]
  310. Ponz F. Ares P.J. Lucas H.C. Carbonero P. Olmedo G.F. Synthesis and processing of thionin precursors in developing endosperm from barley ( Hordeum vulgare L.). EMBO J. 1983 2 7 1035 1040 10.1002/j.1460‑2075.1983.tb01542.x 16453465
    [Google Scholar]
  311. Steinmüller K. Batschauer A. Apel K. Tissue‐specific and light‐dependent changes of chromatin organization in barley ( Hordeum vulgare ). Eur. J. Biochem. 1986 158 3 519 525 10.1111/j.1432‑1033.1986.tb09785.x 3015615
    [Google Scholar]
  312. Gausing K. Thionin genes specifically expressed in barley leaves. Planta 1987 171 2 241 246 10.1007/BF00391100 24227332
    [Google Scholar]
  313. Epple P. Apel K. Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995 109 3 813 820 10.1104/pp.109.3.813 8552715
    [Google Scholar]
  314. Bohlmann H. Apel K. Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.). Mol. Gen. Genet. 1987 207 2-3 446 454 10.1007/BF00331614
    [Google Scholar]
  315. Stec B. Markman O. Rao U. Heffron G. Henderson S. Vernon L.P. Brumfeld V. Teeter M.M. Proposal for molecular mechanism of thionins deduced from physico‐chemical studies of plant toxins. J. Pept. Res. 2004 64 6 210 224 10.1111/j.1399‑3011.2004.00187.x 15613085
    [Google Scholar]
  316. Bohlmann H. Apel K. Thionins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991 42 1 227 240 10.1146/annurev.pp.42.060191.001303
    [Google Scholar]
  317. Vernon L.P. Pyrularia thionin: Physical properties, biological responses and comparison to other thionins and cardiotoxin. J. Toxicol. Toxin Rev. 1992 11 3 169 191 10.3109/15569549209115819
    [Google Scholar]
  318. Rodriguez C.M. Freire M.A. Camilleri C. Robaglia C. The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. Plant J. 1998 13 4 465 473 10.1046/j.1365‑313X.1998.00047.x 9680993
    [Google Scholar]
  319. Hughes P. Dennis E. Whitecross M. Llewellyn D. Gage P. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J. Biol. Chem. 2000 275 2 823 827 10.1074/jbc.275.2.823 10625613
    [Google Scholar]
  320. Stec B. Plant thionins – the structural perspective. Cell. Mol. Life Sci. 2006 63 12 1370 1385 10.1007/s00018‑005‑5574‑5 16715411
    [Google Scholar]
  321. Burt S.A. Reinders R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003 36 3 162 167 10.1046/j.1472‑765X.2003.01285.x 12581376
    [Google Scholar]
  322. Evans J. Wang Y.D. Shaw K.P. Vernon L.P. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination. Proc. Natl. Acad. Sci. 1989 86 15 5849 5853 10.1073/pnas.86.15.5849 2503825
    [Google Scholar]
  323. Schmidt M. Arendt E.K. Thery T.L.C. Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II. Food Microbiol. 2019 82 504 514 10.1016/j.fm.2019.03.021 31027812
    [Google Scholar]
  324. Taveira G.B. Mathias L.S. Motta D.O.V. Machado O.L.T. Rodrigues R. Carvalho A.O. Ferreira T.A. Perales J. Vasconcelos I.M. Gomes V.M. Thionin‐like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 2014 102 1 30 39 10.1002/bip.22351 23896704
    [Google Scholar]
  325. Oard S. Karki B. Enright F. Is there a difference in metal ion-based inhibition between members of thionin family: Molecular dynamics simulation study. Biophys. Chem. 2007 130 1-2 65 75 10.1016/j.bpc.2007.07.005 17703869
    [Google Scholar]
  326. Oard S.V. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochim. Biophys. Acta Biomembr. 2011 1808 6 1737 1745 10.1016/j.bbamem.2011.02.003 21315063
    [Google Scholar]
  327. Vernon L.P. Bell J.D. Membrane structure, toxins and phospholipase A2 activity. Pharmacol. Ther. 1992 54 3 269 295 10.1016/0163‑7258(92)90003‑I 1465478
    [Google Scholar]
  328. Diaz I. Carmona M.J. Olmedo G.F. Effects of thionins on β‐glucuronidase in vitro and in plant protoplasts. FEBS Lett. 1992 296 3 279 282 10.1016/0014‑5793(92)80304‑Y 1537404
    [Google Scholar]
  329. Woynarowski J.M. Konopa J. Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe Seylers Z. Physiol. Chem. 1980 361 2 1535 1546 10.1515/bchm2.1980.361.2.1535 7192684
    [Google Scholar]
  330. Tabiasco J. Pont F. Fournié J.J. Vercellone A. Mistletoe viscotoxins increase natural killer cell‐mediated cytotoxicity. Eur. J. Biochem. 2002 269 10 2591 2600 10.1046/j.1432‑1033.2002.02932.x 12027898
    [Google Scholar]
  331. Asano T. Miwa A. Maeda K. Kimura M. Nishiuchi T. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog. 2013 9 8 e1003581 10.1371/journal.ppat.1003581 23990790
    [Google Scholar]
  332. Odintsova T.I. Slezina M.P. Istomina E.A. Korostyleva T.V. Kovtun A.S. Kasianov A.S. Shcherbakova L.A. Kudryavtsev A.M. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers. Pathogens 2019 8 4 221 10.3390/pathogens8040221 31694319
    [Google Scholar]
  333. Fracki W.S. Li D. Owen N. Perry C. Naisbitt G.H. Vernon L.P. Role of Tyr and Trp in membrane responses of Pyrularia thionin determined by optical and NMR spectra following Tyr iodination and Trp modification. Toxicon 1992 30 11 1427 1440 10.1016/0041‑0101(92)90518‑A 1485338
    [Google Scholar]
  334. Giudici M. Poveda A.J. Molina M.L. de la Canal L. Ros G.J.M. Pfüller K. Pfüller U. Villalaín J. Antifungal effects and mechanism of action of viscotoxin A 3. FEBS J. 2006 273 1 72 83 10.1111/j.1742‑4658.2005.05042.x 16367749
    [Google Scholar]
  335. B�ssingA. VerveckenW. WagnerM. WagnerB. Pf�llerU. SchietzelM. Expression of mitochondrial Apo2.7 molecules and caspase-3 activation in human lymphocytes treated with the ribosome-inhibiting mistletoe lectins and the cell membrane permeabilizing viscotoxins. Cytometry 1999 37 133 139 10.1002/(SICI)1097‑0320(19991001)37:2<133::AID‑CYTO6>3.0.CO;2‑A 10486525
    [Google Scholar]
  336. Coulon A. Berkane E. Sautereau A.M. Urech K. Rougé P. Lopez A. Modes of membrane interaction of a natural cysteine-rich peptide: Viscotoxin A3. Biochim. Biophys. Acta Biomembr. 2002 1559 2 145 159 10.1016/S0005‑2736(01)00446‑1 11853681
    [Google Scholar]
  337. Chen Y. Guarnieri M.T. Vasil A.I. Vasil M.L. Mant C.T. Hodges R.S. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007 51 4 1398 1406 10.1128/AAC.00925‑06 17158938
    [Google Scholar]
  338. Gran L. An oxytocic principle found in oldenlandia affinis DC. Medd. Nor. Farm. Selsk. 1970 12 80
    [Google Scholar]
  339. Gustafson K.R. Sowder R.C. II Henderson L.E. Parsons I.C. Kashman Y. Cardellina J.H. II McMahon J.B. Buckheit R.W. Jr Pannell L.K. Boyd M.R. Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J. Am. Chem. Soc. 1994 116 20 9337 9338 10.1021/ja00099a064
    [Google Scholar]
  340. Iseli B. Boller T. Neuhaus J.M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 1993 103 1 221 226 10.1104/pp.103.1.221 8208848
    [Google Scholar]
  341. Grain L. Isolation of oxytocic peptides from Oldenlandia affinis by solvent extraction of tetraphenylborate complexes and chromatography on sephadex LH-20. Lloydia 1973 36 2 207 208 4744557
    [Google Scholar]
  342. Gould A. Camarero J.A. Cyclotides: Overview and biotechnological applications. ChemBioChem 2017 18 14 1350 1363 10.1002/cbic.201700153 28544675
    [Google Scholar]
  343. Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. 1973 33 5-6 400 408 10.1111/j.1600‑0773.1973.tb01541.x 4801084
    [Google Scholar]
  344. Poth A.G. Mylne J.S. Grassl J. Lyons R.E. Millar A.H. Colgrave M.L. Craik D.J. Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae). J. Biol. Chem. 2012 287 32 27033 27046 10.1074/jbc.M112.370841 22700981
    [Google Scholar]
  345. Pränting M. Lööv C. Burman R. Göransson U. Andersson D.I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 2010 65 9 1964 1971 10.1093/jac/dkq220 20558471
    [Google Scholar]
  346. Gilding E.K. Jackson M.A. Poth A.G. Henriques S.T. Prentis P.J. Mahatmanto T. Craik D.J. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. 2016 210 2 717 730 10.1111/nph.13789 26668107
    [Google Scholar]
  347. Slazak B. Kapusta M. Malik S. Bohdanowicz J. Kuta E. Malec P. Göransson U. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta 2016 244 5 1029 1040 10.1007/s00425‑016‑2562‑y 27394154
    [Google Scholar]
  348. Slazak B. Kapusta M. Strömstedt A.A. Słomka A. Krychowiak M. Shariatgorji M. Andrén P.E. Bohdanowicz J. Kuta E. Göransson U. How does the sweet violet (Viola odorata L.) fight pathogens and pests – cyclotides as a comprehensive plant host defense system. Front. Plant Sci. 2018 9 1296 10.3389/fpls.2018.01296 30254654
    [Google Scholar]
  349. Sieniawska E. Los R. Baj T. Malm A. Glowniak K. Antimicrobial efficacy of Mutellina purpurea essential oil and α-pinene against Staphylococcus epidermidis grown in planktonic and biofilm cultures. Ind. Crops Prod. 2013 51 152 157 10.1016/j.indcrop.2013.09.001
    [Google Scholar]
  350. Chiche L. Chiche J.N. Whalen E. Presnell S. Gersuk V. Dang K. Anguiano E. Quinn C. Burtey S. Berland Y. Kaplanski G. Harle J.R. Pascual V. Chaussabel D. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014 66 6 1583 1595 10.1002/art.38628 24644022
    [Google Scholar]
  351. Quimio F.M.E. Daly N.L. Craik D.J. Circular proteins in plants: Solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J. Biol. Chem. 2001 276 25 22875 22882 10.1074/jbc.M101666200 11292835
    [Google Scholar]
  352. Heitz A. Hernandez J.F. Gagnon J. Hong T.T. Pham T.T.C. Nguyen T.M. Nguyen L.D. Chiche L. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 2001 40 27 7973 7983 10.1021/bi0106639 11434766
    [Google Scholar]
  353. Mellstrand S.T. Samuelsson G. Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. macrophyllum (Loranthaceae). Improvements in the isolation procedure and further studies on the properties. Eur. J. Biochem. 1973 32 1 143 147 10.1111/j.1432‑1033.1973.tb02590.x 4687388
    [Google Scholar]
  354. Saether O. Craik D.J. Campbell I.D. Sletten K. Juul J. Norman D.G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995 34 13 4147 4158 10.1021/bi00013a002 7703226
    [Google Scholar]
  355. Craig M.H. Snow R.W. Sueur L.D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 1999 15 3 105 111 10.1016/S0169‑4758(99)01396‑4 10322323
    [Google Scholar]
  356. Veer D.S.J. Kan M.W. Craik D.J. Cyclotides: From structure to function. Chem. Rev. 2019 119 24 12375 12421 10.1021/acs.chemrev.9b00402 31829013
    [Google Scholar]
  357. Yeshak M.Y. Burman R. Asres K. Göransson U. Cyclotides from an extreme habitat: Characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. J. Nat. Prod. 2011 74 4 727 731 10.1021/np100790f 21434649
    [Google Scholar]
  358. Göransson U. Luijendijk T. Johansson S. Bohlin L. Claeson P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 1999 62 2 283 286 10.1021/np9803878 10075760
    [Google Scholar]
  359. Craik D.J. Daly N.L. Bond T. Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 1999 294 5 1327 1336 10.1006/jmbi.1999.3383 10600388
    [Google Scholar]
  360. Burman R. Svedlund E. Felth J. Hassan S. Herrmann A. Clark R.J. Craik D.J. Bohlin L. Claeson P. Göransson U. Gullbo J. Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers 2010 94 5 626 634 10.1002/bip.21408 20564012
    [Google Scholar]
  361. Broussalis A.M. Göransson U. Coussio J.D. Ferraro G. Martino V. Claeson P. First cyclotide from Hybanthus (Violaceae). Phytochemistry 2001 58 1 47 51 10.1016/S0031‑9422(01)00173‑X 11524112
    [Google Scholar]
  362. Ravipati A.S. Henriques S.T. Poth A.G. Kaas Q. Wang C.K. Colgrave M.L. Craik D.J. Lysine-rich cyclotides: A new subclass of circular knotted proteins from violaceae. ACS Chem. Biol. 2015 10 11 2491 2500 10.1021/acschembio.5b00454 26322745
    [Google Scholar]
  363. Bobey A. Pinto M. Cilli E. Lopes N. Bolzani V. A cyclotide isolated from noisettia orchidiflora (Violaceae). Planta Med. 2018 84 12/13 947 952 10.1055/a‑0632‑2204 29843182
    [Google Scholar]
  364. Niyomploy P. Chan L.Y. Harvey P.J. Poth A.G. Colgrave M.L. Craik D.J. Discovery and characterization of cyclotides from Rinorea species. J. Nat. Prod. 2018 81 11 2512 2520 10.1021/acs.jnatprod.8b00572 30387611
    [Google Scholar]
  365. Koehbach J. Attah A.F. Berger A. Hellinger R. Kutchan T.M. Carpenter E.J. Rolf M. Sonibare M.A. Moody J.O. Wong G.K.S. Dessein S. Greger H. Gruber C.W. Cyclotide discovery in gentianales revisited—identification and characterization of cyclic cystine‐knot peptides and their phylogenetic distribution in Rubiaceae plants. Biopolymers 2013 100 5 438 452 10.1002/bip.22328 23897543
    [Google Scholar]
  366. Fahradpour M. Keov P. Tognola C. Santamarina P.E. McCormick P.J. Ghassempour A. Gruber C.W. Cyclotides isolated from an ipecac root extract antagonize the corticotropin releasing factor type 1 receptor. Front. Pharmacol. 2017 8 616 10.3389/fphar.2017.00616 29033832
    [Google Scholar]
  367. Nguyen G.K.T. Lim W.H. Nguyen P.Q.T. Tam J.P. Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities. J. Biol. Chem. 2012 287 21 17598 17607 10.1074/jbc.M111.338970 22467870
    [Google Scholar]
  368. Cox S.D. Mann C.M. Markham J.L. Bell H.C. Gustafson J.E. Warmington J.R. Wyllie S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000 88 1 170 175 10.1046/j.1365‑2672.2000.00943.x 10735256
    [Google Scholar]
  369. Cunha N.B. Barbosa A.E.A.D. Almeida D.R.G. Porto W.F. Maximiano M.R. Álvares L.C.S. Munhoz C.B.R. Eugênio C.U.O. Viana A.A.B. Franco O.L. Dias S.C. Cloning and characterization of novel cyclotides genes from South American plants. Biopolymers 2016 106 6 784 795 10.1002/bip.22938 27554590
    [Google Scholar]
  370. Pinto M.F.S. Silva O.N. Viana J.C. Porto W.F. Migliolo L. B da Cunha N. Gomes N. Jr Fensterseifer I.C. Colgrave M.L. Craik D.J. Dias S.C. Franco O.L. Characterization of a bioactive acyclotide from palicourea rigida. J. Nat. Prod. 2016 79 11 2767 2773 10.1021/acs.jnatprod.6b00270 27809507
    [Google Scholar]
  371. Pinto M.F.S. Fensterseifer I.C.M. Migliolo L. Sousa D.A. Capdville D.G. Valencia A.J.W. Colgrave M.L. Craik D.J. Magalhães B.S. Dias S.C. Franco O.L. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane. J. Biol. Chem. 2012 287 1 134 147 10.1074/jbc.M111.294009 22074926
    [Google Scholar]
  372. Gerlach S.L. Burman R. Bohlin L. Mondal D. Göransson U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J. Nat. Prod. 2010 73 7 1207 1213 10.1021/np9007365 20575512
    [Google Scholar]
  373. Mahatmanto T. Mylne J.S. Poth A.G. Swedberg J.E. Kaas Q. Schaefer H. Craik D.J. The evolution of momordica cyclic peptides. Mol. Biol. Evol. 2015 32 2 392 405 10.1093/molbev/msu307 25376175
    [Google Scholar]
  374. Du Q. Chan L.Y. Gilding E.K. Henriques S.T. Condon N.D. Ravipati A.S. Kaas Q. Huang Y.H. Craik D.J. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J. Biol. Chem. 2020 295 32 10911 10925 10.1074/jbc.RA120.012627 32414842
    [Google Scholar]
  375. Barbeta B.L. Marshall A.T. Gillon A.D. Craik D.J. Anderson M.A. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc. Natl. Acad. Sci. 2008 105 4 1221 1225 10.1073/pnas.0710338104 18202177
    [Google Scholar]
  376. Dancewicz K. Slazak B. Kiełkiewicz M. Kapusta M. Bohdanowicz J. Gabryś B. Behavioral and physiological effects of Viola spp. cyclotides on Myzus persicae (Sulz.). J. Insect Physiol. 2020 122 104025 10.1016/j.jinsphys.2020.104025 32059835
    [Google Scholar]
  377. Simonsen S.M. Sando L. Rosengren K.J. Wang C.K. Colgrave M.L. Daly N.L. Craik D.J. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J. Biol. Chem. 2008 283 15 9805 9813 10.1074/jbc.M709303200 18258598
    [Google Scholar]
  378. Colgrave M.L. Kotze A.C. Ireland D.C. Wang C.K. Craik D.J. The anthelmintic activity of the cyclotides: Natural variants with enhanced activity. ChemBioChem 2008 9 12 1939 1945 10.1002/cbic.200800174 18618891
    [Google Scholar]
  379. Wang C.K.L. Colgrave M.L. Gustafson K.R. Ireland D.C. Goransson U. Craik D.J. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J. Nat. Prod. 2008 71 1 47 52 10.1021/np070393g 18081258
    [Google Scholar]
  380. Mulvenna J.P. Sando L. Craik D.J. Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A. Structure 2005 13 5 691 701 10.1016/j.str.2005.02.013 15893660
    [Google Scholar]
  381. Wang C.K.L. Clark R.J. Harvey P.J. Rosengren J.K. Cemazar M. Craik D.J. The role of conserved Glu residue on cyclotide stability and activity: A structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant. Biochemistry 2011 50 19 4077 4086 10.1021/bi2004153 21466163
    [Google Scholar]
  382. Burman R. Herrmann A. Tran R. Kivelä J.E. Lomize A. Gullbo J. Göransson U. Cytotoxic potency of small macrocyclic knot proteins: Structure–activity and mechanistic studies of native and chemically modified cyclotides. Org. Biomol. Chem. 2011 9 11 4306 4314 10.1039/c0ob00966k 21491023
    [Google Scholar]
  383. Burman R. Strömstedt A.A. Malmsten M. Göransson U. Cyclotide–membrane interactions: Defining factors of membrane binding, depletion and disruption. Biochim. Biophys. Acta Biomembr. 2011 1808 11 2665 2673 10.1016/j.bbamem.2011.07.004 21787745
    [Google Scholar]
  384. Herrmann A. Burman R. Mylne J.S. Karlsson G. Gullbo J. Craik D.J. Clark R.J. Göransson U. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 2008 69 4 939 952 10.1016/j.phytochem.2007.10.023 18191970
    [Google Scholar]
  385. He W. Chan L.Y. Zeng G. Daly N.L. Craik D.J. Tan N. Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides 2011 32 8 1719 1723 10.1016/j.peptides.2011.06.016 21723349
    [Google Scholar]
  386. Sando L. Henriques T.S. Foley F. Simonsen S.M. Daly N.L. Hall K.N. Gustafson K.R. Aguilar M.I. Craik D.J. A synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor. ChemBioChem 2011 12 16 2456 2462 10.1002/cbic.201100450 21928440
    [Google Scholar]
  387. Ireland D.C. Wang C.K.L. Wilson J.A. Gustafson K.R. Craik D.J. Cyclotides as natural anti‐HIV agents. Biopolymers 2008 90 1 51 60 10.1002/bip.20886 18008336
    [Google Scholar]
  388. Gran L. Sletten K. Skjeldal L. Cyclic peptides from Oldenlandia affinis DC. Molecular and biological properties. Chem. Biodivers. 2008 5 10 2014 2022 10.1002/cbdv.200890184 18972522
    [Google Scholar]
  389. Gründemann C. Koehbach J. Huber R. Gruber C.W. Do plant cyclotides have potential as immunosuppressant peptides? J. Nat. Prod. 2012 75 2 167 174 10.1021/np200722w 22272797
    [Google Scholar]
  390. Nguyen P.Q.T. Luu T.T. Bai Y. Nguyen G.K.T. Pervushin K. Tam J.P. Allotides: Proline-rich cystine knot α-amylase inhibitors from Allamanda cathartica. J. Nat. Prod. 2015 78 4 695 704 10.1021/np500866c 25832441
    [Google Scholar]
  391. Ojeda P.G. Cardoso M.H. Franco O.L. Pharmaceutical applications of cyclotides. Drug Discov. Today 2019 24 11 2152 2161 10.1016/j.drudis.2019.09.010 31541712
    [Google Scholar]
  392. Corrêa J.A.F. Evangelista A.G. Nazareth T.M. Luciano F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019 8 100494 10.1016/j.mtla.2019.100494
    [Google Scholar]
  393. Huang Y.H. Colgrave M.L. Clark R.J. Kotze A.C. Craik D.J. Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J. Biol. Chem. 2010 285 14 10797 10805 10.1074/jbc.M109.089854 20103593
    [Google Scholar]
  394. Henriques S.T. Peacock H. Benfield A.H. Wang C.K. Craik D.J. Is the mirror image a true reflection? intrinsic membrane chirality modulates peptide binding. J. Am. Chem. Soc. 2019 141 51 20460 20469 10.1021/jacs.9b11194 31765148
    [Google Scholar]
  395. Henriques S.T. Huang Y.H. Castanho M.A.R.B. Bagatolli L.A. Sonza S. Tachedjian G. Daly N.L. Craik D.J. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J. Biol. Chem. 2012 287 40 33629 33643 10.1074/jbc.M112.372011 22854971
    [Google Scholar]
  396. Svangård E. Burman R. Gunasekera S. Lövborg H. Gullbo J. Göransson U. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes. J. Nat. Prod. 2007 70 4 643 647 10.1021/np070007v 17378610
    [Google Scholar]
  397. Henriques S.T. Huang Y.H. Chaousis S. Sani M.A. Poth A.G. Separovic F. Craik D.J. The prototypic cyclotide kalata B1 has a unique mechanism of entering cells. Chem. Biol. 2015 22 8 1087 1097 10.1016/j.chembiol.2015.07.012 26278183
    [Google Scholar]
  398. Kamimori H. Hall K. Craik D.J. Aguilar M.I. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal. Biochem. 2005 337 1 149 153 10.1016/j.ab.2004.10.028 15649388
    [Google Scholar]
  399. Shenkarev Z.O. Nadezhdin K.D. Sobol V.A. Sobol A.G. Skjeldal L. Arseniev A.S. Conformation and mode of membrane interaction in cyclotides. FEBS J. 2006 273 12 2658 2672 10.1111/j.1742‑4658.2006.05282.x 16817894
    [Google Scholar]
  400. Furukawa T. Sakaguchi N. Shimada H. Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet. Syst. 2006 81 3 171 180 10.1266/ggs.81.171 16905871
    [Google Scholar]
  401. Zimmermann R. Sakai H. Hochholdinger F. The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol. 2009 152 1 356 365 10.1104/pp.109.149054 19926801
    [Google Scholar]
  402. Ribeiro O.S. Fontaine V. Mathieu V. Zhiri A. Baudoux D. Stévigny C. Souard F. Antibacterial and cytotoxic activities of ten commercially available essential oils. Antibiotics 2020 9 10 717 10.3390/antibiotics9100717 33092096
    [Google Scholar]
  403. Lima O.M. Iseppon B.A. Neto J. Decuadro R.S. Kido E. Crovella S. Pandolfi V. Snakin: Structure, roles and applications of a plant antimicrobial peptide. Curr. Protein Pept. Sci. 2017 18 4 368 374 10.2174/1389203717666160619183140 27323806
    [Google Scholar]
  404. Bardan A. Nizet V. Gallo R.L. Antimicrobial peptides and the skin. Expert Opin. Biol. Ther. 2004 4 4 543 549 10.1517/14712598.4.4.543 15102603
    [Google Scholar]
  405. Almasia N. Bazzini A.A. Hopp H.E. Rovere V.C. Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol. Plant Pathol. 2008 9 3 329 338 10.1111/j.1364‑3703.2008.00469.x 18705874
    [Google Scholar]
  406. Almasia N.I. Molinari M.P. Maroniche G.A. Nahirñak V. Barón B.M.P. Taboga O.A. Rovere V.C. Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnol. 2017 17 1 75 10.1186/s12896‑017‑0401‑2 29121909
    [Google Scholar]
  407. Kovalskaya N. Hammond R.W. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr. Purif. 2009 63 1 12 17 10.1016/j.pep.2008.08.013 18824107
    [Google Scholar]
  408. Kuddus M.R. Rumi F. Tsutsumi M. Takahashi R. Yamano M. Kamiya M. Kikukawa T. Demura M. Aizawa T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif. 2016 122 15 22 10.1016/j.pep.2016.02.002 26854372
    [Google Scholar]
  409. Mohan S. Snakin genes from potato: Overexpression confers blackleg disease resistance: A thesis submitted in partial fulfilment of the requirements for the degree of doctor of philosophy (PhD) in plant biotechnology at Lincoln University, New Zealand PhD Thesis, Lincoln University 2011
    [Google Scholar]
  410. Harris P.W.R. Yang S.H. Molina A. López G. Middleditch M. Brimble M.A. Plant antimicrobial peptides snakin-1 and snakin-2: Chemical synthesis and insights into the disulfide connectivity. Chemistry 2014 20 17 5102 5110 10.1002/chem.201303207 24644073
    [Google Scholar]
  411. Solanilla L.E. Zorn G.B. Novella S. Boland V.J.A. Palenzuela R.P. Susceptibility of listeria monocytogenes to antimicrobial peptides. FEMS Microbiol. Lett. 2003 226 1 101 105 10.1016/S0378‑1097(03)00579‑2 13129614
    [Google Scholar]
  412. Silverstein K.A.T. Moskal W.A. Jr Wu H.C. Underwood B.A. Graham M.A. Town C.D. VandenBosch K.A. Small cysteine‐rich peptides resembling antimicrobial peptides have been under‐predicted in plants. Plant J. 2007 51 2 262 280 10.1111/j.1365‑313X.2007.03136.x 17565583
    [Google Scholar]
  413. Solanilla L.E. Olmedo G.F. Palenzuela R.P. Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell 1998 10 6 917 924 10.1105/tpc.10.6.917 9634580
    [Google Scholar]
  414. Meiyalaghan S. Thomson S.J. Fiers M.W.E.J. Barrell P.J. Latimer J.M. Mohan S. Jones E.E. Conner A.J. Jacobs J.M.E. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genomics 2014 15 1 2 10.1186/1471‑2164‑15‑2 24382166
    [Google Scholar]
  415. Mohan S. Meiyalaghan S. Latimer J.M. Gatehouse M.L. Monaghan K.S. Vanga B.R. Pitman A.R. Jones E.E. Conner A.J. Jacobs J.M.E. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor. Appl. Genet. 2014 127 3 677 689 10.1007/s00122‑013‑2250‑2 24370960
    [Google Scholar]
  416. Kovalskaya N. Zhao Y. Hammond R.W. Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants. Open Plant Sci. J. 2011 5 1 29 42 10.2174/1874294701105010029
    [Google Scholar]
  417. Arivalagan S. Thomas N.S. Chandrasekaran B. Mani V. Siddique A.I. Kuppsamy T. Namasivayam N. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis. Mol. Cell. Biochem. 2015 410 1-2 37 54 10.1007/s11010‑015‑2536‑6 26264073
    [Google Scholar]
  418. Balaji V. Sessa G. Smart C.D. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis. Bacteriol. 101 3 349 357
    [Google Scholar]
  419. Shwaiki L.N. Arendt E.K. Lynch K.M. Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers – action against food spoilage yeast. Food Control 2020 118 107362 10.1016/j.foodcont.2020.107362
    [Google Scholar]
  420. Rong W. Qi L. Wang J. Du L. Xu H. Wang A. Zhang Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct. Integr. Genomics 2013 13 3 403 409 10.1007/s10142‑013‑0332‑5 23839728
    [Google Scholar]
  421. Herbel V. Schäfer H. Wink M. Recombinant production of snakin-2 (an Antimicrobial Peptide from Tomato) in E. coli and analysis of its bioactivity. Molecules 2015 20 8 14889 14901 10.3390/molecules200814889 26287145
    [Google Scholar]
  422. Su T. Han M. Cao D. Xu M. Molecular and biological properties of snakins: The foremost cysteine-rich plant host defense peptides. J. Fungi 2020 6 4 220 10.3390/jof6040220 33053707
    [Google Scholar]
  423. Daneshmand F. Zardini Z.H. Ebrahimi L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Nat. Prod. Res. 2013 27 24 2292 2296 10.1080/14786419.2013.827192 23962183
    [Google Scholar]
  424. Selitrennikoff C.P. Antifungal proteins. Appl. Environ. Microbiol. 2001 67 7 2883 2894 10.1128/AEM.67.7.2883‑2894.2001 11425698
    [Google Scholar]
  425. Tran D. Tran P.A. Tang Y-Q. Yuan J. Cole T. Selsted M.E. Homodimeric theta-defensins from rhesus macaque leukocytes: Isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. 2002 277 5 3079 3084 10.1074/jbc.M109117200 11675394
    [Google Scholar]
  426. Amador V.C. Silva S.C.A. Vilela L.M.B. Lima O.M. Rêgo S.M. Filho R.R.S. Silva O.R.L. Lemos A.B. Oliveira D.W.D. Neto F.J.R.C. Crovella S. Iseppon B.A.M. Lipid transfer proteins (LTPs)—structure, diversity and roles beyond antimicrobial activity. Antibiotics 2021 10 11 1281 10.3390/antibiotics10111281 34827219
    [Google Scholar]
  427. Larsen L.K. Winther J.R. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett. 2001 488 3 145 148 10.1016/S0014‑5793(00)02424‑8 11163761
    [Google Scholar]
  428. Edstam M.M. Laurila M. Höglund A. Raman A. Dahlström K.M. Salminen T.A. Edqvist J. Blomqvist K. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol. Biochem. 2014 75 55 69 10.1016/j.plaphy.2013.12.001 24374350
    [Google Scholar]
  429. Edstam M.M. Viitanen L. Salminen T.A. Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. Mol. Plant 2011 4 6 947 964 10.1093/mp/ssr019 21486996
    [Google Scholar]
  430. Kader J.C. Proteins and the intracellular exchange of lipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1975 380 1 31 44 10.1016/0005‑2760(75)90042‑9 804327
    [Google Scholar]
  431. Kader J.C. Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996 47 1 627 654 10.1146/annurev.arplant.47.1.627 15012303
    [Google Scholar]
  432. Edqvist J. Blomqvist K. Nieuwland J. Salminen T.A. Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins? J. Lipid Res. 2018 59 8 1374 1382 10.1194/jlr.R083139 29555656
    [Google Scholar]
  433. Boutrot F. Chantret N. Gautier M.F. Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 2008 9 1 86 10.1186/1471‑2164‑9‑86 18291034
    [Google Scholar]
  434. Li J. Gao G. Xu K. Chen B. Yan G. Li F. Qiao J. Zhang T. Wu X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One 2014 9 1 e84556 10.1371/journal.pone.0084556 24497919
    [Google Scholar]
  435. Wei K. Zhong X. Non-specific lipid transfer proteins in maize. BMC Plant Biol. 2014 14 1 281 10.1186/s12870‑014‑0281‑8 25348423
    [Google Scholar]
  436. Kalla R. Shimamoto K. Potter R. Nielsen P.S. Linnestad C. Olsen O.A. The promoter of the barley aleurone‐specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell‐specific expression in transgenic rice. Plant J. 1994 6 6 849 860 10.1046/j.1365‑313X.1994.6060849.x 7849757
    [Google Scholar]
  437. Boutrot F. Guirao A. Alary R. Joudrier P. Gautier M.F. Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim. Biophys. Acta Gene Struct. Expr. 2005 1730 2 114 125 10.1016/j.bbaexp.2005.06.010 16061294
    [Google Scholar]
  438. Estanyol J.M. Rüth G.F.X. Puigdomènech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol. Biochem. 2004 42 5 355 365 10.1016/j.plaphy.2004.03.009 15191737
    [Google Scholar]
  439. Sels J. Mathys J. Coninck D.B.M.A. Cammue B.P.A. Bolle D.M.F.C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem. 2008 46 11 941 950 10.1016/j.plaphy.2008.06.011 18674922
    [Google Scholar]
  440. Finkina E.I. Melnikova D.N. Bogdanov I.V. Ovchinnikova T.V. Lipid transfer proteins as components of the plant innate immune system: Structure, functions, and applications. Acta Nat. 2016 8 2 47 61 10.32607/20758251‑2016‑8‑2‑47‑61 27437139
    [Google Scholar]
  441. Nawrot R. Barylski J. Nowicki G. Broniarczyk J. Buchwald W. Józefiak G.A. Plant antimicrobial peptides. Folia Microbiol. 2014 59 3 181 196 10.1007/s12223‑013‑0280‑4 24092498
    [Google Scholar]
  442. Souza A.A. Costa A.S. Campos D.C.O. Batista A.H.M. Sales G.W.P. Nogueira N.A.P. Alves K.M.M. Souza C.A.N. Oliveira H.D. Lipid transfer protein isolated from noni seeds displays antibacterial activity in vitro and improves survival in lethal sepsis induced by CLP in mice. Biochimie 2018 149 9 17 10.1016/j.biochi.2018.03.011 29577952
    [Google Scholar]
  443. Cruz L. Ribeiro S. Carvalho A. Vasconcelos I. Rodrigues R. Cunha M. Gomes V. Isolation and partial characterization of a novel lipid transfer protein (LTP) and antifungal activity of peptides from chilli pepper seeds. Protein Pept. Lett. 2010 17 3 311 318 10.2174/092986610790780305 19508213
    [Google Scholar]
  444. Zaman U. Abbasi A. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum. Phytochemistry 2009 70 8 979 987 10.1016/j.phytochem.2009.04.021 19473681
    [Google Scholar]
  445. Ooi L.S.M. Tian L. Su M. Ho W.S. Sun S.S.M. Chung H.Y. Wong H.N.C. Ooi V.E.C. Isolation, characterization, molecular cloning and modeling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta. Peptides 2008 29 12 2101 2109 10.1016/j.peptides.2008.08.020 18824058
    [Google Scholar]
  446. Melnikova D.N. Mineev K.S. Finkina E.I. Arseniev A.S. Ovchinnikova T.V. A novel lipid transfer protein from the dill Anethum graveolens L.: Isolation, structure, heterologous expression, and functional characteristics. J. Pept. Sci. 2016 22 1 59 66 10.1002/psc.2840 26680443
    [Google Scholar]
  447. Kristensen A.K. Brunstedt J. Nielsen K.K. Roepstorff P. Mikkelsen J.D. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci. 2000 155 1 31 40 10.1016/S0168‑9452(00)00190‑4 10773337
    [Google Scholar]
  448. Schmitt A.J. Sathoff A.E. Holl C. Bauer B. Samac D.A. Carter C.J. The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. J. Exp. Bot. 2018 69 22 5587 5597 10.1093/jxb/ery319 30169819
    [Google Scholar]
  449. Nawrot R. Józefiak D. Sip A. Kuźma D. Musidlak O. Józefiak G.A. Isolation and characterization of a non-specific lipid transfer protein from Chelidonium majus L. latex. Int. J. Biol. Macromol. 2017 104 Pt A 554 563 10.1016/j.ijbiomac.2017.06.057 28619636
    [Google Scholar]
  450. Bard V.G.C. Nascimento V.V. Ribeiro S.F.F. Rodrigues R. Perales J. Ferreira T.A. Carvalho A.O. Fernandes K.V.S. Gomes V.M. Characterization of peptides from capsicum annuum hybrid seeds with inhibitory activity against α-amylase, serine proteinases and fungi. Protein J. 2015 34 2 122 129 10.1007/s10930‑015‑9604‑3 25750185
    [Google Scholar]
  451. Regente M.C. Giudici A.M. Villalaín J. Canal L. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 2005 40 3 183 189 10.1111/j.1472‑765X.2004.01647.x 15715642
    [Google Scholar]
  452. Campos D.C.O. Costa A.S. Lima A.D.R. Silva F.D.A. Lobo M.D.P. Moreira M.A.C.O. Moreira R.A. Leal L.K.A.M. Miron D. Vasconcelos I.M. Oliveira H.D. First isolation and antinociceptive activity of a lipid transfer protein from noni ( Morinda citrifolia ) seeds. Int. J. Biol. Macromol. 2016 86 71 79 10.1016/j.ijbiomac.2016.01.029 26783638
    [Google Scholar]
  453. Bogdanov I.V. Shenkarev Z.O. Finkina E.I. Melnikova D.N. Rumynskiy E.I. Arseniev A.S. Ovchinnikova T.V. A novel lipid transfer protein from the pea Pisum sativum: Isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC Plant Biol. 2016 16 1 107 10.1186/s12870‑016‑0792‑6 27137920
    [Google Scholar]
  454. Nazeer M. Waheed H. Saeed M. Ali S.Y. Choudhary M.I. Haq U.Z. Ahmed A. Purification and characterization of a nonspecific lipid transfer protein 1 (nsLTP1) from ajwain (Trachyspermum ammi) seeds. Sci. Rep. 2019 9 1 4148 10.1038/s41598‑019‑40574‑x 30858403
    [Google Scholar]
  455. Casteels P. Romagnolo J. Castle M. Josson C.K. Bromage E.H. Tempst P. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance. J. Biol. Chem. 1994 269 42 26107 26115 10.1016/S0021‑9258(18)47165‑7 7929322
    [Google Scholar]
  456. Josson C.K. Capaci T. Casteels P. Tempst P. Apidaecin multipeptide precursor structure: A putative mechanism for amplification of the insect antibacterial response. EMBO J. 1993 12 4 1569 1578 10.1002/j.1460‑2075.1993.tb05801.x 8467807
    [Google Scholar]
  457. Broekaert W.F. Mariën W. Terras F.R.G. Bolle D.M.F.C. Proost P. Damme V.J. Dillen L. Claeys M. Rees S.B. Vanderleyden J. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 1992 31 17 4308 4314 10.1021/bi00132a023 1567877
    [Google Scholar]
  458. Lee D.G. Shin S.Y. Kim D.H. Seo M.Y. Kang J.H. Lee Y. Kim K.L. Hahm K.S. Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans. Biotechnol. Lett. 1999 21 12 1047 1050 10.1023/A:1005636610512
    [Google Scholar]
  459. Slezina M.P. Odintsova T.I. Plant antimicrobial peptides: Insights into structure-function relationships for practical applications. Curr. Issues Mol. Biol. 2023 45 4 3674 3704 10.3390/cimb45040239 37185763
    [Google Scholar]
  460. Patel S.U. Osborn R. Rees S. Thornton J.M. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 1998 37 4 983 990 10.1021/bi971747d 9454588
    [Google Scholar]
  461. Fan X. Reichling J. Wink M. Antibacterial activity of the recombinant antimicrobial peptide Ib-AMP4 from Impatiens balsamina and its synergy with other antimicrobial agents against drug resistant bacteria. Pharmazie 2013 68 7 628 630 23923648
    [Google Scholar]
  462. Fan X. Schäfer H. Reichling J. Wink M. Bactericidal properties of the antimicrobial peptide Ib‐AMP4 from Impatiens balsamina produced as a recombinant fusion‐protein in Escherichia coli. Biotechnol. J. 2013 8 10 1213 1220 10.1002/biot.201300121 23713064
    [Google Scholar]
  463. Wu W.H. Di R. Matthews K.R. Antibacterial mode of action of Ib-AMP1 against escherichia coli O157:H7. Probiotics Antimicrob. Proteins 2013 5 2 131 141 10.1007/s12602‑013‑9127‑1 26782738
    [Google Scholar]
  464. Walujono K. Scholma R.A. Beintema J.J. Anton M. Hahn A.M. Amino acid sequence of Hevein [of latex]. In: International Rubber Conference, Kuala Lumpur (Malaysia) 1975
    [Google Scholar]
  465. Chapot M.P. Peumans W.J. Strosberg A.D. Extensive homologies between lectins from non‐leguminous plants. FEBS Lett. 1986 195 1-2 231 234 10.1016/0014‑5793(86)80166‑1
    [Google Scholar]
  466. Slavokhotova A.A. Naumann T.A. Price N.P.J. Rogozhin E.A. Andreev Y.A. Vassilevski A.A. Odintsova T.I. Novel mode of action of plant defense peptides – hevein‐like antimicrobial peptides from wheat inhibit fungal metalloproteases. FEBS J. 2014 281 20 4754 4764 10.1111/febs.13015 25154438
    [Google Scholar]
  467. Andersen N.H. Cao B. Romero R.A. Arreguin B. Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif. Biochemistry 1993 32 6 1407 1422 10.1021/bi00057a004 8431421
    [Google Scholar]
  468. Archer B.L. The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein. Biochem. J. 1960 75 2 236 240 10.1042/bj0750236 13794068
    [Google Scholar]
  469. Galelli A. Bachi T.P. Urtica dioica agglutinin. A superantigenic lectin from stinging nettle rhizome. J. Immunol. 1993 151 4 1821 1831
    [Google Scholar]
  470. Barbero J.J. Cañada J.F. Asensio J.L. Aboitiz N. Vidal P. Canales A. Groves P. Gabius H.J. Siebert H.C. Hevein domains: An attractive model to study carbohydrate-protein interactions at atomic resolution. Adv. Carbohydr. Chem. Biochem. 2006 60 303 354 10.1016/S0065‑2318(06)60007‑3 16750446
    [Google Scholar]
  471. Perales D.A. Collada C. Blanco C. Monge S.R. Carrillo T. Aragoncillo C. Salcedo G. Cross-reactions in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans. J. Allergy Clin. Immunol. 1999 104 3 681 687 10.1016/S0091‑6749(99)70342‑8 10482846
    [Google Scholar]
  472. Kini S.G. Nguyen P.Q.T. Weissbach S. Mallagaray A. Shin J. Yoon H.S. Tam J.P. Studies on the chitin binding property of novel cysteine-rich peptides from Alternanthera sessilis. Biochemistry 2015 54 43 6639 6649 10.1021/acs.biochem.5b00872 26467613
    [Google Scholar]
  473. Egorov T.A. Odintsova T.I. Defense peptides of plant immunity. Russ. J. Bioorganic Chem. 2012 38 1 1 9 10.1134/S1068162012010062
    [Google Scholar]
  474. Andreev Y.A. Korostyleva T.V. Slavokhotova A.A. Rogozhin E.A. Utkina L.L. Vassilevski A.A. Grishin E.V. Egorov T.A. Odintsova T.I. Genes encoding hevein-like defense peptides in wheat: Distribution, evolution, and role in stress response. Biochimie 2012 94 4 1009 1016 10.1016/j.biochi.2011.12.023 22227377
    [Google Scholar]
  475. Beintema J.J. Structural features of plant chitinases and chitin‐binding proteins. FEBS Lett. 1994 350 2-3 159 163 10.1016/0014‑5793(94)00753‑5 8070556
    [Google Scholar]
  476. Asensio J.L. Siebert H-C. von Der Lieth C-W. Laynez J. Bruix M. Soedjanaamadja U.M. Beintema J.J. Cañada F.J. Gabius H.J. Barbero J.J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N′,N"-triacetylchitotriose. Proteins 2000 40 2 218 236 10.1002/(SICI)1097‑0134(20000801)40:2<218::AID‑PROT50>3.0.CO;2‑P 10842338
    [Google Scholar]
  477. Nielsen S.B. Otzen D.E. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J. Colloid Interface Sci. 2010 345 2 248 256 10.1016/j.jcis.2010.01.065 20153477
    [Google Scholar]
  478. Huang X. Xie W. Gong Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett. 2000 478 1-2 123 126 10.1016/S0014‑5793(00)01834‑2 10922482
    [Google Scholar]
  479. Rogozhin E. Ryazantsev D. Smirnov A. Zavriev S. Primary structure analysis of antifungal peptides from cultivated and wild cereals. Plants 2018 7 3 74 10.3390/plants7030074 30213105
    [Google Scholar]
  480. Li S.S. Claeson P. Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds. Phytochemistry 2003 63 3 249 255 10.1016/S0031‑9422(03)00116‑X 12737975
    [Google Scholar]
  481. Van den Bergh K. Damme E. Peumans W. Coosemans J. Ee-CBP, a Hevein-Type antimicrobial peptide from bark of the spindle tree (Euonymus Europaeus L.). Mededel. 2002 67 327 331
    [Google Scholar]
  482. Utkina L.L. Andreev Y.A. Rogozhin E.A. Korostyleva T.V. Slavokhotova A.A. Oparin P.B. Vassilevski A.A. Grishin E.V. Egorov T.A. Odintsova T.I. Genes encoding 4‐Cys antimicrobial peptides in wheatT riticum kiharae Dorof. et Migush.: Multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J. 2013 280 15 3594 3608 10.1111/febs.12349 23702306
    [Google Scholar]
  483. Odintsova T.I. Vassilevski A.A. Slavokhotova A.A. Musolyamov A.K. Finkina E.I. Khadeeva N.V. Rogozhin E.A. Korostyleva T.V. Pukhalsky V.A. Grishin E.V. Egorov T.A. A novel antifungal hevein‐type peptide from Triticum kiharae seeds with a unique 10‐cysteine motif. FEBS J. 2009 276 15 4266 4275 10.1111/j.1742‑4658.2009.07135.x 19583772
    [Google Scholar]
  484. Chávez M.I. Perelló V.M. Cañada F.J. Andreu D. Barbero J.J. Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR. Carbohydr. Res. 2010 345 10 1461 1468 10.1016/j.carres.2010.02.019 20303073
    [Google Scholar]
  485. Espinosa J.F. Asensio J.L. García J.L. Laynez J. Bruix M. Wright C. Siebert H.C. Gabius H.J. Cañada F.J. Barbero J.J. NMR investigations of protein–carbohydrate interactions. Eur. J. Biochem. 2000 267 13 3965 3978 10.1046/j.1432‑1327.2000.01415.x 10866795
    [Google Scholar]
  486. Iyer S. Acharya K.R. Tying the knot: The cystine signature and molecular‐recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 2011 278 22 4304 4322 10.1111/j.1742‑4658.2011.08350.x 21917115
    [Google Scholar]
  487. Rees D.C. Lipscomb W.N. Structure of the potato inhibitor complex of carboxypeptidase A at 2.5-A resolution. Proc. Natl. Acad. Sci. 1980 77 8 4633 4637 10.1073/pnas.77.8.4633 6933511
    [Google Scholar]
  488. Hass G.M. Hermodson M.A. Amino acid sequence of a carboxypeptidase inhibitor from tomato fruit. Biochemistry 1981 20 8 2256 2260 10.1021/bi00511a029 7236596
    [Google Scholar]
  489. Pear J.R. Ridge N. Rasmusgen R. Rose R.E. Houck C.M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomato. Plant Mol. Biol. 1989 13 6 639 651 10.1007/BF00016019 2491680
    [Google Scholar]
  490. Molnár A. Lovas Á. Bánfalvi Z. Lakatos L. Polgár Z. Horváth S. Tissue-specific signal(s) activate the promoter of a metallocarboxypeptidase inhibitor gene family in potato tuber and berry. Plant Mol. Biol. 2001 46 3 301 311 10.1023/A:1010649503229 11488477
    [Google Scholar]
  491. He W.J. Chan L.Y. Clark R.J. Tang J. Zeng G.Z. Franco O.L. Cantacessi C. Craik D.J. Daly N.L. Tan N.H. Novel inhibitor cystine knot peptides from Momordica charantia. PLoS One 2013 8 10 e75334 10.1371/journal.pone.0075334 24116036
    [Google Scholar]
  492. Chan L.Y. He W. Tan N. Zeng G. Craik D.J. Daly N.L. A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 2013 39 29 35 10.1016/j.peptides.2012.09.018 23127518
    [Google Scholar]
  493. Nguyen P.Q.T. Wang S. Kumar A. Yap L.J. Luu T.T. Lescar J. Tam J.P. Discovery and characterization of pseudocyclic cystine‐knot α‐amylase inhibitors with high resistance to heat and proteolytic degradation. FEBS J. 2014 281 19 4351 4366 10.1111/febs.12939 25040200
    [Google Scholar]
  494. Gracy J. Nguyen L.D. Gelly J-C. Kaas Q. Heitz A. Chiche L. KNOTTIN: The knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res. 2008 36 Database issue D314 D319 18025039
    [Google Scholar]
  495. Gelly J.C. Gracy J. Kaas Q. Nguyen L.D. Heitz A. Chiche L. The KNOTTIN website and database: A new information system dedicated to the knottin scaffold. Nucleic Acids Res. 2004 32 90001 156D 159 10.1093/nar/gkh015 14681383
    [Google Scholar]
  496. Quilis J. García L.B. Meynard D. Guiderdoni E. Segundo S.B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol. J. 2014 12 3 367 377 10.1111/pbi.12143 24237606
    [Google Scholar]
  497. Cavallini C. Trettene M. Degan M. Delva P. Molesini B. Minuz P. Pandolfini T. Anti‐angiogenic effects of two cystine‐knot miniproteins from tomato fruit. Br. J. Pharmacol. 2011 162 6 1261 1273 10.1111/j.1476‑5381.2010.01154.x 21175567
    [Google Scholar]
  498. Treggiari D. Zoccatelli G. Molesini B. Degan M. Rotino G.L. Sala T. Cavallini C. MacRae C.A. Minuz P. Pandolfini T. A cystine‐knot miniprotein from tomato fruit inhibits endothelial cell migration and angiogenesis by affecting vascular endothelial growth factor receptor (VEGFR) activation and nitric oxide production. Mol. Nutr. Food Res. 2015 59 11 2255 2266 10.1002/mnfr.201500267 26255647
    [Google Scholar]
  499. Rodríguez G.J.J. Zarzosa O.A. Gómez L.R. Meza L.J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int. 2015 2015 1 11 10.1155/2015/735087 25815333
    [Google Scholar]
  500. Gruber C.W. Elliott A.G. Ireland D.C. Delprete P.G. Dessein S. Göransson U. Trabi M. Wang C.K. Kinghorn A.B. Robbrecht E. Craik D.J. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 2008 20 9 2471 2483 10.1105/tpc.108.062331 18827180
    [Google Scholar]
  501. Craik D.J. Host-defense activities of cyclotides. Toxins 2012 4 2 139 156 10.3390/toxins4020139 22474571
    [Google Scholar]
  502. Jennings C. West J. Waine C. Craik D. Anderson M. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. 2001 98 19 10614 10619 10.1073/pnas.191366898 11535828
    [Google Scholar]
  503. Duvick J.P. Rood T. Rao A.G. Marshak D.R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J. Biol. Chem. 1992 267 26 18814 18820 10.1016/S0021‑9258(19)37034‑6 1527010
    [Google Scholar]
  504. Oparin P.B. Mineev K.S. Dunaevsky Y.E. Arseniev A.S. Belozersky M.A. Grishin E.V. Egorov T.A. Vassilevski A.A. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem. J. 2012 446 1 69 77 10.1042/BJ20120548 22612157
    [Google Scholar]
  505. Nolde S.B. Vassilevski A.A. Rogozhin E.A. Barinov N.A. Balashova T.A. Samsonova O.V. Baranov Y.V. Feofanov A.V. Egorov T.A. Arseniev A.S. Grishin E.V. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J. Biol. Chem. 2011 286 28 25145 25153 10.1074/jbc.M110.200378 21561864
    [Google Scholar]
  506. Slavokhotova A.A. Rogozhin E.A. Defense peptides from the α-hairpinin family are components of plant innate immunity. Front. Plant Sci. 2020 11 465 10.3389/fpls.2020.00465 32391035
    [Google Scholar]
  507. Marcus J.P. Goulter K.C. Manners J.M. Peptide fragments from plant vicilins expressed in escherichia coli exhibit antimicrobial activity in vitro. Plant Mol. Biol. Report. 2008 26 2 75 87 10.1007/s11105‑008‑0024‑9
    [Google Scholar]
  508. Park S.S. Abe K. Kimura M. Urisu A. Yamasaki N. Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat ( Fagopyrum esculentum Moench). FEBS Lett. 1997 400 1 103 107 10.1016/S0014‑5793(96)01367‑1 9000522
    [Google Scholar]
  509. Cui H. Zhang C. Li C. Lin L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. Lebensm. Wiss. Technol. 2020 122 109057 10.1016/j.lwt.2020.109057
    [Google Scholar]
  510. Cui Z. Li X. Nishida Y. Synthesis and bioactivity of novel carvacrol and thymol derivatives containing 5-phenyl-2-furan. Lett. Drug Des. Discov. 2014 11 7 877 885 10.2174/1570180811666140220005252
    [Google Scholar]
  511. Conners R. Konarev A.V. Forsyth J. Lovegrove A. Marsh J. Horne J.T. Shewry P. Brady R.L. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.). J. Biol. Chem. 2007 282 38 27760 27768 10.1074/jbc.M703871200 17640870
    [Google Scholar]
  512. Yamada K. Shimada T. Kondo M. Nishimura M. Nishimura H.I. Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme. J. Biol. Chem. 1999 274 4 2563 2570 10.1074/jbc.274.4.2563 9891029
    [Google Scholar]
  513. Kimura M. Park S.S. Sakai R. Yamasaki N. Funatsu G. Primary structure of 6.5k-arginine/glutamate-rich polypeptide from the seeds of sponge gourd (Luffa cylindrica). Biosci. Biotechnol. Biochem. 1997 61 6 984 988 10.1271/bbb.61.984 9214759
    [Google Scholar]
  514. French G. Clinical impact and relevance of antibiotic resistance. Adv. Drug Deliv. Rev. 2005 57 10 1514 1527 10.1016/j.addr.2005.04.005 15978698
    [Google Scholar]
  515. Breithaupt H. The new antibiotics. Nat. Biotechnol. 1999 17 12 1165 1169 10.1038/70705 10585711
    [Google Scholar]
  516. Cassone M. Otvos L. Jr Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev. Anti Infect. Ther. 2010 8 6 703 716 10.1586/eri.10.38 20521897
    [Google Scholar]
  517. Bhattacharjya S. Ramamoorthy A. Multifunctional host defense peptides: Functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J. 2009 276 22 6465 6473 10.1111/j.1742‑4658.2009.07357.x 19817858
    [Google Scholar]
  518. Hilchie A.L. Wuerth K. Hancock R.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 2013 9 12 761 768 10.1038/nchembio.1393 24231617
    [Google Scholar]
  519. Aboye T.L. Strömstedt A.A. Gunasekera S. Bruhn J.G. Seedi E.H. Rosengren K.J. Göransson U. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity. ChemBioChem 2015 16 7 1068 1077 10.1002/cbic.201402704 25821084
    [Google Scholar]
  520. Ganz T. The role of antimicrobial peptides in innate immunity. Integr. Comp. Biol. 2003 43 2 300 304 10.1093/icb/43.2.300 21680437
    [Google Scholar]
  521. Choi K.Y. Chow L.N.Y. Mookherjee N. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. J. Innate Immun. 2012 4 4 361 370 10.1159/000336630 22739631
    [Google Scholar]
  522. Shi W. Hou T. Guo D. He H. Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. J. Funct. Foods 2019 54 136 145 10.1016/j.jff.2019.01.001
    [Google Scholar]
  523. Pinto M.E.F. Najas J.Z.G. Magalhães L.G. Bobey A.F. Mendonça J.N. Lopes N.P. Leme F.M. Teixeira S.P. Trovó M. Andricopulo A.D. Koehbach J. Gruber C.W. Cilli E.M. Bolzani V.S. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J. Nat. Prod. 2018 81 5 1203 1208 10.1021/acs.jnatprod.7b00969 29757646
    [Google Scholar]
  524. Bhutia S.K. Panda P.K. Sinha N. Praharaj P.P. Bhol C.S. Panigrahi D.P. Mahapatra K.K. Saha S. Patra S. Mishra S.R. Behera B.P. Patil S. Maiti T.K. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019 144 8 18 10.1016/j.phrs.2019.04.001 30951812
    [Google Scholar]
  525. Mukhopadhyay S. Panda P.K. Das D.N. Sinha N. Behera B. Maiti T.K. Bhutia S.K. Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death. Acta Pharmacol. Sin. 2014 35 6 814 824 10.1038/aps.2014.15 24793310
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266345963250121112522
Loading
/content/journals/ctmc/10.2174/0115680266345963250121112522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: plant peptides ; defensins ; snakins ; cyclotides ; thionins ; Antimicrobial peptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test