Skip to content
2000
Volume 25, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Humans, animals, and plants possess small polypeptides known as antimicrobial peptides (AMPs), which are often positively charged. They are tiny, mostly basic peptides with a molecular weight of 2 to 9 kDa. They are a crucial part of plants' innate defense system, acting as effector molecules that provide a resistance barrier against pests and diseases. Plants have been found to contain antimicrobial peptides belonging to numerous families, including plant defensins, thionins, cyclotides, and others. An increase in pathogen resistance is achieved through the transgenic overexpression of the relevant genes, while pathogen mutants that are susceptible to peptides exhibit decreased pathogenicity. For many organisms, AMPs exhibit a wide range of antimicrobial activity against various pathogens and serve as a crucial line of defense. This review raises awareness about plant antimicrobial peptides (AMPs) as potential therapeutic agents in the pharmaceutical and medical fields, including treating fungal and bacterial diseases. It also provides a broad synopsis of the main AMP families found in plants, their mechanisms of action, and the factors that influence their antimicrobial activities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266345963250121112522
2025-03-17
2026-02-22
Loading full text...

Full text loading...

References

  1. IshaqN. BilalM. IqbalH.M.N. Medicinal potentialities of plant defensins: A review with applied perspectives.Medicines2019612910.3390/medicines6010029 30791451
    [Google Scholar]
  2. YangX. LiJ. LiX. SheR. PeiY. Isolation and characterization of a novel thermostable non-specific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicus Houtt) seeds.Peptides200627123122312810.1016/j.peptides.2006.07.019 16979797
    [Google Scholar]
  3. CamposD.C.O. CostaA.S. LuzP.B. SoaresP.M.G. AlencarN.M.N. OliveiraH.D. Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines.Int. J. Biol. Macromol.20171031121112910.1016/j.ijbiomac.2017.05.148 28559184
    [Google Scholar]
  4. AlbersheimP. ValentB.S. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics.J. Cell Biol.197878362764310.1083/jcb.78.3.627 359568
    [Google Scholar]
  5. VanceC.P. KirkT.K. SherwoodR.T. Lignification as a mechanism of disease resistance.Annual Rev. Phytopathol.198118259288
    [Google Scholar]
  6. AistJ.R. Papillae and related wound plugs of plant cells.Annu. Rev. Phytopathol.197614114516310.1146/annurev.py.14.090176.001045
    [Google Scholar]
  7. HammerschmidtR. NucklesE.M. KućJ. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium.Physiol. Plant Pathol.1982201738210.1016/0048‑4059(82)90025‑X
    [Google Scholar]
  8. ManiS. BhattS.B. VasudevanV. PrabhuD. RajamanikandanS. VelusamyP. RamasamyP. RamanP. The updated review on plant peptides and their applications in human health.Int. J. Pept. Res. Ther.202228513510.1007/s10989‑022‑10437‑7 35911180
    [Google Scholar]
  9. TavorminaP. ConinckD.B. NikonorovaN. SmetD.I. CammueB.P.A. The plant peptidome: An expanding repertoire of structural features and biological functions.Plant Cell20152782095211810.1105/tpc.15.00440 26276833
    [Google Scholar]
  10. KaurK. DattajiraoV. ShrivastavaV. BhardwajU. Isolation and characterization of chitosan-producing bacteria from beaches of chennai, India.Enzyme Res.201220121610.1155/2012/421683 22919468
    [Google Scholar]
  11. HernandezJ.F. GagnonJ. ChicheL. NguyenT.M. AndrieuJ.P. HeitzA. HongT.T. PhamT.T.C. NguyenL.D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.Biochemistry200039195722573010.1021/bi9929756 10801322
    [Google Scholar]
  12. YadavS. BatraJ. Mechanism of Anti-HIV activity of ribosome inactivating protein, saporin.Protein Pept. Lett.201522649750310.2174/0929866522666150428120701 25925771
    [Google Scholar]
  13. NaiderF. AnglisterJ. Peptides in the treatment of AIDS.Curr. Opin. Struct. Biol.200919447348210.1016/j.sbi.2009.07.003 19632107
    [Google Scholar]
  14. KinghornA.D. ChaiH-B. KinghornA.D. Discovery of new anticancer agents from higher plants.Front. Biosci.2012S4114215610.2741/s257 22202049
    [Google Scholar]
  15. GirishK.S. MachiahK.D. UshanandiniS. KumarH.K. NagarajuS. GovindappaM. VedavathiM. KemparajuK. Antimicrobial properties of a non‐toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha).J. Basic Microbiol.200646536537410.1002/jobm.200510108 17009292
    [Google Scholar]
  16. ParkJ.S. HwangD.J. LeeS.M. KimY.T. ChoiS.B. ChoK.J. Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album.Mol. Cells2004171738010.1016/S1016‑8478(23)13009‑3 15055531
    [Google Scholar]
  17. WalshM.J. DoddJ.E. HautbergueG.M. Ribosome-inactivating proteins.Virulence20134877478410.4161/viru.26399 24071927
    [Google Scholar]
  18. HuangL.S. HuangP.L. KungH.F. LiB.Q. HuangP.L. HuangP. HuangH.I. ChenH.C. TAP 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells.Proc. Natl. Acad. Sci.199188156570657410.1073/pnas.88.15.6570 1713684
    [Google Scholar]
  19. LeaderB. BacaQ.J. GolanD.E. Protein therapeutics: A summary and pharmacological classification.Nat. Rev. Drug Discov.200871213910.1038/nrd2399 18097458
    [Google Scholar]
  20. LiuY. LuoJ. XuC. RenF. PengC. WuG. ZhaoJ. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed.Plant Physiol.200012241015102410.1104/pp.122.4.1015 10759497
    [Google Scholar]
  21. MazalovskaM. KouokamJ.C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections.BioMed Res. Int.2018201811210.1155/2018/3750646 29854749
    [Google Scholar]
  22. IrvinJ.D. UckunF.M. Pokeweed antiviral protein: Ribosome inactivation and therapeutic applications.Pharmacol. Ther.199255327930210.1016/0163‑7258(92)90053‑3 1492120
    [Google Scholar]
  23. WangG. Natural antimicrobial peptides as promising anti-HIV candidates.Curr. Top. Pept. Protein Res.20121393110 26834391
    [Google Scholar]
  24. BarbieriL. AronG.M. IrvinJ.D. StirpeF. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed).Biochem. J.19822031555910.1042/bj2030055 7103950
    [Google Scholar]
  25. PelegriniB.P. SartoD.R.P. SilvaO.N. FrancoO.L. Grossi-de-SaM.F. Antibacterial peptides from plants: What they are and how they probably work.Biochem. Res. Int.201120111910.1155/2011/250349 21403856
    [Google Scholar]
  26. GerlachS. MondalD. The bountiful biological activities of cyclotides.Chronicl. Young Sci.20123316916910.4103/2229‑5186.99559
    [Google Scholar]
  27. ZhouP. YangX-L. WangX-G. HuB. ZhangL. ZhangW. SiH-R. ZhuY. LiB. HuangC-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579270273
    [Google Scholar]
  28. O’KeefeB.R. GiomarelliB. BarnardD.L. ShenoyS.R. ChanP.K.S. McMahonJ.B. PalmerK.E. BarnettB.W. MeyerholzD.K. LenaneW.C.L. McCrayP.B.Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae.J. Virol.20108452511252110.1128/JVI.02322‑09 20032190
    [Google Scholar]
  29. MilletJ.K. SéronK. LabittR.N. DanneelsA. PalmerK.E. WhittakerG.R. DubuissonJ. BelouzardS. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin.Antiviral Res.20161331810.1016/j.antiviral.2016.07.011 27424494
    [Google Scholar]
  30. LuoZ. SuK. ZhangX. Potential of plant proteins digested in silico by gastrointestinal enzymes as nutritional supplement for COVID-19 patients.Plant Foods Hum. Nutr.202075458359110.1007/s11130‑020‑00850‑y 32870435
    [Google Scholar]
  31. DeepthiB. SowjanyaK. LidiyaB. BhargaviR.S. BabuP.S. A modern review of diabetes mellitus: An annihilatory metabolic disorder.J. Sil. Vit. Pharmacol.2017310001410.21767/2469‑6692.100014
    [Google Scholar]
  32. LedesmaH.B. HsiehC.C. Chemopreventive role of food-derived proteins and peptides: A review.Crit. Rev. Food Sci. Nutr.201757112358237610.1080/10408398.2015.1057632 26565142
    [Google Scholar]
  33. KannanA. HettiarachchyN.S. LayJ.O. LiyanageR. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran.Peptides20103191629163410.1016/j.peptides.2010.05.018 20594954
    [Google Scholar]
  34. MatsubayashiY. Post-translational modifications in secreted peptide hormones in plants.Plant Cell Physiol.201152151310.1093/pcp/pcq169 21071428
    [Google Scholar]
  35. ParkS. YooK.O. MarcussenT. BacklundA. JacobssonE. RosengrenK.J. DooI. GöranssonU. Cyclotide evolution: Insights from the analyses of their precursor sequences, structures and distribution in violets (Viola).Front. Plant Sci.20178205810.3389/fpls.2017.02058 29326730
    [Google Scholar]
  36. ZasloffM. Antimicrobial peptides of multicellular organisms.Nature2002415687038939510.1038/415389a 11807545
    [Google Scholar]
  37. MukherjeeS. HooperL.V. Antimicrobial defense of the intestine.Immunity2015421283910.1016/j.immuni.2014.12.028 25607457
    [Google Scholar]
  38. TyagiC. MarikT. VágvölgyiC. KredicsL. ÖtvösF. Accelerated molecular dynamics applied to the peptaibol folding problem.Int. J. Mol. Sci.20192017426810.3390/ijms20174268 31480404
    [Google Scholar]
  39. TangS.S. ProdhanZ.H. BiswasS.K. LeC.F. SekaranS.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification.Phytochemistry20181549410510.1016/j.phytochem.2018.07.002 30031244
    [Google Scholar]
  40. TamJ. WangS. WongK. TanW. Antimicrobial peptides from plants.Pharmaceuticals20158471175710.3390/ph8040711 26580629
    [Google Scholar]
  41. KohnE. ShirleyD. ArotskyL. PiccianoA. RidgwayZ. UrbanM. CaroneB. CaputoG. Role of cationic side chains in the antimicrobial activity of C18G.Molecules201823232910.3390/molecules23020329 29401708
    [Google Scholar]
  42. CiociolaT. GiovatiL. ContiS. MaglianiW. SantinoliC. PolonelliL. Natural and synthetic peptides with antifungal activity.Future Med. Chem.20168121413143310.4155/fmc‑2016‑0035 27502155
    [Google Scholar]
  43. MeloM.N. FerreR. CastanhoM.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations.Nat. Rev. Microbiol.20097324525010.1038/nrmicro2095 19219054
    [Google Scholar]
  44. GroismanE.A. How bacteria resist killing by host-defense peptides.Trends Microbiol.199421144444910.1016/0966‑842X(94)90802‑8 7866702
    [Google Scholar]
  45. YaziciA. OrtucuS. TaskinM. MarinelliL. Natural-based antibiofilm and antimicrobial peptides from microorganisms.Curr. Top. Med. Chem.201918242102210710.2174/1568026618666181112143351 30417789
    [Google Scholar]
  46. MoyerT.B. HeilL.R. KirkpatrickC.L. GoldfarbD. LefeverW.A. ParsleyN.C. WommackA.J. HicksL.M. PepSAVI-MS reveals a proline-rich antimicrobial peptide in Amaranthus tricolor.J. Nat. Prod.201982102744275310.1021/acs.jnatprod.9b00352 31557021
    [Google Scholar]
  47. LeeJ.H. SeoM. LeeH.J. BaekM. KimI.W. KimS.Y. KimM.A. KimS.H. HwangJ.S. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, allomyrina dichotoma.J. Microbiol. Biotechnol.2019295687695
    [Google Scholar]
  48. KimY.H. KimY.S. ParkC.H. ChungI.Y. YooJ.M. KimJ.G. LeeB.J. KangS.S. ChoG.J. ChoiW.S. Protein kinase C-δ mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway.Diabetes20085782181219010.2337/db07‑1431 18443201
    [Google Scholar]
  49. LiB. LyuP. XieS. QinH. PuW. XuH. ChenT. ShawC. GeL. KwokH.F. LFB: A novel antimicrobial brevinin-like peptide from the skin secretion of the fujian large headed frog, Limnonectes fujianensi.Biomolecules20199624210.3390/biom9060242 31234333
    [Google Scholar]
  50. HoekV.M.L. PrickettM.D. SettlageR.E. KangL. MichalakP. VlietK.A. BishopB.M. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters.BMC Genomics201920168410.1186/s12864‑019‑6029‑y 31470795
    [Google Scholar]
  51. BraunM.S. SporerF. ZimmermannS. WinkM. Birds, feather-degrading bacteria and preen glands: The antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase.FEMS Microbiol. Ecol.2018949fiy11710.1093/femsec/fiy117 29901706
    [Google Scholar]
  52. WangA. ChaoT. JiZ. XuanR. LiuS. GuoM. WangG. WangJ. Transcriptome analysis reveals potential immune function-related regulatory genes/pathways of female Lubo goat submandibular glands at different developmental stages.PeerJ20208e994710.7717/peerj.9947 33083113
    [Google Scholar]
  53. MattickA.T.R. HirschA. Further observations on an inhibitory substance (Nisin) from lactic streptococci.Lancet19472646258
    [Google Scholar]
  54. GharsallaouiA. OulahalN. JolyC. DegraeveP. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses.Crit. Rev. Food Sci. Nutr.20165681262127410.1080/10408398.2013.763765 25675115
    [Google Scholar]
  55. ShinJ.M. GwakJ.W. KamarajanP. FennoJ.C. RickardA.H. KapilaY.L. Biomedical applications of nisin.J. Appl. Microbiol.201612061449146510.1111/jam.13033 26678028
    [Google Scholar]
  56. KitagawaN. OtaniT. InaiT. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells.Anat. Sci. Int.201994216317110.1007/s12565‑018‑0462‑x 30353456
    [Google Scholar]
  57. AlkotainiB. AnuarN. KadhumA.A.H. SaniA.A.A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5.J. Ind. Microbiol. Biotechnol.201340657157910.1007/s10295‑013‑1259‑5 23508455
    [Google Scholar]
  58. YiT. HuangY. ChenY. Production of an antimicrobial peptide AN5-1 in Escherichia coli and its dual mechanisms against bacteria.Chem. Biol. Drug Des.201585559860710.1111/cbdd.12449 25311453
    [Google Scholar]
  59. GutierrezG.E. MayerM.J. CotterP.D. NarbadA. Gut microbiota as a source of novel antimicrobials.Gut Microbes201910112110.1080/19490976.2018.1455790 29584555
    [Google Scholar]
  60. PushpanathanP. MathewG.S. SelvarajanS. SeshadriK.G. SrikanthP. Gut microbiota and its mysteries.Indian J. Med. Microbiol.201937226827710.4103/ijmm.IJMM_19_373 31745030
    [Google Scholar]
  61. EssigA. HofmannD. MünchD. GayathriS. KünzlerM. KallioP.T. SahlH.G. WiderG. SchneiderT. AebiM. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis.J. Biol. Chem.201428950349533496410.1074/jbc.M114.599878 25342741
    [Google Scholar]
  62. SrivastavaS. DashoraK. AmetaK.L. SinghN.P. EnshasyE.H.A. PaganoM.C. HeshamA.E.L. SharmaG.D. SharmaM. BhargavaA. Cysteine‐rich antimicrobial peptides from plants: The future of antimicrobial therapy.Phytother. Res.202135125627710.1002/ptr.6823 32940412
    [Google Scholar]
  63. TaveiraG.B. MelloÉ.O. SouzaS.B. MonteiroR.M. RamosA.C. CarvalhoA.O. RodriguesR. OkorokovL.A. GomesV.M. Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of caspases and extracellular H+ flux.Biosci. Rep.2018382BSR2018011910.1042/BSR20180119 29599127
    [Google Scholar]
  64. HaoG. BakkerM.G. KimH.S. Enhanced resistance to Fusarium graminearum in transgenic arabidopsis plants expressing a modified plant thionin.Phytopathology202011051056106610.1094/PHYTO‑12‑19‑0447‑R 32043419
    [Google Scholar]
  65. LiJ. HuS. JianW. XieC. YangX. Plant antimicrobial peptides: Structures, functions, and applications.Bot. Stud.2021621510.1186/s40529‑021‑00312‑x 33914180
    [Google Scholar]
  66. GourbalB. PinaudS. BeckersG.J.M. Van Der MeerJ.W.M. ConrathU. NeteaM.G. Innate immune memory: An evolutionary perspective.Immunol. Rev.20182831214010.1111/imr.12647 29664574
    [Google Scholar]
  67. WuQ. PatočkaJ. KučaK. Insect antimicrobial peptides, a mini review.Toxins2018101146110.3390/toxins10110461 30413046
    [Google Scholar]
  68. LochG. ZinkeI. MoriT. CarreraP. SchroerJ. TakeyamaH. HochM. Antimicrobial peptides extend lifespan in Drosophila.PLoS One2017125e017668910.1371/journal.pone.0176689 28520752
    [Google Scholar]
  69. HansonM.A. LemaitreB. New insights on Drosophila antimicrobial peptide function in host defense and beyond.Curr. Opin. Immunol.202062223010.1016/j.coi.2019.11.008 31835066
    [Google Scholar]
  70. ChowdhuryM. LiC.F. HeZ. LuY. LiuX.S. WangY.F. IpY.T. StrandM.R. YuX.Q. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila.J. Biol. Chem.201929426101721018110.1074/jbc.RA118.006804 31088910
    [Google Scholar]
  71. AgeitosJ.M. PérezS.A. MataC.P. VillaT.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria.Biochem. Pharmacol.201713311713810.1016/j.bcp.2016.09.018 27663838
    [Google Scholar]
  72. MuncasterS. KraakmanK. GibbonsO. MensinkK. ForlenzaM. JacobsonG. BirdS. Antimicrobial peptides within the Yellowtail Kingfish (Seriola lalandi).Dev. Comp. Immunol.201880678010.1016/j.dci.2017.04.014 28433529
    [Google Scholar]
  73. AvilaE.E. Functions of antimicrobial peptides in vertebrates.Curr. Protein Pept. Sci.2017181110981119 27526932
    [Google Scholar]
  74. HartenV.R.M. WoudenberghV.E. DijkV.A. HaagsmanH.P. Cathelicidins: Immunomodulatory antimicrobials.Vaccines2018636310.3390/vaccines6030063 30223448
    [Google Scholar]
  75. ChenC. WangA. ZhangF. ZhangM. YangH. LiJ. SuP. ChenY. YuH. WangY. The protective effect of fish-derived cathelicidins on bacterial infections in zebrafish, Danio rerio.Fish Shellfish Immunol.20199251952710.1016/j.fsi.2019.06.029 31202967
    [Google Scholar]
  76. PatockaJ. NepovimovaE. KlimovaB. WuQ. KucaK. Antimicrobial peptides: Amphibian host defense peptides.Curr. Med. Chem.201926325924594610.2174/0929867325666180713125314 30009702
    [Google Scholar]
  77. WeiL. YangJ. HeX. MoG. HongJ. YanX. LinD. LaiR. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide.J. Med. Chem.20135693546355610.1021/jm4004158 23594231
    [Google Scholar]
  78. PeinadoP.C. DiasS.A. DominguesM.M. BenfieldA.H. FreireJ.M. BaptistaR.G. GasparD. CastanhoM.A.R.B. CraikD.J. HenriquesS.T. VeigaA.S. AndreuD. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.J. Biol. Chem.201829351536154910.1074/jbc.RA117.000125 29255091
    [Google Scholar]
  79. RajasekaranG. KumarS.D. YangS. ShinS.Y. The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities.Eur. J. Med. Chem.201918211162310.1016/j.ejmech.2019.111623 31473417
    [Google Scholar]
  80. CoorensM. SchneiderV.A.F. GrootD.A.M. DijkV.A. MeijerinkM. WellsJ.M. ScheenstraM.R. VeldhuizenE.J.A. HaagsmanH.P. Cathelicidins inhibit Escherichia coli -induced TLR2 and TLR4 activation in a viability-dependent manner.J. Immunol.201719941418142810.4049/jimmunol.1602164 28710255
    [Google Scholar]
  81. SchneiderV.A.F. CoorensM. OrdonezS.R. BokhovenT.J.L.M. PosthumaG. DijkV.A. HaagsmanH.P. VeldhuizenE.J.A. Imaging the antimicrobial mechanism(s) of cathelicidin-2.Sci. Rep.2016613294810.1038/srep32948 27624595
    [Google Scholar]
  82. SpeirsY.M. DrouinD. CavalcanteP.A. BarkemaH.W. CoboE.R. Host defense cathelicidins in cattle: Types, production, bioactive functions and potential therapeutic and diagnostic applications.Int. J. Antimicrob. Agents201851681382110.1016/j.ijantimicag.2018.02.006 29476808
    [Google Scholar]
  83. HuynhE. PenneyJ. CaswellJ. LiJ. Protective effects of protegrin in dextran sodium sulfate-induced murine colitis.Front. Pharmacol.20191015610.3389/fphar.2019.00156 30873029
    [Google Scholar]
  84. HarmanR.M. YangS. HeM.K. Van de WalleG.R. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds.Stem Cell Res. Ther.20178115710.1186/s13287‑017‑0610‑6 28676123
    [Google Scholar]
  85. ReczyńskaD. ZalewskaM. CzopowiczM. KabaJ. ZwierzchowskiL. BagnickaE. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats.Vet. Res.201849111310.1186/s13567‑018‑0607‑x 30424807
    [Google Scholar]
  86. PanteleevP.V. BolosovI.A. KalashnikovA.À. KokryakovV.N. ShamovaO.V. EmelianovaA.A. BalandinS.V. OvchinnikovaT.V. Combined antibacterial effects of goat cathelicidins with different mechanisms of action.Front. Microbiol.20189298310.3389/fmicb.2018.02983 30555455
    [Google Scholar]
  87. TeddeV. BronzoV. PuggioniG.M.G. PolleraC. CasulaA. CuroneG. MoroniP. UzzauS. AddisM.F. Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation.J. Dairy Res.201986221722110.1017/S0022029919000335 31156071
    [Google Scholar]
  88. NakazawaM. MaedaS. OmoriM. KajiK. YokoyamaN. NakagawaT. ChambersJ.K. UchidaK. OhnoK. YonezawaT. MatsukiN. Duodenal expression of antimicrobial peptides in dogs with idiopathic inflammatory bowel disease and intestinal lymphoma.Vet. J.2019249475210.1016/j.tvjl.2019.05.006 31239164
    [Google Scholar]
  89. LimaD.M.S.F. SilvaD.R.A. SilvaD.M.F. SilvaD.P.A.B. CostaR.M.P.B. TeixeiraJ.A.C. PortoA.L.F. CavalcantiM.T.H. Brazilian kefir-fermented sheep’s milk, a source of antimicrobial and antioxidant peptides.Probiotics Antimicrob. Proteins201810344645510.1007/s12602‑017‑9365‑8 29285743
    [Google Scholar]
  90. PengH. PurkersonJ.M. SchwadererA.L. SchwartzG.J. Metabolic acidosis stimulates the production of the antimicrobial peptide cathelicidin in rabbit urine.Am. J. Physiol. Renal Physiol.20173135F1061F106710.1152/ajprenal.00701.2016 28747361
    [Google Scholar]
  91. NagaokaI. TamuraH. ReichJ. Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model.Int. J. Mol. Sci.20202117597310.3390/ijms21175973 32825174
    [Google Scholar]
  92. FruitwalaS. NaccacheE.D.W. ChangT.L. Multifaceted immune functions of human defensins and underlying mechanisms.Semin. Cell Dev. Biol.20198816317210.1016/j.semcdb.2018.02.023
    [Google Scholar]
  93. PaceB.T. LacknerA.A. PorterE. PaharB. The role of defensins in HIV pathogenesis.Mediators Inflamm.2017201711210.1155/2017/5186904 28839349
    [Google Scholar]
  94. ContrerasG. ShirdelI. BraunM.S. WinkM. Defensins: Transcriptional regulation and function beyond antimicrobial activity.Dev. Comp. Immunol.202010410355610.1016/j.dci.2019.103556 31747541
    [Google Scholar]
  95. PasupuletiM. SchmidtchenA. MalmstenM. Antimicrobial peptides: Key components of the innate immune system.Crit. Rev. Biotechnol.201232214317110.3109/07388551.2011.594423 22074402
    [Google Scholar]
  96. GuraoA. KashyapS.K. SinghR. β-defensins: An innate defense for bovine mastitis.Vet. World201710899099810.14202/vetworld.2017.990‑998 28919695
    [Google Scholar]
  97. WangR. MaD. LinL. ZhouC. HanZ. ShaoY. LiaoW. LiuS. Identification and characterization of an avian β-defensin orthologue, avian β-defensin 9, from quails.Appl. Microbiol. Biotechnol.20108741395140510.1007/s00253‑010‑2591‑6 20396878
    [Google Scholar]
  98. PeiJ. JiangL. Antimicrobial peptide from mucus of Andrias davidianus: Screening and purification by magnetic cell membrane separation technique.Int. J. Antimicrob. Agents2017501414610.1016/j.ijantimicag.2017.02.013 28461043
    [Google Scholar]
  99. ChangY.L. WangZ. IgawaS. ChoiJ.E. WerbelT. NardoD.A. Lipocalin 2: A new antimicrobial in mast cells.Int. J. Mol. Sci.20192010238010.3390/ijms20102380 31091692
    [Google Scholar]
  100. SchneiderJ.J. UnholzerA. SchallerM. KortingS.M. KortingH.C. Human defensins.J. Mol. Med.200583858759510.1007/s00109‑005‑0657‑1 15821901
    [Google Scholar]
  101. MohammedI. SaidD.G. DuaH.S. Human antimicrobial peptides in ocular surface defense.Prog. Retin. Eye Res.20176112210.1016/j.preteyeres.2017.03.004 28587935
    [Google Scholar]
  102. SoaresR.C. PennaC.P.H. MoraesD.V.C.S. VecchiD.R. ClavaudC. BretonL. BrazA.S.K. PaulinoL.C. Dysbiotic bacterial and fungal communities not restricted to clinically affected skin sites in dandruff.Front. Cell. Infect. Microbiol.2016615710.3389/fcimb.2016.00157 27909689
    [Google Scholar]
  103. da SilvaP.F. MachadoM.C.C. The dual role of cathelicidins in systemic inflammation.Immunol. Lett.2017182576010.1016/j.imlet.2017.01.004 28082134
    [Google Scholar]
  104. VargaJ.F.A. MarinosB.M.P. KatzenbackB.A. Frog skin innate immune defences: Sensing and surviving pathogens.Front. Immunol.20199312810.3389/fimmu.2018.03128 30692997
    [Google Scholar]
  105. PeiJ. FengZ. RenT. SunH. HanH. JinW. DangJ. TaoY. Purification, characterization and application of a novel antimicrobial peptide from Andrias davidianus blood.Lett. Appl. Microbiol.2018661384310.1111/lam.12823 29130500
    [Google Scholar]
  106. HuiC-Y. GuoY. ZhangW. YangX.Q. GaoC.X. YangX-Y. Isolation and characterization of antimicrobial peptides from healthy male urine.Pak. J. Pharm. Sci.2017302363367 28649057
    [Google Scholar]
  107. CorreiaA. WeimannA. Protein antibiotics: Mind your language.Nat. Rev. Microbiol.20211917710.1038/s41579‑020‑00485‑5 33219332
    [Google Scholar]
  108. SommaD.A. MorettaA. CanèC. CirilloA. DuilioA. Antimicrobial and antibiofilm peptides.Biomolecules202010465210.3390/biom10040652 32340301
    [Google Scholar]
  109. DennisonS.R. HarrisF. MuraM. PhoenixD.A. An atlas of anionic antimicrobial peptides from amphibians.Curr. Protein Pept. Sci.201819882383810.2174/1389203719666180226155035 29484989
    [Google Scholar]
  110. AlmarwaniB. PhambuN. HamadaY.Z. MeyaS.A. Interactions of an anionic antimicrobial peptide with Zinc(II): Application to bacterial mimetic membranes.Langmuir20203648145541456210.1021/acs.langmuir.0c02306 33227202
    [Google Scholar]
  111. MillerA. WitkiewiczM.A. MikołajczykA. WątłyJ. WilcoxD. WitkowskaD. Rowińska-ŻyrekM. Zn-enhanced Asp-rich antimicrobial peptides: N-Terminal coordination by Zn(II) and Cu(II), which distinguishes Cu(II) binding to different peptides.Int. J. Mol. Sci.20212213697110.3390/ijms22136971 34203496
    [Google Scholar]
  112. TeixeiraV. FeioM.J. BastosM. Role of lipids in the interaction of antimicrobial peptides with membranes.Prog. Lipid Res.201251214917710.1016/j.plipres.2011.12.005 22245454
    [Google Scholar]
  113. GennaroR. ZanettiM. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides.Biopolymers2000551314910.1002/1097‑0282(2000)55:1<31::AID‑BIP40>3.0.CO;2‑9 10931440
    [Google Scholar]
  114. LewiesA. WentzelJ. JacobsG. PlessisD.L. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases.Molecules2015208153921543310.3390/molecules200815392 26305243
    [Google Scholar]
  115. MookherjeeN. AndersonM.A. HaagsmanH.P. DavidsonD.J. Antimicrobial host defence peptides: Functions and clinical potential.Nat. Rev. Drug Discov.202019531133210.1038/s41573‑019‑0058‑8 32107480
    [Google Scholar]
  116. AidoukovitchA. DahlS. FältF. NebelD. SvenssonD. TufvessonE. NilssonB.O. Antimicrobial peptide LL‐37 and its pro‐form, hCAP18, in desquamated epithelial cells of human whole saliva.Eur. J. Oral Sci.202012811610.1111/eos.12664 31825534
    [Google Scholar]
  117. FabisiakA. MurawskaN. FichnaJ. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity.Pharmacol. Rep.201668480280810.1016/j.pharep.2016.03.015 27117377
    [Google Scholar]
  118. JohanssonJ. GudmundssonG.H. RottenbergM.E. BerndtK.D. AgerberthB. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37.J. Biol. Chem.199827363718372410.1074/jbc.273.6.3718 9452503
    [Google Scholar]
  119. KoehbachJ. CraikD.J. The vast structural diversity of antimicrobial peptides.Trends Pharmacol. Sci.201940751752810.1016/j.tips.2019.04.012 31230616
    [Google Scholar]
  120. ZhaoH. Mode of action of antimicrobial peptides [Academic Dissertation].Helsinki: University of Helsinki2003
    [Google Scholar]
  121. MattarE.H. AlmehdarH.A. YacoubH.A. UverskyV.N. RedwanE.M. Antimicrobial potentials and structural disorder of human and animal defensins.Cytokine Growth Factor Rev.2016289511110.1016/j.cytogfr.2015.11.002 26598808
    [Google Scholar]
  122. LehrerR.I. LuW. α‐Defensins in human innate immunity.Immunol. Rev.201224518411210.1111/j.1600‑065X.2011.01082.x 22168415
    [Google Scholar]
  123. TaiK.P. LeV.V. SelstedM.E. OuelletteA.J. Hydrophobic determinants of α-defensin bactericidal activity.Infect. Immun.20148262195220210.1128/IAI.01414‑13 24614658
    [Google Scholar]
  124. KoehbachJ. Structure-activity relationships of insect defensins.Front Chem.201754510.3389/fchem.2017.00045 28748179
    [Google Scholar]
  125. GuyotN. MeudalH. TrappS. IochmannS. SilvestreA. JoussetG. LabasV. ReverdiauP. LothK. HervéV. AucagneV. DelmasA.F. GodbertR.S. LandonC. Structure, function, and evolution of Gga -AvBD11, the archetype of the structural avian-double-β-defensin family.Proc. Natl. Acad. Sci.2020117133734510.1073/pnas.1912941117 31871151
    [Google Scholar]
  126. SitaramN. Antimicrobial peptides with unusual amino acid compositions and unusual structures.Curr. Med. Chem.200613667969610.2174/092986706776055689 16529559
    [Google Scholar]
  127. SelstedM. Theta-defensins: Cyclic antimicrobial peptides produced by binary ligation of truncated α-defensins.Curr. Protein Pept. Sci.20045536537110.2174/1389203043379459 15544531
    [Google Scholar]
  128. ConibearA.C. RosengrenK.J. DalyN.L. HenriquesS.T. CraikD.J. The cyclic cystine ladder in θ-defensins is important for structure and stability, but not antibacterial activity.J. Biol. Chem.201328815108301084010.1074/jbc.M113.451047 23430740
    [Google Scholar]
  129. HolaniR. ShahC. HajiQ. InglisG.D. UwieraR.R.E. CoboE.R. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health.Comp. Immunol. Microbiol. Infect. Dis.2016499510110.1016/j.cimid.2016.10.004 27865272
    [Google Scholar]
  130. FloresH.J.L. RodriguezM.C. ArellanezG.A. MoralesA.A. AvilaE.E. Effect of recombinant prophenin 2 on the integrity and viability of Trichomonas vaginalis.BioMed Res. Int.201520151810.1155/2015/430436 25815316
    [Google Scholar]
  131. SmirnovaM.P. KolodkinN.I. KolobovA.A. AfoninV.G. AfoninaI.V. StefanenkoL.I. Shpen’V.M. ShamovaO.V. KolobovA.A. Indolicidin analogs with broad-spectrum antimicrobial activity and low hemolytic activity.Peptides202013217035610.1016/j.peptides.2020.170356 32593681
    [Google Scholar]
  132. KhurshidZ. NajeebS. MaliM. MoinS.F. RazaS.Q. ZohaibS. SefatF. ZafarM.S. Histatin peptides: Pharmacological functions and their applications in dentistry.Saudi Pharm. J.2017251253110.1016/j.jsps.2016.04.027 28223859
    [Google Scholar]
  133. StarlingS. A new way out for lysozyme.Nat. Rev. Gastroenterol. Hepatol.2017141056756710.1038/nrgastro.2017.118 28831185
    [Google Scholar]
  134. RaglandS.A. CrissA.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme.PLoS Pathog.2017139e100651210.1371/journal.ppat.1006512 28934357
    [Google Scholar]
  135. ZhangW. SuJ. XuH. YuS. LiuY. ZhangY. SunL. YueY. ZhouX. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells.PLoS One2017126e017967210.1371/journal.pone.0179672 28617852
    [Google Scholar]
  136. IbrahimH.R. ThomasU. PellegriniA. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action.J. Biol. Chem.200127647437674377410.1074/jbc.M106317200 11560930
    [Google Scholar]
  137. HarfordC. SarkarB. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: Metal binding, DNA cleavage, and other properties.Acc. Chem. Res.199730312313010.1021/ar9501535
    [Google Scholar]
  138. PortelinhaJ. DuayS.S. YuS.I. HeilemannK. LibardoM.D.J. JulianoS.A. KlassenJ.L. BozaA.A.M. Antimicrobial peptides and copper(II) ions: Novel therapeutic opportunities.Chem. Rev.202112142648271210.1021/acs.chemrev.0c00921 33524257
    [Google Scholar]
  139. WendeC. KulakN. Fluorophore ATCUN complexes: Combining agent and probe for oxidative DNA cleavage.Chem. Commun.20155162123951239810.1039/C5CC04508H 26143739
    [Google Scholar]
  140. HeinrichJ. KönigN.F. SobottkaS. SarkarB. KulakN. Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity.J. Inorg. Biochem.201919422323210.1016/j.jinorgbio.2019.01.016 30877897
    [Google Scholar]
  141. EnokiT.A. SilvaM.I. LorenzonE.N. CilliE.M. PerezK.R. RiskeK.A. LamyM.T. Antimicrobial peptide K 0 -W 6 -Hya1 induces stable structurally modified lipid domains in anionic membranes.Langmuir20183452014202510.1021/acs.langmuir.7b03408 29284086
    [Google Scholar]
  142. LinT.Y. WeibelD.B. Organization and function of anionic phospholipids in bacteria.Appl. Microbiol. Biotechnol.2016100104255426710.1007/s00253‑016‑7468‑x 27026177
    [Google Scholar]
  143. VanceJ.E. Phospholipid synthesis and transport in mammalian cells.Traffic201516111810.1111/tra.12230 25243850
    [Google Scholar]
  144. FlorekO.B. CliftonL.A. WildeM. ArnoldT. GreenR.J. FrazierR.A. Lipid composition in fungal membrane models: Effect of lipid fluidity.Acta Crystallogr. D Struct. Biol.201874121233124410.1107/S2059798318009440 30605137
    [Google Scholar]
  145. RenneM.F. KroonD.A.I.P.M. The role of phospholipid molecular species in determining the physical properties of yeast membranes.FEBS Lett.201859281330134510.1002/1873‑3468.12944 29265372
    [Google Scholar]
  146. BaxterA.A. LayF.T. PoonI.K.H. KvansakulM. HulettM.D. Tumor cell membrane-targeting cationic antimicrobial peptides: Novel insights into mechanisms of action and therapeutic prospects.Cell. Mol. Life Sci.201774203809382510.1007/s00018‑017‑2604‑z 28770291
    [Google Scholar]
  147. DegrooteG.S. GuérardelY. DelannoyP. Gangliosides: Structures, biosynthesis, analysis, and roles in cancer.ChemBioChem201718131146115410.1002/cbic.201600705 28295942
    [Google Scholar]
  148. VicenteC.M. SilvaD.D.A. SartorioP.V. SilvaT.D. SaadS.S. NaderH.B. ForonesN.M. TomaL. Heparan sulfate proteoglycans in human colorectal cancer.Anal. Cell. Pathol.2018201811010.1155/2018/8389595 30027065
    [Google Scholar]
  149. MatsuzakiK. MuraseO. FujiiN. MiyajimaK. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore.Biochemistry199534196521652610.1021/bi00019a033 7538786
    [Google Scholar]
  150. MatsuzakiK. MuraseO. FujiiN. MiyajimaK. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation.Biochemistry19963535113611136810.1021/bi960016v 8784191
    [Google Scholar]
  151. OmardienS. DrijfhoutJ.W. VazF.M. WenzelM. HamoenL.W. ZaatS.A.J. BrulS. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer.Biochim. Biophys. Acta Biomembr.20181860112404241510.1016/j.bbamem.2018.06.004 29902419
    [Google Scholar]
  152. LohnerK. ProssniggF. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems.Biochim. Biophys. Acta Biomembr.2009178881656166610.1016/j.bbamem.2009.05.012 19481533
    [Google Scholar]
  153. LipkinR.B. LazaridisT. Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs.J. Membr. Biol.2015248346948610.1007/s00232‑014‑9759‑4 25430621
    [Google Scholar]
  154. OrenZ. ShaiY. Mode of action of linear amphipathic α-helical antimicrobial peptides.Biopolymers199847645146310.1002/(SICI)1097‑0282(1998)47:6<451::AID‑BIP4>3.0.CO;2‑F 10333737
    [Google Scholar]
  155. ShenkarevZ.O. BalandinS.V. TrunovK.I. ParamonovA.S. SukhanovS.V. BarsukovL.I. ArsenievA.S. OvchinnikovaT.V. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: Oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers.Biochemistry201150286255626510.1021/bi200746t 21627330
    [Google Scholar]
  156. LyuY. FitriyantiM. NarsimhanG. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.Colloids Surf. B Biointerfaces201917312112710.1016/j.colsurfb.2018.09.049 30278360
    [Google Scholar]
  157. MardirossianM. GrzelaR. GiglioneC. MeinnelT. GennaroR. MergaertP. ScocchiM. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.Chem. Biol.201421121639164710.1016/j.chembiol.2014.10.009 25455857
    [Google Scholar]
  158. MardirossianM. PérébaskineN. BenincasaM. GambatoS. HofmannS. HuterP. MüllerC. HilpertK. InnisC.A. TossiA. WilsonD.N. The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome.Cell Chem. Biol.2018255530539.e710.1016/j.chembiol.2018.02.004 29526712
    [Google Scholar]
  159. LeC.F. GudimellaR. RazaliR. ManikamR. SekaranS.D. Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3.Sci. Rep.2016612682810.1038/srep26828 27225022
    [Google Scholar]
  160. KragolG. LovasS. VaradiG. CondieB.A. HoffmannR. OtvosL.Jr The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding.Biochemistry200140103016302610.1021/bi002656a 11258915
    [Google Scholar]
  161. LeC.F. FangC.M. SekaranS.D. Intracellular targeting mechanisms by antimicrobial peptides.Antimicrob. Agents Chemother.2017614e02340e1610.1128/AAC.02340‑16 28167546
    [Google Scholar]
  162. WrońskaA.K. BoguśM.I. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales).PLoS One2020152e022855610.1371/journal.pone.0228556 32027696
    [Google Scholar]
  163. SubbalakshmiC. SitaramN. Mechanism of antimicrobial action of indolicidin.FEMS Microbiol. Lett.19981601919610.1111/j.1574‑6968.1998.tb12896.x 9495018
    [Google Scholar]
  164. HeS. ZhangJ. LiN. ZhouS. YueB. ZhangM. A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis.Fish Shellfish Immunol.20176046647310.1016/j.fsi.2016.11.029 27840169
    [Google Scholar]
  165. ShuH. ChenH. WangX. HuY. YunY. ZhongQ. ChenW. ChenW. Antimicrobial activity and proposed action mechanism of 3-carene against Brochothrix thermosphacta and Pseudomonas fluorescens.Molecules20192418324610.3390/molecules24183246 31489899
    [Google Scholar]
  166. LutkenhausJ. Regulation of cell division in E. coli.Trends Genet.199061222510.1016/0168‑9525(90)90045‑8 2183414
    [Google Scholar]
  167. LiL. SunJ. XiaS. TianX. CheserekM.J. LeG. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: Intracellular DNA binding and cell cycle arrest.Appl. Microbiol. Biotechnol.201610073245325310.1007/s00253‑015‑7265‑y 26743655
    [Google Scholar]
  168. CruzG.F. AraujoD.I. TorresM.D.T. NunezF.C. OliveiraV.X.Jr AmbrosioF.N. LombelloC.B. AlmeidaD.V. SilvaF.D. GarciaW. Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties.J. Inorg. Organomet. Polym. Mater.20203072464247410.1007/s10904‑019‑01427‑2
    [Google Scholar]
  169. HelmerhorstE.J. TroxlerR.F. OppenheimF.G. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species.Proc. Natl. Acad. Sci.20019825146371464210.1073/pnas.141366998 11717389
    [Google Scholar]
  170. LoboB.M. MolinaA. SolanoR. Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi.Plant J.2002291233210.1046/j.1365‑313x.2002.01191.x 12060224
    [Google Scholar]
  171. ZélicourtD.A. LetouseyP. ThoironS. CampionC. SimoneauP. ElmorjaniK. MarionD. SimierP. DelavaultP. Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants.Planta2007226359160010.1007/s00425‑007‑0507‑1 17375322
    [Google Scholar]
  172. BroekaertW.F. CammueB.P.A. BolleD.M.F.C. ThevissenK. SamblanxD.G.W. OsbornR.W. NielsonK. Antimicrobial peptides from plants.Crit. Rev. Plant Sci.199716329732310.1080/07352689709701952
    [Google Scholar]
  173. CaleyaD.R.F. PascualG.B. OlmedoG.F. CarboneroP. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro.Appl. Microbiol.1972235998100010.1128/am.23.5.998‑1000.1972 5031563
    [Google Scholar]
  174. NguyenG.K.T. ZhangS. NguyenN.T.K. NguyenP.Q.T. ChiuM.S. HardjojoA. TamJ.P. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family.J. Biol. Chem.201128627242752428710.1074/jbc.M111.229922 21596752
    [Google Scholar]
  175. BrogdenK.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol.20053323825010.1038/nrmicro1098 15703760
    [Google Scholar]
  176. LiY. XiangQ. ZhangQ. HuangY. SuZ. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application.Peptides201237220721510.1016/j.peptides.2012.07.001 22800692
    [Google Scholar]
  177. CarvalhoA.O. GomesV.M. Plant defensins—prospects for the biological functions and biotechnological properties.Peptides20093051007102010.1016/j.peptides.2009.01.018 19428780
    [Google Scholar]
  178. LayF. AndersonM. Defensins--components of the innate immune system in plants.Curr. Protein Pept. Sci.2005618510110.2174/1389203053027575 15638771
    [Google Scholar]
  179. KushmerickC. CastroS.M. CruzS.J. BlochC.Jr BeirãoP.S.L. Functional and structural features of γ‐zeathionins, a new class of sodium channel blockers.FEBS Lett.1998440330230610.1016/S0014‑5793(98)01480‑X 9872391
    [Google Scholar]
  180. SpelbrinkR.G. DilmacN. AllenA. SmithT.J. ShahD.M. HockermanG.H. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins.Plant Physiol.200413542055206710.1104/pp.104.040873 15299136
    [Google Scholar]
  181. HavengaB. NdlovuT. ClementsT. ReynekeB. WasoM. KhanW. Exploring the antimicrobial resistance profiles of WHO critical priority list bacterial strains.BMC Microbiol.201919130310.1186/s12866‑019‑1687‑0 31870288
    [Google Scholar]
  182. CocciP. RoncaratiA. CapriottiM. MosconiG. PalermoF.A. Transcriptional alteration of gene biomarkers in hemocytes of wild Ostrea edulis with molecular evidence of infections with Bonamia spp. and/or Marteilia refringens parasites.Pathogens20209532310.3390/pathogens9050323 32357566
    [Google Scholar]
  183. ZahedifardF. LeeH. NoJ.H. SalimiM. SeyedN. AsoodehA. RafatiS. Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite.Exp. Parasitol.202020910782310.1016/j.exppara.2019.107823 31862270
    [Google Scholar]
  184. HegedüsN. MarxF. Antifungal proteins: More than antimicrobials?Fungal Biol. Rev.201326413214510.1016/j.fbr.2012.07.002 23412850
    [Google Scholar]
  185. XiaoS. CuiP. ShiW. ZhangY. Identification of essential oils with activity against stationary phase Staphylococcus aureus.BMC Compl. Med. Ther.20202019910.1186/s12906‑020‑02898‑4 32209108
    [Google Scholar]
  186. TaggarR. JangraM. DwivediA. BansalK. PatilP.B. BhattacharyyaM.S. NandanwarH. SahooD.K. Bacteriocin isolated from the natural inhabitant of Allium cepa against Staphylococcus aureus.World J. Microbiol. Biotechnol.20213722010.1007/s11274‑020‑02989‑x 33427970
    [Google Scholar]
  187. ParkH.K. HaM.H. ParkS.G. KimM.N. KimB.J. KimW. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps.PLoS One201272e3284710.1371/journal.pone.0032847 22393454
    [Google Scholar]
  188. WangD. ChenJ. ZhuJ. MouY. Novel cyclotides from Hedyotis Biflora has potent bactericidal activity against gram-negative bacteria and E. Coli drug resistance.Int. J. Clin. Exp. Med.2016995219526
    [Google Scholar]
  189. NoonanJ. WilliamsW. ShanX. Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize.Int. J. Mol. Sci.2017189193810.3390/ijms18091938 28914754
    [Google Scholar]
  190. FaullK.F. HigginsonJ. WaringA.J. JohnsonJ. ToT. WhiteleggeJ.P. StevensR.L. FluhartyC.B. FluhartyA.L. Disulfide connectivity in cerebroside sulfate activator is not necessary for biological activity or α-helical content but is necessary for trypsin resistance and strong ligand binding.Arch. Biochem. Biophys.2000376226627410.1006/abbi.2000.1714 10775412
    [Google Scholar]
  191. SohailA.A. GaikwadM. KhadkaP. SaaranenM.J. RuddockL.W. Production of extracellular matrix proteins in the cytoplasm of E. coli: Making giants in tiny factories.Int. J. Mol. Sci.202021368810.3390/ijms21030688 31973001
    [Google Scholar]
  192. KhooK.K. NortonR.S. Role of disulfide bonds in peptide and protein conformation. Amino acids, peptides and proteins in organic chemistry: Analysis and function of amino acids and peptidesWiley-VCH Verlag GmbH & Co. KGaA2011395417
    [Google Scholar]
  193. XiaoJ. ZhangH. NiuL. WangX. Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography.J. Agric. Food Chem.20115941145115110.1021/jf103876b 21268582
    [Google Scholar]
  194. PrabhuS. DennisonS.R. MuraM. LeaR.W. SnapeT.J. HarrisF. Cn ‐AMP2 from green coconut water is an anionic anticancer peptide.J. Pept. Sci.2014201290991510.1002/psc.2684 25234689
    [Google Scholar]
  195. HammamiR. HamidaB.J. VergotenG. FlissI. PhytAMP: A database dedicated to antimicrobial plant peptides.Nucleic Acids Res.200937DatabaseD963D96810.1093/nar/gkn65518836196
    [Google Scholar]
  196. EgorovT.A. OdintsovaT.I. PukhalskyV.A. GrishinE.V. Diversity of wheat anti-microbial peptides.Peptides200526112064207310.1016/j.peptides.2005.03.007 16269343
    [Google Scholar]
  197. YiliA. MaksimovV. MaQ-L. GaoY-H. VeshkurovaO. SalikhovS. AisaH.A. Antimicrobial peptides from the plants.J. Pharm. Pharmacol.20142627641
    [Google Scholar]
  198. WongJ.H. NgT.B. Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill).Peptides200324796396810.1016/S0196‑9781(03)00192‑X 14499273
    [Google Scholar]
  199. NgaiP.H.K. NgT.B. A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities.Peptides200425217117610.1016/j.peptides.2003.12.012 15062997
    [Google Scholar]
  200. ThommaB. CammueB. ThevissenK. Plant defensins.Planta2002216219320210.1007/s00425‑002‑0902‑6 12447532
    [Google Scholar]
  201. AlmeidaL.F.D. PaulaJ.F. AlmeidaR.V.D. WilliamsD.W. HeblingJ. CavalcantiY.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms.Acta Odontol. Scand.201674539339810.3109/00016357.2016.1166261 27098375
    [Google Scholar]
  202. ThevissenK. WarneckeD.C. FrançoisI.E.J.A. LeipeltM. HeinzE. OttC. ZähringerU. ThommaB.P.H.J. FerketK.K.A. CammueB.P.A. Defensins from insects and plants interact with fungal glucosylceramides.J. Biol. Chem.200427963900390510.1074/jbc.M311165200 14604982
    [Google Scholar]
  203. ParkH.C. KangH.Y. ChunJ.H. KooC.J. CheongH.Y. KimY.C. KimC.M. ChungS.W. KimC.J. YooH.J. KooD.Y. KooC.S. LimO.C. LeeY.S. ChoJ.M. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage.Plant Mol. Biol.2002501576810.1023/A:1016005231852 12139009
    [Google Scholar]
  204. YokoyamaS. KatoK. KobaA. MinamiY. WatanabeK. YagiF. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds.Peptides200829122110211710.1016/j.peptides.2008.08.007 18778743
    [Google Scholar]
  205. MoritaH. YunY.S. TakeyaK. ItokawaH. YamadaK. SegetalinsB. Segetalins B, C and D, three new cyclic peptides from Vaccaria segetalis.Tetrahedron199551216003601410.1016/0040‑4020(95)00278‑G
    [Google Scholar]
  206. MoritaH. SatoY. KobayashiJ. Cyclosquamosins A - G, cyclic peptides from the seeds of Annona squamosa.Tetrahedron199955247509751810.1016/S0040‑4020(99)00372‑5
    [Google Scholar]
  207. MoritaH. YunY.S. TakeyaK. ItokawaH. ShirotaO. Thionation of segetalins A and B, cyclic peptides with estrogen-like activity from seeds of Vaccaria segetalis.Bioorg. Med. Chem.19975363163610.1016/S0968‑0896(97)00001‑1 9113340
    [Google Scholar]
  208. CammueB.P. BolleD.M.F. TerrasF.R. ProostP. DammeV.J. ReesS.B. VanderleydenJ. BroekaertW.F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds.J. Biol. Chem.199226742228223310.1016/S0021‑9258(18)45866‑8 1733929
    [Google Scholar]
  209. CammueB. ThevissenK. HendriksM. EggermontK. GoderisI.J. ProostP. DammeV.J. OsbornR.W. GuerbetteF. KaderJ.C. BroekaertW.F. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.Plant Physiol.1995109244545510.1104/pp.109.2.445 7480341
    [Google Scholar]
  210. ParkC.J. ParkC.B. HongS.S. LeeH.S. LeeS.Y. KimS.C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris.Plant Mol. Biol.200044218719710.1023/A:1006431320677 11117262
    [Google Scholar]
  211. TailorR.H. AclandD.P. AttenboroughS. CammueB.P.A. EvansI.J. OsbornR.W. RayJ.A. ReesS.B. BroekaertW.F. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein.J. Biol. Chem.199727239244802448710.1074/jbc.272.39.24480 9305910
    [Google Scholar]
  212. ThevissenK. FrançoisI.E.J.A. SijtsmaL. AmerongenA. SchaaperW.M.M. MeloenR. TrumpieP.T. BroekaertW.F. CammueB.P.A. Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4.Peptides20052671113111910.1016/j.peptides.2005.01.008 15949628
    [Google Scholar]
  213. WangP. BangJ.K. KimH.J. KimJ.K. KimY. ShinS.Y. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1.Peptides200930122144214910.1016/j.peptides.2009.09.020 19778562
    [Google Scholar]
  214. CastroM. FontesW. Plant defense and antimicrobial peptides.Protein Pept. Lett.2005121111610.2174/0929866053405832 15638798
    [Google Scholar]
  215. ShaoF. HuZ. XiongY.M. HuangQ.Z. WangC.G. ZhuR.H. WangD.C. A new antifungal peptide from the seeds of Phytolacca americana: Characterization, amino acid sequence and cDNA cloning.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19991430226226810.1016/S0167‑4838(99)00013‑8 10082954
    [Google Scholar]
  216. LercheM.H. KragelundB.B. BechL.M. PoulsenF.M. Barley lipid-transfer protein complexed with palmitoyl CoA: The structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands.Structure19975229130610.1016/S0969‑2126(97)00186‑X 9032083
    [Google Scholar]
  217. SeguraA. MorenoM. MadueñoF. MolinaA. OlmedoG.F. Snakin-1, a peptide from potato that is active against plant pathogens.Mol. Plant Microbe Interact.1999121162310.1094/MPMI.1999.12.1.16 9885189
    [Google Scholar]
  218. LipkinA. AnisimovaV. NikonorovaA. BabakovA. KrauseE. BienertM. GrishinE. EgorovT. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds.Phytochemistry200566202426243110.1016/j.phytochem.2005.07.015 16126239
    [Google Scholar]
  219. van der WeerdenN.L. BleackleyM.R. AndersonM.A. Properties and mechanisms of action of naturally occurring antifungal peptides.Cell. Mol. Life Sci.201370193545357010.1007/s00018‑013‑1260‑1 23381653
    [Google Scholar]
  220. KooJ.C. LeeS.Y. ChunH.J. CheongY.H. ChoiJ.S. KawabataS. MiyagiM. TsunasawaS. HaK.S. BaeD.W. HanC. LeeB.L. ChoM.J. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.199813821809010.1016/S0167‑4838(97)00148‑9 9507071
    [Google Scholar]
  221. ÁngelesL.H. CisnerosS.E. ZárateL.L. GómezV.E. MezaL.J.E. ZarzosaO.A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity.Biotechnol. Lett.200830101713171910.1007/s10529‑008‑9756‑8 18563581
    [Google Scholar]
  222. BernhardR.A. MarrA.G. The oxidation of terpenes. I. Mechanism and reaction products of D‐limonene autoxidation.J. Food Sci.196025451753010.1111/j.1365‑2621.1960.tb00363.x
    [Google Scholar]
  223. KoikeM. OkamotoT. TsudaS. ImaiR. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.Biochem. Biophys. Res. Commun.20022981465310.1016/S0006‑291X(02)02391‑4 12379218
    [Google Scholar]
  224. MirouzeM. SelsJ. RichardO. CzernicP. LoubetS. JacquierA. FrançoisI.E.J.A. CammueB.P.A. LebrunM. BerthomieuP. MarquèsL. A putative novel role for plant defensins: A defensin from the zinc hyper‐accumulating plant, Arabidopsis halleri, confers zinc tolerance.Plant J.200647332934210.1111/j.1365‑313X.2006.02788.x 16792695
    [Google Scholar]
  225. KongJ.L. DuX.B. FanC.X. XuJ.F. ZhengX.J. Determination of primary structure of a novel peptide from mistletoe and its antitumor activity.Yao Xue Xue Bao20043910813817 15700822
    [Google Scholar]
  226. LiS.S. GullboJ. LindholmP. LarssonR. ThunbergE. SamuelssonG. BohlinL. ClaesonP. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga.Biochem. J.2002366240541310.1042/bj20020221 12049612
    [Google Scholar]
  227. NahirñakV. AlmasiaN.I. FernandezP.V. HoppH.E. EstevezJ.M. CarrariF. RovereV.C. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition.Plant Physiol.2012158125226310.1104/pp.111.186544 22080603
    [Google Scholar]
  228. LinP. WongJ.H. NgT.B. A defensin with highly potent antipathogenic activities from the seeds of purple pole bean.Biosci. Rep.201030210110910.1042/BSR20090004 19335335
    [Google Scholar]
  229. IrelandD.C. ColgraveM.L. CraikD.J. A novel suite of cyclotides from Viola odorata: Sequence variation and the implications for structure, function and stability.Biochem. J.2006400111210.1042/BJ20060627 16872274
    [Google Scholar]
  230. HerrmannA. SvangårdE. ClaesonP. GullboJ. BohlinL. GöranssonU. Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2.Cell. Mol. Life Sci.200663223524510.1007/s00018‑005‑5486‑4 16389447
    [Google Scholar]
  231. WangS.Y. WuJ.H. NgT.B. YeX.Y. RaoP.F. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean.Peptides20042581235124210.1016/j.peptides.2004.06.004 15350690
    [Google Scholar]
  232. DalyN.L. CraikD.J. Bioactive cystine knot proteins.Curr. Opin. Chem. Biol.201115336236810.1016/j.cbpa.2011.02.008 21362584
    [Google Scholar]
  233. TamJ.P. LuY.A. YangJ.L. ChiuK.W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides.Proc. Natl. Acad. Sci.199996168913891810.1073/pnas.96.16.8913 10430870
    [Google Scholar]
  234. WitherupK.M. BoguskyM.J. AndersonP.S. RamjitH. RansomR.W. WoodT. SardanaM. Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes.J. Nat. Prod.199457121619162510.1021/np50114a002 7714530
    [Google Scholar]
  235. JenningsC.V. RosengrenK.J. DalyN.L. PlanM. StevensJ. ScanlonM.J. WaineC. NormanD.G. AndersonM.A. CraikD.J. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: Do Möbius strips exist in nature?Biochemistry200544385186010.1021/bi047837h 15654741
    [Google Scholar]
  236. SouzaD.M.W.R. Desafio de plantas transgênicas de laranja hamlin (Citrus Sinensis L. Osbeck) superexpressando os genes CDR-1 Ou PDF2. 2 Ou GLT1 à infecção com xanthomonas citri subsp. Citri ou candidatus liberibacter asiaticus.PhD Thesis, Universidade de São Paulo2023
    [Google Scholar]
  237. FrancoO.L. MuradA.M. LeiteJ.R. MendesP.A.M. PratesM.V. BlochC.Jr Identification of a cowpea γ‐thionin with bactericidal activity.FEBS J.2006273153489349710.1111/j.1742‑4658.2006.05349.x 16824043
    [Google Scholar]
  238. ZhangY. LewisK. Fabatins: New antimicrobial plant peptides.FEMS Microbiol. Lett.19971491596410.1111/j.1574‑6968.1997.tb10308.x 9103978
    [Google Scholar]
  239. FujimuraM. IdeguchiM. MinamiY. WatanabeK. TaderaK. Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens).Biosci. Biotechnol. Biochem.200569364264510.1271/bbb.69.642 15784998
    [Google Scholar]
  240. VernonL.P. EvettG.E. ZeikusR.D. GrayW.R. A toxic thionin from Pyrularia pubera: Purification, properties, and amino acid sequence.Arch. Biochem. Biophys.19852381182910.1016/0003‑9861(85)90136‑5 3985614
    [Google Scholar]
  241. BlochC.Jr RichardsonM. A new family of small (5 kDa) protein inhibitors of insect α‐amylases from seeds or sorghum (Sorghum bicolor (L) Moench) have sequence homologies with wheat γ‐purothionins.FEBS Lett.1991279110110410.1016/0014‑5793(91)80261‑Z 1995329
    [Google Scholar]
  242. MorenoM. SeguraA. OlmedoG.F. Pseudothionin‐St1, a potato peptide active against potato pathogens.Eur. J. Biochem.1994223113513910.1111/j.1432‑1033.1994.tb18974.x 8033886
    [Google Scholar]
  243. SeguraA. MorenoM. MolinaA. OlmedoG.F. Novel defensin subfamily from spinach (Spinacia oleracea).FEBS Lett.19984352-315916210.1016/S0014‑5793(98)01060‑6 9762899
    [Google Scholar]
  244. ZottichU. CunhaD.M. CarvalhoA.O. DiasG.B. SilvaN.C.M. SantosI.S. NacimentoD.V.V. MiguelE.C. MachadoO.L.T. GomesV.M. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties.Biochim. Biophys. Acta, Gen. Subj.20111810437538310.1016/j.bbagen.2010.12.002 21167915
    [Google Scholar]
  245. MuradA.M. PelegriniP.B. NetoS.M. FrancoO.L. Novel findings of defensins and their utilization in construction of transgenic plants.Transgenic Plant J.200713948
    [Google Scholar]
  246. WongJ.H. ZhangX.Q. WangH.X. NgT.B. A mitogenic defensin from white cloud beans (Phaseolus vulgaris).Peptides20062792075208110.1016/j.peptides.2006.03.020 16687191
    [Google Scholar]
  247. ZuY. YuH. LiangL. FuY. EfferthT. LiuX. WuN. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.Molecules20101553200321010.3390/molecules15053200 20657472
    [Google Scholar]
  248. MaD.Z. WangH.X. NgT.B. A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans.Peptides200930122089209410.1016/j.peptides.2009.08.017 19720103
    [Google Scholar]
  249. YountN.Y. YeamanM.R. Multidimensional signatures in antimicrobial peptides.Proc. Natl. Acad. Sci.2004101197363736810.1073/pnas.0401567101 15118082
    [Google Scholar]
  250. WongJ.H. NgT.B. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.).Peptides200526112086209210.1016/j.peptides.2005.03.004 16269344
    [Google Scholar]
  251. OrtanA. CampeanuG.H. PirvuD.C. PopescuL. Studies concerning the entrapment of anethum graveolens essential oil in liposomes.Rom. Biotechnol. Lett.20091444114417
    [Google Scholar]
  252. PortoW.F. FrancoO.L. Theoretical structural insights into the snakin/GASA family.Peptides20134416316710.1016/j.peptides.2013.03.014 23578978
    [Google Scholar]
  253. MartinsJ.C. MaesD. LorisR. PepermansH.A.M. WynsL. WillemR. VerheydenP. H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus.J. Mol. Biol.1996258232233310.1006/jmbi.1996.0253 8627629
    [Google Scholar]
  254. FujimuraM. MinamiY. WatanabeK. TaderaK. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.).Biosci. Biotechnol. Biochem.20036781636164210.1271/bbb.67.1636 12951494
    [Google Scholar]
  255. VerheydenP. PletinckxJ. MaesD. PepermansH.A.M. WynsL. WillemR. MartinsJ. 1 H NMR study of the interaction of N, N ′, N ″‐triacetyl chitotriose with Ac‐AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus.FEBS Lett.1995370324524910.1016/0014‑5793(95)00835‑W 7656986
    [Google Scholar]
  256. Van den BerghK.P.B. RougéP. ProostP. CoosemansJ. KrouglovaT. EngelborghsY. PeumansW.J. DammeV.E.J.M. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.).Planta2004219222123210.1007/s00425‑004‑1238‑1 15048569
    [Google Scholar]
  257. GoyalR.K. MattooA.K. Plant antimicrobial peptides.Host defense peptides and their potential as therapeutic agents. EpandR.M. ChamSpringer International Publishing201611113610.1007/978‑3‑319‑32949‑9_5
    [Google Scholar]
  258. WeinholdA. DorchehK.E. LiR. RameshkumarN. BaldwinI.T. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field.eLife20187e2871510.7554/eLife.28715 29661271
    [Google Scholar]
  259. MarcusJ.P. GreenJ.L. GoulterK.C. MannersJ.M. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels.Plant J.199919669971010.1046/j.1365‑313x.1999.00569.x 10571855
    [Google Scholar]
  260. FantF. VrankenW.F. BorremansF.A.M. The three-dimensional solution structure ofAesculus hippocastanum antimicrobial protein 1 determined by1H nuclear magnetic resonance.Proteins199937338840310.1002/(SICI)1097‑0134(19991115)37:3<388::AID‑PROT7>3.0.CO;2‑F 10591099
    [Google Scholar]
  261. WangH.X. NgT.B. Dendrocin, a distinctive antifungal protein from bamboo shoots.Biochem. Biophys. Res. Commun.2003307375075510.1016/S0006‑291X(03)01229‑4 12893287
    [Google Scholar]
  262. WangH. NgT.B. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein.Biochem. Biophys. Res. Commun.2000279240741110.1006/bbrc.2000.3929 11118300
    [Google Scholar]
  263. LopezJ. TaitS.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within.Br. J. Cancer2015112695796210.1038/bjc.2015.85 25742467
    [Google Scholar]
  264. KerengaB.K. McKennaJ.A. HarveyP.J. QuimbarP. CeronG.D. LayF.T. PhanT.K. VeneerP.K. VasaS. ParisiK. ShafeeT.M.A. van der WeerdenN.L. HulettM.D. CraikD.J. AndersonM.A. BleackleyM.R. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32.Front. Microbiol.20191079510.3389/fmicb.2019.00795 31031739
    [Google Scholar]
  265. TavaresL. NoreñaC.P.Z. Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization.Food Bioprocess Technol.20201381405142010.1007/s11947‑020‑02480‑3
    [Google Scholar]
  266. TikotskaiaK.M. Investigation of the vitamin P activity of a soluble preparation of rutin.Biull. Eksp. Biol. Med.19584543235 13535899
    [Google Scholar]
  267. LayF.T. BruglieraF. AndersonM.A. Isolation and properties of floral defensins from ornamental tobacco and petunia.Plant Physiol.200313131283129310.1104/pp.102.016626 12644678
    [Google Scholar]
  268. CastagnaroA. MarañaC. CarboneroP. OlmedoG.F. Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor.J. Mol. Biol.199222441003100910.1016/0022‑2836(92)90465‑V 1569564
    [Google Scholar]
  269. KhanM.S.A. AhmadI. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans.J. Ethnopharmacol.2012140241642310.1016/j.jep.2012.01.045 22326355
    [Google Scholar]
  270. TerrasF.R.G. GoderisI.J. LeuvenV.F. VanderleydenJ. CammueB.P.A. BroekaertW.F. in vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins.Plant Physiol.199210021055105810.1104/pp.100.2.1055 16653017
    [Google Scholar]
  271. GaoA.G. HakimiS.M. MittanckC.A. WuY. WoernerB.M. StarkD.M. ShahD.M. LiangJ. RommensC.M.T. Fungal pathogen protection in potato by expression of a plant defensin peptide.Nat. Biotechnol.200018121307131010.1038/82436 11101813
    [Google Scholar]
  272. MaitraN. CushmanJ.C. Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late-embryogenesis-abundant protein.Plant Physiol.1994106280580610.1104/pp.106.2.805 7991700
    [Google Scholar]
  273. ZhuS. GaoB. TytgatJ. Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily.Cell. Mol. Life Sci.20056219-202257226910.1007/s00018‑005‑5200‑6 16143827
    [Google Scholar]
  274. HuangW. VernonL.P. BellJ.D. Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera.Toxicon199432778979710.1016/0041‑0101(94)90004‑3 7940586
    [Google Scholar]
  275. HuangR.H. XiangY. LiuX.Z. ZhangY. HuZ. WangD.C. Two novel antifungal peptides distinct with a five‐disulfide motif from the bark of Eucommia ulmoides Oliv.FEBS Lett.20025211-3879010.1016/S0014‑5793(02)02829‑6 12067732
    [Google Scholar]
  276. ConinckD.B. CammueB.P.A. ThevissenK. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides.Fungal Biol. Rev.201326410912010.1016/j.fbr.2012.10.002
    [Google Scholar]
  277. WijesundaraN.M. RupasingheH.P.V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes.Microb. Pathog.201811711812710.1016/j.micpath.2018.02.026 29452197
    [Google Scholar]
  278. KhanS.R. IqbalA. MalakR. ShehryarK. AttiaS. AhmedT. KhanA.M. ArifM. MiiM. Plant defensins: Types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants.3 Biotech20199192
    [Google Scholar]
  279. ArnoldR.J. DonnellyA. AltieriL. WongK.S. SungJ. Assessment of outcomes and parental effect on Quality-of-Life endpoints in the management of atopic dermatitis.Manag. Care Interface20072021823 17405577
    [Google Scholar]
  280. WongC.T.T. TaichiM. NishioH. NishiuchiY. TamJ.P. Optimal oxidative folding of the novel antimicrobial cyclotide from Hedyotis biflora requires high alcohol concentrations.Biochemistry201150337275728310.1021/bi2007004 21776968
    [Google Scholar]
  281. LacerdaA.F. VasconcelosÃ.A.R. PelegriniP.B. Grossi de SaM.F. Antifungal defensins and their role in plant defense.Front. Microbiol.2014511610.3389/fmicb.2014.00116 24765086
    [Google Scholar]
  282. MichaelsonD. RaynerJ. CoutoM. GanzT. Cationic defensins arise from charge-neutralized propeptides: A mechanism for avoiding leukocyte autocytotoxicity?J. Leukoc. Biol.199251663463910.1002/jlb.51.6.634 1613398
    [Google Scholar]
  283. MatasyohJ.C. KiplimoJ.J. KarubiuN.M. HailstorksT.P. Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus.Food Chem.200710131183118710.1016/j.foodchem.2006.03.021
    [Google Scholar]
  284. SilversteinK.A.T. GrahamM.A. PaapeT.D. VandenBoschK.A. Genome organization of more than 300 defensin-like genes in Arabidopsis.Plant Physiol.2005138260061010.1104/pp.105.060079 15955924
    [Google Scholar]
  285. KobayashiY. TakashimaH. TamaokiH. KyogokuY. LambertP. KurodaH. ChinoN. WatanabeT.X. KimuraT. SakakibaraS. MoroderL. The cystine‐stabilized α‐helix: A common structural motif of ion‐channel blocking neurotoxic peptides.Biopolymers199131101213122010.1002/bip.360311009 1724185
    [Google Scholar]
  286. BontemsF. RoumestandC. GilquinB. MénezA. TomaF. Refined structure of charybdotoxin: Common motifs in scorpion toxins and insect defensins.Science199125450371521152310.1126/science.1720574 1720574
    [Google Scholar]
  287. CampsF.J.C. Three-dimensional model of the insect-directed scorption toxin fromAndroctonus australis hector and its implication for the evolution of scorption toxins in general.J. Mol. Evol.1989291636710.1007/BF02106182 2504931
    [Google Scholar]
  288. AlmeidaD.M. WethingtonE. KesslerR.C. The daily inventory of stressful events: An interview-based approach for measuring daily stressors.Assessment200291415510.1177/1073191102091006 11911234
    [Google Scholar]
  289. JanssenB.J.C. SchirraH.J. LayF.T. AndersonM.A. CraikD.J. Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds.Biochemistry200342278214822210.1021/bi034379o 12846570
    [Google Scholar]
  290. LandonC. VovelleF. SodanoP. PajonA. The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs ‐AFP2, a plant antifungal protein.J. Pept. Res.200056423123810.1034/j.1399‑3011.2000.00757.x 11083062
    [Google Scholar]
  291. LiuY.J. ChengC.S. LaiS.M. HsuM.P. ChenC.S. LyuP.C. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids.Proteins200663477778610.1002/prot.20962 16544327
    [Google Scholar]
  292. SongX. ZhouZ. WangJ. WuF. GongW. Purification, characterization and preliminary crystallographic studies of a novel plant defensin from Pachyrrhizus erosus seeds.Acta Crystallogr. D Biol. Crystallogr.20046061121112410.1107/S0907444904007395 15159575
    [Google Scholar]
  293. SongS. LaipisP.J. BernsK.I. FlotteT.R. Effect Of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle.Proc. Natl. Acad. Sci.20019874084408810.1073/pnas.061014598 11274433
    [Google Scholar]
  294. NtuiV.O. ThirukkumaranG. AzadiP. KhanR.S. NakamuraI. MiiM. Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot.Plant Cell Rep.201029994395410.1007/s00299‑010‑0880‑2 20552202
    [Google Scholar]
  295. KanzakiH. NirasawaS. SaitohH. ItoM. NishiharaM. TerauchiR. NakamuraI. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice.Theor. Appl. Genet.2002105680981410.1007/s00122‑001‑0817‑9 12582903
    [Google Scholar]
  296. LinP. XiaL. WongJ.H. NgT.B. YeX. WangS. XiangzhuS. Lipid transfer proteins from Brassica campestris and mung bean surpass mung bean chitinase in exploitability.J. Pept. Sci.2007131064264810.1002/psc.893 17726719
    [Google Scholar]
  297. JhaS. ChattooB.B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens.Transgenic Res.201019337338410.1007/s11248‑009‑9315‑7 19690975
    [Google Scholar]
  298. TerrasF.R. EggermontK. KovalevaV. RaikhelN.V. OsbornR.W. KesterA. ReesS.B. TorrekensS. LeuvenV.F. VanderleydenJ. Small cysteine-rich antifungal proteins from radish: Their role in host defense.Plant Cell199575573588 7780308
    [Google Scholar]
  299. ChoiW.S. YanM. NusinowD. GrallaJ.D. In vitro transcription and start site selection in Schizosaccharomyces pombe.J. Mol. Biol.200231951005101310.1016/S0022‑2836(02)00329‑7 12079343
    [Google Scholar]
  300. KazanK. SchenkP.M. WilsonI. MannersJ.M. DNA microarrays: New tools in the analysis of plant defence responses.Mol. Plant Pathol.20012317718510.1046/j.1364‑3703.2001.00061.x 20573005
    [Google Scholar]
  301. BraicuC. PileckiV. BalacescuO. IrimieA. NeagoeB.I. The relationships between biological activities and structure of flavan-3-ols.Int. J. Mol. Sci.201112129342935310.3390/ijms12129342 22272136
    [Google Scholar]
  302. GasparY.M. McKennaJ.A. McGinnessB.S. HinchJ. PoonS. ConnellyA.A. AndersonM.A. HeathR.L. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1.J. Exp. Bot.20146561541155010.1093/jxb/eru021 24502957
    [Google Scholar]
  303. AnuradhaS.T. DivyaK. JamiS.K. KirtiP.B. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens.Plant Cell Rep.200827111777178610.1007/s00299‑008‑0596‑8 18758784
    [Google Scholar]
  304. BacharachA.L. CoatesM.Ė. MiddletonT.R. A biological test for vitamin P activity.Biochem. J.1942365-640741210.1042/bj0360407b 16747541
    [Google Scholar]
  305. RomeroA. AlamilloJ.M. OlmedoG.F. Processing of thionin precursors in barley leaves by a vacuolar proteinase.Eur. J. Biochem.19972431-220220810.1111/j.1432‑1033.1997.0202a.x 9030740
    [Google Scholar]
  306. StevensC. TitarenkoE. HargreavesJ.A. GurrS.J. Defence-related gene activation during an incompatible interaction between Stagonospora (Septoria) nodorum and barley (Hordeum vulgare L.) coleoptile cells.Plant Mol. Biol.199631474174910.1007/BF00019462 8806405
    [Google Scholar]
  307. ThevissenK. GhaziA. SamblanxD.G.W. BrownleeC. OsbornR.W. BroekaertW.F. Fungal membrane responses induced by plant defensins and thionins.J. Biol. Chem.199627125150181502510.1074/jbc.271.25.15018 8663029
    [Google Scholar]
  308. FischerS.G. ApelK. Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica.Mol. Gen. Genet.1994245338038910.1007/BF00290119 7816048
    [Google Scholar]
  309. BallE.D. TinkhamE.R. FlockR. VorhiesC.T. The grasshoppers and other orthoptera of Arizona;The University of Arizona1942
    [Google Scholar]
  310. PonzF. AresP.J. LucasH.C. CarboneroP. OlmedoG.F. Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.).EMBO J.1983271035104010.1002/j.1460‑2075.1983.tb01542.x 16453465
    [Google Scholar]
  311. SteinmüllerK. BatschauerA. ApelK. Tissue‐specific and light‐dependent changes of chromatin organization in barley (Hordeum vulgare).Eur. J. Biochem.1986158351952510.1111/j.1432‑1033.1986.tb09785.x 3015615
    [Google Scholar]
  312. GausingK. Thionin genes specifically expressed in barley leaves.Planta1987171224124610.1007/BF00391100 24227332
    [Google Scholar]
  313. EppleP. ApelK. BohlmannH. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins.Plant Physiol.1995109381382010.1104/pp.109.3.813 8552715
    [Google Scholar]
  314. BohlmannH. ApelK. Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.).Mol. Gen. Genet.19872072-344645410.1007/BF00331614
    [Google Scholar]
  315. StecB. MarkmanO. RaoU. HeffronG. HendersonS. VernonL.P. BrumfeldV. TeeterM.M. Proposal for molecular mechanism of thionins deduced from physico‐chemical studies of plant toxins.J. Pept. Res.200464621022410.1111/j.1399‑3011.2004.00187.x 15613085
    [Google Scholar]
  316. BohlmannH. ApelK. Thionins.Annu. Rev. Plant Physiol. Plant Mol. Biol.199142122724010.1146/annurev.pp.42.060191.001303
    [Google Scholar]
  317. VernonL.P. Pyrularia thionin: Physical properties, biological responses and comparison to other thionins and cardiotoxin.J. Toxicol. Toxin Rev.199211316919110.3109/15569549209115819
    [Google Scholar]
  318. RodriguezC.M. FreireM.A. CamilleriC. RobagliaC. The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development.Plant J.199813446547310.1046/j.1365‑313X.1998.00047.x 9680993
    [Google Scholar]
  319. HughesP. DennisE. WhitecrossM. LlewellynD. GageP. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes.J. Biol. Chem.2000275282382710.1074/jbc.275.2.823 10625613
    [Google Scholar]
  320. StecB. Plant thionins - the structural perspective.Cell. Mol. Life Sci.200663121370138510.1007/s00018‑005‑5574‑5 16715411
    [Google Scholar]
  321. BurtS.A. ReindersR.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.Lett. Appl. Microbiol.200336316216710.1046/j.1472‑765X.2003.01285.x 12581376
    [Google Scholar]
  322. EvansJ. WangY.D. ShawK.P. VernonL.P. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination.Proc. Natl. Acad. Sci.198986155849585310.1073/pnas.86.15.5849 2503825
    [Google Scholar]
  323. SchmidtM. ArendtE.K. TheryT.L.C. Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II.Food Microbiol.20198250451410.1016/j.fm.2019.03.021 31027812
    [Google Scholar]
  324. TaveiraG.B. MathiasL.S. MottaD.O.V. MachadoO.L.T. RodriguesR. CarvalhoA.O. FerreiraT.A. PeralesJ. VasconcelosI.M. GomesV.M. Thionin‐like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts.Biopolymers20141021303910.1002/bip.22351 23896704
    [Google Scholar]
  325. OardS. KarkiB. EnrightF. Is there a difference in metal ion-based inhibition between members of thionin family: Molecular dynamics simulation study.Biophys. Chem.20071301-2657510.1016/j.bpc.2007.07.005 17703869
    [Google Scholar]
  326. OardS.V. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide.Biochim. Biophys. Acta Biomembr.2011180861737174510.1016/j.bbamem.2011.02.003 21315063
    [Google Scholar]
  327. VernonL.P. BellJ.D. Membrane structure, toxins and phospholipase A2 activity.Pharmacol. Ther.199254326929510.1016/0163‑7258(92)90003‑I 1465478
    [Google Scholar]
  328. DiazI. CarmonaM.J. OlmedoG.F. Effects of thionins on β‐glucuronidase in vitro and in plant protoplasts.FEBS Lett.1992296327928210.1016/0014‑5793(92)80304‑Y 1537404
    [Google Scholar]
  329. WoynarowskiJ.M. KonopaJ. Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L.Hoppe Seylers Z. Physiol. Chem.198036121535154610.1515/bchm2.1980.361.2.1535 7192684
    [Google Scholar]
  330. TabiascoJ. PontF. FourniéJ.J. VercelloneA. Mistletoe viscotoxins increase natural killer cell‐mediated cytotoxicity.Eur. J. Biochem.2002269102591260010.1046/j.1432‑1033.2002.02932.x 12027898
    [Google Scholar]
  331. AsanoT. MiwaA. MaedaK. KimuraM. NishiuchiT. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.PLoS Pathog.201398e100358110.1371/journal.ppat.1003581 23990790
    [Google Scholar]
  332. OdintsovaT.I. SlezinaM.P. IstominaE.A. KorostylevaT.V. KovtunA.S. KasianovA.S. ShcherbakovaL.A. KudryavtsevA.M. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers.Pathogens20198422110.3390/pathogens8040221 31694319
    [Google Scholar]
  333. FrackiW.S. LiD. OwenN. PerryC. NaisbittG.H. VernonL.P. Role of Tyr and Trp in membrane responses of Pyrularia thionin determined by optical and NMR spectra following Tyr iodination and Trp modification.Toxicon199230111427144010.1016/0041‑0101(92)90518‑A 1485338
    [Google Scholar]
  334. GiudiciM. PovedaA.J. MolinaM.L. de la CanalL. RosG.J.M. PfüllerK. PfüllerU. VillalaínJ. Antifungal effects and mechanism of action of viscotoxin A 3.FEBS J.20062731728310.1111/j.1742‑4658.2005.05042.x 16367749
    [Google Scholar]
  335. BüssingA. VerveckenW. WagnerM. WagnerB. PfüllerU. SchietzelM. Expression of mitochondrial Apo2.7 molecules and caspase-3 activation in human lymphocytes treated with the ribosome-inhibiting mistletoe lectins and the cell membrane permeabilizing viscotoxins.Cytometry19993713313910.1002/(SICI)1097‑0320(19991001)37:2<133::AID‑CYTO6>3.0.CO;2‑A 10486525
    [Google Scholar]
  336. CoulonA. BerkaneE. SautereauA.M. UrechK. RougéP. LopezA. Modes of membrane interaction of a natural cysteine-rich peptide: Viscotoxin A3.Biochim. Biophys. Acta Biomembr.20021559214515910.1016/S0005‑2736(01)00446‑1 11853681
    [Google Scholar]
  337. ChenY. GuarnieriM.T. VasilA.I. VasilM.L. MantC.T. HodgesR.S. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides.Antimicrob. Agents Chemother.20075141398140610.1128/AAC.00925‑06 17158938
    [Google Scholar]
  338. GranL. An oxytocic principle found in oldenlandia affinis DC.Medd. Nor. Farm. Selsk.19701280
    [Google Scholar]
  339. GustafsonK.R. SowderR.C.II HendersonL.E. ParsonsI.C. KashmanY. CardellinaJ.H.II McMahonJ.B. BuckheitR.W.Jr PannellL.K. BoydM.R. Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia.J. Am. Chem. Soc.1994116209337933810.1021/ja00099a064
    [Google Scholar]
  340. IseliB. BollerT. NeuhausJ.M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity.Plant Physiol.1993103122122610.1104/pp.103.1.221 8208848
    [Google Scholar]
  341. GrainL. Isolation of oxytocic peptides from Oldenlandia affinis by solvent extraction of tetraphenylborate complexes and chromatography on sephadex LH-20.Lloydia1973362207208 4744557
    [Google Scholar]
  342. GouldA. CamareroJ.A. Cyclotides: Overview and biotechnological applications.ChemBioChem201718141350136310.1002/cbic.201700153 28544675
    [Google Scholar]
  343. GranL. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus.Acta Pharmacol. Toxicol.1973335-640040810.1111/j.1600‑0773.1973.tb01541.x 4801084
    [Google Scholar]
  344. PothA.G. MylneJ.S. GrasslJ. LyonsR.E. MillarA.H. ColgraveM.L. CraikD.J. Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae).J. Biol. Chem.201228732270332704610.1074/jbc.M112.370841 22700981
    [Google Scholar]
  345. PräntingM. LöövC. BurmanR. GöranssonU. AnderssonD.I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria.J. Antimicrob. Chemother.20106591964197110.1093/jac/dkq220 20558471
    [Google Scholar]
  346. GildingE.K. JacksonM.A. PothA.G. HenriquesS.T. PrentisP.J. MahatmantoT. CraikD.J. Gene coevolution and regulation lock cyclic plant defence peptides to their targets.New Phytol.2016210271773010.1111/nph.13789 26668107
    [Google Scholar]
  347. SlazakB. KapustaM. MalikS. BohdanowiczJ. KutaE. MalecP. GöranssonU. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense.Planta201624451029104010.1007/s00425‑016‑2562‑y 27394154
    [Google Scholar]
  348. SlazakB. KapustaM. StrömstedtA.A. SłomkaA. KrychowiakM. ShariatgorjiM. AndrénP.E. BohdanowiczJ. KutaE. GöranssonU. How does the sweet violet (Viola odorata L.) fight pathogens and pests - cyclotides as a comprehensive plant host defense system.Front. Plant Sci.20189129610.3389/fpls.2018.01296 30254654
    [Google Scholar]
  349. SieniawskaE. LosR. BajT. MalmA. GlowniakK. Antimicrobial efficacy of Mutellina purpurea essential oil and α-pinene against Staphylococcus epidermidis grown in planktonic and biofilm cultures.Ind. Crops Prod.20135115215710.1016/j.indcrop.2013.09.001
    [Google Scholar]
  350. ChicheL. ChicheJ.N. WhalenE. PresnellS. GersukV. DangK. AnguianoE. QuinnC. BurteyS. BerlandY. KaplanskiG. HarleJ.R. PascualV. ChaussabelD. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures.Arthritis Rheumatol.20146661583159510.1002/art.38628 24644022
    [Google Scholar]
  351. QuimioF.M.E. DalyN.L. CraikD.J. Circular proteins in plants: Solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis.J. Biol. Chem.200127625228752288210.1074/jbc.M101666200 11292835
    [Google Scholar]
  352. HeitzA. HernandezJ.F. GagnonJ. HongT.T. PhamT.T.C. NguyenT.M. NguyenL.D. ChicheL. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.Biochemistry200140277973798310.1021/bi0106639 11434766
    [Google Scholar]
  353. MellstrandS.T. SamuelssonG. Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. macrophyllum (Loranthaceae). Improvements in the isolation procedure and further studies on the properties.Eur. J. Biochem.197332114314710.1111/j.1432‑1033.1973.tb02590.x 4687388
    [Google Scholar]
  354. SaetherO. CraikD.J. CampbellI.D. SlettenK. JuulJ. NormanD.G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1.Biochemistry199534134147415810.1021/bi00013a002 7703226
    [Google Scholar]
  355. CraigM.H. SnowR.W. SueurL.D. A climate-based distribution model of malaria transmission in sub-Saharan Africa.Parasitol. Today199915310511110.1016/S0169‑4758(99)01396‑4 10322323
    [Google Scholar]
  356. VeerD.S.J. KanM.W. CraikD.J. Cyclotides: From structure to function.Chem. Rev.201911924123751242110.1021/acs.chemrev.9b00402 31829013
    [Google Scholar]
  357. YeshakM.Y. BurmanR. AsresK. GöranssonU. Cyclotides from an extreme habitat: Characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands.J. Nat. Prod.201174472773110.1021/np100790f 21434649
    [Google Scholar]
  358. GöranssonU. LuijendijkT. JohanssonS. BohlinL. ClaesonP. Seven novel macrocyclic polypeptides from Viola arvensis.J. Nat. Prod.199962228328610.1021/np9803878 10075760
    [Google Scholar]
  359. CraikD.J. DalyN.L. BondT. WaineC. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif.J. Mol. Biol.199929451327133610.1006/jmbi.1999.3383 10600388
    [Google Scholar]
  360. BurmanR. SvedlundE. FelthJ. HassanS. HerrmannA. ClarkR.J. CraikD.J. BohlinL. ClaesonP. GöranssonU. GullboJ. Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice.Biopolymers201094562663410.1002/bip.21408 20564012
    [Google Scholar]
  361. BroussalisA.M. GöranssonU. CoussioJ.D. FerraroG. MartinoV. ClaesonP. First cyclotide from Hybanthus (Violaceae).Phytochemistry2001581475110.1016/S0031‑9422(01)00173‑X 11524112
    [Google Scholar]
  362. RavipatiA.S. HenriquesS.T. PothA.G. KaasQ. WangC.K. ColgraveM.L. CraikD.J. Lysine-rich cyclotides: A new subclass of circular knotted proteins from violaceae.ACS Chem. Biol.201510112491250010.1021/acschembio.5b00454 26322745
    [Google Scholar]
  363. BobeyA. PintoM. CilliE. LopesN. BolzaniV. A cyclotide isolated from noisettia orchidiflora (Violaceae).Planta Med.20188412/1394795210.1055/a‑0632‑2204 29843182
    [Google Scholar]
  364. NiyomployP. ChanL.Y. HarveyP.J. PothA.G. ColgraveM.L. CraikD.J. Discovery and characterization of cyclotides from Rinorea species.J. Nat. Prod.201881112512252010.1021/acs.jnatprod.8b00572 30387611
    [Google Scholar]
  365. KoehbachJ. AttahA.F. BergerA. HellingerR. KutchanT.M. CarpenterE.J. RolfM. SonibareM.A. MoodyJ.O. WongG.K.S. DesseinS. GregerH. GruberC.W. Cyclotide discovery in gentianales revisited—identification and characterization of cyclic cystine‐knot peptides and their phylogenetic distribution in Rubiaceae plants.Biopolymers2013100543845210.1002/bip.22328 23897543
    [Google Scholar]
  366. FahradpourM. KeovP. TognolaC. SantamarinaP.E. McCormickP.J. GhassempourA. GruberC.W. Cyclotides isolated from an ipecac root extract antagonize the corticotropin releasing factor type 1 receptor.Front. Pharmacol.2017861610.3389/fphar.2017.00616 29033832
    [Google Scholar]
  367. NguyenG.K.T. LimW.H. NguyenP.Q.T. TamJ.P. Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities.J. Biol. Chem.201228721175981760710.1074/jbc.M111.338970 22467870
    [Google Scholar]
  368. CoxS.D. MannC.M. MarkhamJ.L. BellH.C. GustafsonJ.E. WarmingtonJ.R. WyllieS.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil).J. Appl. Microbiol.200088117017510.1046/j.1365‑2672.2000.00943.x 10735256
    [Google Scholar]
  369. CunhaN.B. BarbosaA.E.A.D. AlmeidaD.R.G. PortoW.F. MaximianoM.R. ÁlvaresL.C.S. MunhozC.B.R. EugênioC.U.O. VianaA.A.B. FrancoO.L. DiasS.C. Cloning and characterization of novel cyclotides genes from South American plants.Biopolymers2016106678479510.1002/bip.22938 27554590
    [Google Scholar]
  370. PintoM.F.S. SilvaO.N. VianaJ.C. PortoW.F. MiglioloL. B da CunhaN. GomesN.Jr FensterseiferI.C. ColgraveM.L. CraikD.J. DiasS.C. FrancoO.L. Characterization of a bioactive acyclotide from palicourea rigida.J. Nat. Prod.201679112767277310.1021/acs.jnatprod.6b00270 27809507
    [Google Scholar]
  371. PintoM.F.S. FensterseiferI.C.M. MiglioloL. SousaD.A. CapdvilleD.G. ValenciaA.J.W. ColgraveM.L. CraikD.J. MagalhãesB.S. DiasS.C. FrancoO.L. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane.J. Biol. Chem.2012287113414710.1074/jbc.M111.294009 22074926
    [Google Scholar]
  372. GerlachS.L. BurmanR. BohlinL. MondalD. GöranssonU. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa.J. Nat. Prod.20107371207121310.1021/np9007365 20575512
    [Google Scholar]
  373. MahatmantoT. MylneJ.S. PothA.G. SwedbergJ.E. KaasQ. SchaeferH. CraikD.J. The evolution of momordica cyclic peptides.Mol. Biol. Evol.201532239240510.1093/molbev/msu307 25376175
    [Google Scholar]
  374. DuQ. ChanL.Y. GildingE.K. HenriquesS.T. CondonN.D. RavipatiA.S. KaasQ. HuangY.H. CraikD.J. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus.J. Biol. Chem.202029532109111092510.1074/jbc.RA120.012627 32414842
    [Google Scholar]
  375. BarbetaB.L. MarshallA.T. GillonA.D. CraikD.J. AndersonM.A. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae.Proc. Natl. Acad. Sci.200810541221122510.1073/pnas.0710338104 18202177
    [Google Scholar]
  376. DancewiczK. SlazakB. KiełkiewiczM. KapustaM. BohdanowiczJ. GabryśB. Behavioral and physiological effects of Viola spp. cyclotides on Myzus persicae (Sulz.).J. Insect Physiol.202012210402510.1016/j.jinsphys.2020.104025 32059835
    [Google Scholar]
  377. SimonsenS.M. SandoL. RosengrenK.J. WangC.K. ColgraveM.L. DalyN.L. CraikD.J. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity.J. Biol. Chem.2008283159805981310.1074/jbc.M709303200 18258598
    [Google Scholar]
  378. ColgraveM.L. KotzeA.C. IrelandD.C. WangC.K. CraikD.J. The anthelmintic activity of the cyclotides: Natural variants with enhanced activity.ChemBioChem20089121939194510.1002/cbic.200800174 18618891
    [Google Scholar]
  379. WangC.K.L. ColgraveM.L. GustafsonK.R. IrelandD.C. GoranssonU. CraikD.J. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis.J. Nat. Prod.2008711475210.1021/np070393g 18081258
    [Google Scholar]
  380. MulvennaJ.P. SandoL. CraikD.J. Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A.Structure200513569170110.1016/j.str.2005.02.013 15893660
    [Google Scholar]
  381. WangC.K.L. ClarkR.J. HarveyP.J. RosengrenJ.K. CemazarM. CraikD.J. The role of conserved Glu residue on cyclotide stability and activity: A structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant.Biochemistry201150194077408610.1021/bi2004153 21466163
    [Google Scholar]
  382. BurmanR. HerrmannA. TranR. KiveläJ.E. LomizeA. GullboJ. GöranssonU. Cytotoxic potency of small macrocyclic knot proteins: Structure-activity and mechanistic studies of native and chemically modified cyclotides.Org. Biomol. Chem.20119114306431410.1039/c0ob00966k 21491023
    [Google Scholar]
  383. BurmanR. StrömstedtA.A. MalmstenM. GöranssonU. Cyclotide-membrane interactions: Defining factors of membrane binding, depletion and disruption.Biochim. Biophys. Acta Biomembr.20111808112665267310.1016/j.bbamem.2011.07.004 21787745
    [Google Scholar]
  384. HerrmannA. BurmanR. MylneJ.S. KarlssonG. GullboJ. CraikD.J. ClarkR.J. GöranssonU. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity.Phytochemistry200869493995210.1016/j.phytochem.2007.10.023 18191970
    [Google Scholar]
  385. HeW. ChanL.Y. ZengG. DalyN.L. CraikD.J. TanN. Isolation and characterization of cytotoxic cyclotides from Viola philippica.Peptides20113281719172310.1016/j.peptides.2011.06.016 21723349
    [Google Scholar]
  386. SandoL. HenriquesT.S. FoleyF. SimonsenS.M. DalyN.L. HallK.N. GustafsonK.R. AguilarM.I. CraikD.J. A synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor.ChemBioChem201112162456246210.1002/cbic.201100450 21928440
    [Google Scholar]
  387. IrelandD.C. WangC.K.L. WilsonJ.A. GustafsonK.R. CraikD.J. Cyclotides as natural anti‐HIV agents.Biopolymers2008901516010.1002/bip.20886 18008336
    [Google Scholar]
  388. GranL. SlettenK. SkjeldalL. Cyclic peptides from Oldenlandia affinis DC. Molecular and biological properties.Chem. Biodivers.20085102014202210.1002/cbdv.200890184 18972522
    [Google Scholar]
  389. GründemannC. KoehbachJ. HuberR. GruberC.W. Do plant cyclotides have potential as immunosuppressant peptides?J. Nat. Prod.201275216717410.1021/np200722w 22272797
    [Google Scholar]
  390. NguyenP.Q.T. LuuT.T. BaiY. NguyenG.K.T. PervushinK. TamJ.P. Allotides: Proline-rich cystine knot α-amylase inhibitors from Allamanda cathartica.J. Nat. Prod.201578469570410.1021/np500866c 25832441
    [Google Scholar]
  391. OjedaP.G. CardosoM.H. FrancoO.L. Pharmaceutical applications of cyclotides.Drug Discov. Today201924112152216110.1016/j.drudis.2019.09.010 31541712
    [Google Scholar]
  392. CorrêaJ.A.F. EvangelistaA.G. NazarethT.M. LucianoF.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides.Materialia2019810049410.1016/j.mtla.2019.100494
    [Google Scholar]
  393. HuangY.H. ColgraveM.L. ClarkR.J. KotzeA.C. CraikD.J. Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity.J. Biol. Chem.201028514107971080510.1074/jbc.M109.089854 20103593
    [Google Scholar]
  394. HenriquesS.T. PeacockH. BenfieldA.H. WangC.K. CraikD.J. Is the mirror image a true reflection? intrinsic membrane chirality modulates peptide binding.J. Am. Chem. Soc.201914151204602046910.1021/jacs.9b11194 31765148
    [Google Scholar]
  395. HenriquesS.T. HuangY.H. CastanhoM.A.R.B. BagatolliL.A. SonzaS. TachedjianG. DalyN.L. CraikD.J. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions.J. Biol. Chem.201228740336293364310.1074/jbc.M112.372011 22854971
    [Google Scholar]
  396. SvangårdE. BurmanR. GunasekeraS. LövborgH. GullboJ. GöranssonU. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes.J. Nat. Prod.200770464364710.1021/np070007v 17378610
    [Google Scholar]
  397. HenriquesS.T. HuangY.H. ChaousisS. SaniM.A. PothA.G. SeparovicF. CraikD.J. The prototypic cyclotide kalata B1 has a unique mechanism of entering cells.Chem. Biol.20152281087109710.1016/j.chembiol.2015.07.012 26278183
    [Google Scholar]
  398. KamimoriH. HallK. CraikD.J. AguilarM.I. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance.Anal. Biochem.2005337114915310.1016/j.ab.2004.10.028 15649388
    [Google Scholar]
  399. ShenkarevZ.O. NadezhdinK.D. SobolV.A. SobolA.G. SkjeldalL. ArsenievA.S. Conformation and mode of membrane interaction in cyclotides.FEBS J.2006273122658267210.1111/j.1742‑4658.2006.05282.x 16817894
    [Google Scholar]
  400. FurukawaT. SakaguchiN. ShimadaH. Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles.Genes Genet. Syst.200681317118010.1266/ggs.81.171 16905871
    [Google Scholar]
  401. ZimmermannR. SakaiH. HochholdingerF. The gibberellic acid stimulated-like gene family in maize and its role in lateral root development.Plant Physiol.2009152135636510.1104/pp.109.149054 19926801
    [Google Scholar]
  402. RibeiroO.S. FontaineV. MathieuV. ZhiriA. BaudouxD. StévignyC. SouardF. Antibacterial and cytotoxic activities of ten commercially available essential oils.Antibiotics202091071710.3390/antibiotics9100717 33092096
    [Google Scholar]
  403. LimaO.M. IsepponB.A. NetoJ. DecuadroR.S. KidoE. CrovellaS. PandolfiV. Snakin: Structure, roles and applications of a plant antimicrobial peptide.Curr. Protein Pept. Sci.201718436837410.2174/1389203717666160619183140 27323806
    [Google Scholar]
  404. BardanA. NizetV. GalloR.L. Antimicrobial peptides and the skin.Expert Opin. Biol. Ther.20044454354910.1517/14712598.4.4.543 15102603
    [Google Scholar]
  405. AlmasiaN. BazziniA.A. HoppH.E. RovereV.C. Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.Mol. Plant Pathol.20089332933810.1111/j.1364‑3703.2008.00469.x 18705874
    [Google Scholar]
  406. AlmasiaN.I. MolinariM.P. MaronicheG.A. NahirñakV. BarónB.M.P. TabogaO.A. RovereV.C. Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies.BMC Biotechnol.20171717510.1186/s12896‑017‑0401‑2 29121909
    [Google Scholar]
  407. KovalskayaN. HammondR.W. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.Protein Expr. Purif.2009631121710.1016/j.pep.2008.08.013 18824107
    [Google Scholar]
  408. KuddusM.R. RumiF. TsutsumiM. TakahashiR. YamanoM. KamiyaM. KikukawaT. DemuraM. AizawaT. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris.Protein Expr. Purif.2016122152210.1016/j.pep.2016.02.002 26854372
    [Google Scholar]
  409. MohanS. Snakin genes from potato: Overexpression confers blackleg disease resistance: A thesis submitted in partial fulfilment of the requirements for the degree of doctor of philosophy (PhD) in plant biotechnology at Lincoln University, New Zealand,PhD Thesis, Lincoln University2011
    [Google Scholar]
  410. HarrisP.W.R. YangS.H. MolinaA. LópezG. MiddleditchM. BrimbleM.A. Plant antimicrobial peptides snakin-1 and snakin-2: Chemical synthesis and insights into the disulfide connectivity.Chemistry201420175102511010.1002/chem.201303207 24644073
    [Google Scholar]
  411. SolanillaL.E. ZornG.B. NovellaS. BolandV.J.A. PalenzuelaR.P. Susceptibility of listeria monocytogenes to antimicrobial peptides.FEMS Microbiol. Lett.2003226110110510.1016/S0378‑1097(03)00579‑2 13129614
    [Google Scholar]
  412. SilversteinK.A.T. MoskalW.A.Jr WuH.C. UnderwoodB.A. GrahamM.A. TownC.D. VandenBoschK.A. Small cysteine‐rich peptides resembling antimicrobial peptides have been under‐predicted in plants.Plant J.200751226228010.1111/j.1365‑313X.2007.03136.x 17565583
    [Google Scholar]
  413. SolanillaL.E. OlmedoG.F. PalenzuelaR.P. Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis.Plant Cell199810691792410.1105/tpc.10.6.917 9634580
    [Google Scholar]
  414. MeiyalaghanS. ThomsonS.J. FiersM.W.E.J. BarrellP.J. LatimerJ.M. MohanS. JonesE.E. ConnerA.J. JacobsJ.M.E. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status.BMC Genomics2014151210.1186/1471‑2164‑15‑2 24382166
    [Google Scholar]
  415. MohanS. MeiyalaghanS. LatimerJ.M. GatehouseM.L. MonaghanK.S. VangaB.R. PitmanA.R. JonesE.E. ConnerA.J. JacobsJ.M.E. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato.Theor. Appl. Genet.2014127367768910.1007/s00122‑013‑2250‑2 24370960
    [Google Scholar]
  416. KovalskayaN. ZhaoY. HammondR.W. Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants.Open Plant Sci. J.201151294210.2174/1874294701105010029
    [Google Scholar]
  417. ArivalaganS. ThomasN.S. ChandrasekaranB. ManiV. SiddiqueA.I. KuppsamyT. NamasivayamN. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis.Mol. Cell. Biochem.20154101-2375410.1007/s11010‑015‑2536‑6 26264073
    [Google Scholar]
  418. BalajiV. SessaG. SmartC.D. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis.Phytopathology.201110133495710.1094/PHYTO‑05‑10‑013221062112
    [Google Scholar]
  419. ShwaikiL.N. ArendtE.K. LynchK.M. Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers - action against food spoilage yeast.Food Control202011810736210.1016/j.foodcont.2020.107362
    [Google Scholar]
  420. RongW. QiL. WangJ. DuL. XuH. WangA. ZhangZ. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.Funct. Integr. Genomics201313340340910.1007/s10142‑013‑0332‑5 23839728
    [Google Scholar]
  421. HerbelV. SchäferH. WinkM. Recombinant production of snakin-2 (an Antimicrobial Peptide from Tomato) in E. coli and analysis of its bioactivity.Molecules2015208148891490110.3390/molecules200814889 26287145
    [Google Scholar]
  422. SuT. HanM. CaoD. XuM. Molecular and biological properties of snakins: The foremost cysteine-rich plant host defense peptides.J. Fungi20206422010.3390/jof6040220 33053707
    [Google Scholar]
  423. DaneshmandF. ZardiniZ.H. EbrahimiL. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits.Nat. Prod. Res.201327242292229610.1080/14786419.2013.827192 23962183
    [Google Scholar]
  424. SelitrennikoffC.P. Antifungal proteins.Appl. Environ. Microbiol.20016772883289410.1128/AEM.67.7.2883‑2894.2001 11425698
    [Google Scholar]
  425. TranD. TranP.A. TangY-Q. YuanJ. ColeT. SelstedM.E. Homodimeric theta-defensins from rhesus macaque leukocytes: Isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides.J. Biol. Chem.200227753079308410.1074/jbc.M109117200 11675394
    [Google Scholar]
  426. AmadorV.C. SilvaS.C.A. VilelaL.M.B. LimaO.M. RêgoS.M. FilhoR.R.S. SilvaO.R.L. LemosA.B. OliveiraD.W.D. NetoF.J.R.C. CrovellaS. IsepponB.A.M. Lipid transfer proteins (LTPs)—structure, diversity and roles beyond antimicrobial activity.Antibiotics20211011128110.3390/antibiotics10111281 34827219
    [Google Scholar]
  427. LarsenL.K. WintherJ.R. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases.FEBS Lett.2001488314514810.1016/S0014‑5793(00)02424‑8 11163761
    [Google Scholar]
  428. EdstamM.M. LaurilaM. HöglundA. RamanA. DahlströmK.M. SalminenT.A. EdqvistJ. BlomqvistK. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens.Plant Physiol. Biochem.201475556910.1016/j.plaphy.2013.12.001 24374350
    [Google Scholar]
  429. EdstamM.M. ViitanenL. SalminenT.A. EdqvistJ. Evolutionary history of the non-specific lipid transfer proteins.Mol. Plant20114694796410.1093/mp/ssr019 21486996
    [Google Scholar]
  430. KaderJ.C. Proteins and the intracellular exchange of lipids.Biochim. Biophys. Acta Lipids Lipid Metab.19753801314410.1016/0005‑2760(75)90042‑9 804327
    [Google Scholar]
  431. KaderJ.C. Lipid-transfer proteins in plants.Annu. Rev. Plant Physiol. Plant Mol. Biol.199647162765410.1146/annurev.arplant.47.1.627 15012303
    [Google Scholar]
  432. EdqvistJ. BlomqvistK. NieuwlandJ. SalminenT.A. Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins?J. Lipid Res.20185981374138210.1194/jlr.R083139 29555656
    [Google Scholar]
  433. BoutrotF. ChantretN. GautierM.F. Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining.BMC Genomics2008918610.1186/1471‑2164‑9‑86 18291034
    [Google Scholar]
  434. LiJ. GaoG. XuK. ChenB. YanG. LiF. QiaoJ. ZhangT. WuX. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L.PLoS One201491e8455610.1371/journal.pone.0084556 24497919
    [Google Scholar]
  435. WeiK. ZhongX. Non-specific lipid transfer proteins in maize.BMC Plant Biol.201414128110.1186/s12870‑014‑0281‑8 25348423
    [Google Scholar]
  436. KallaR. ShimamotoK. PotterR. NielsenP.S. LinnestadC. OlsenO.A. The promoter of the barley aleurone‐specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell‐specific expression in transgenic rice.Plant J.19946684986010.1046/j.1365‑313X.1994.6060849.x 7849757
    [Google Scholar]
  437. BoutrotF. GuiraoA. AlaryR. JoudrierP. GautierM.F. Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds.Biochim. Biophys. Acta Gene Struct. Expr.20051730211412510.1016/j.bbaexp.2005.06.010 16061294
    [Google Scholar]
  438. EstanyolJ.M. RüthG.F.X. PuigdomènechP. The eight-cysteine motif, a versatile structure in plant proteins.Plant Physiol. Biochem.200442535536510.1016/j.plaphy.2004.03.009 15191737
    [Google Scholar]
  439. SelsJ. MathysJ. ConinckD.B.M.A. CammueB.P.A. BolleD.M.F.C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides.Plant Physiol. Biochem.2008461194195010.1016/j.plaphy.2008.06.011 18674922
    [Google Scholar]
  440. FinkinaE.I. MelnikovaD.N. BogdanovI.V. OvchinnikovaT.V. Lipid transfer proteins as components of the plant innate immune system: Structure, functions, and applications.Acta Nat.201682476110.32607/20758251‑2016‑8‑2‑47‑61 27437139
    [Google Scholar]
  441. NawrotR. BarylskiJ. NowickiG. BroniarczykJ. BuchwaldW. JózefiakG.A. Plant antimicrobial peptides.Folia Microbiol.201459318119610.1007/s12223‑013‑0280‑4 24092498
    [Google Scholar]
  442. SouzaA.A. CostaA.S. CamposD.C.O. BatistaA.H.M. SalesG.W.P. NogueiraN.A.P. AlvesK.M.M. SouzaC.A.N. OliveiraH.D. Lipid transfer protein isolated from noni seeds displays antibacterial activity in vitro and improves survival in lethal sepsis induced by CLP in mice.Biochimie201814991710.1016/j.biochi.2018.03.011 29577952
    [Google Scholar]
  443. CruzL. RibeiroS. CarvalhoA. VasconcelosI. RodriguesR. CunhaM. GomesV. Isolation and partial characterization of a novel lipid transfer protein (LTP) and antifungal activity of peptides from chilli pepper seeds.Protein Pept. Lett.201017331131810.2174/092986610790780305 19508213
    [Google Scholar]
  444. ZamanU. AbbasiA. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum.Phytochemistry200970897998710.1016/j.phytochem.2009.04.021 19473681
    [Google Scholar]
  445. OoiL.S.M. TianL. SuM. HoW.S. SunS.S.M. ChungH.Y. WongH.N.C. OoiV.E.C. Isolation, characterization, molecular cloning and modeling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta.Peptides200829122101210910.1016/j.peptides.2008.08.020 18824058
    [Google Scholar]
  446. MelnikovaD.N. MineevK.S. FinkinaE.I. ArsenievA.S. OvchinnikovaT.V. A novel lipid transfer protein from the dill Anethum graveolens L.: Isolation, structure, heterologous expression, and functional characteristics.J. Pept. Sci.2016221596610.1002/psc.2840 26680443
    [Google Scholar]
  447. KristensenA.K. BrunstedtJ. NielsenK.K. RoepstorffP. MikkelsenJ.D. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves.Plant Sci.20001551314010.1016/S0168‑9452(00)00190‑4 10773337
    [Google Scholar]
  448. SchmittA.J. SathoffA.E. HollC. BauerB. SamacD.A. CarterC.J. The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity.J. Exp. Bot.201869225587559710.1093/jxb/ery319 30169819
    [Google Scholar]
  449. NawrotR. JózefiakD. SipA. KuźmaD. MusidlakO. JózefiakG.A. Isolation and characterization of a non-specific lipid transfer protein from Chelidonium majus L. latex.Int. J. Biol. Macromol.2017104Pt A55456310.1016/j.ijbiomac.2017.06.05728619636
    [Google Scholar]
  450. BardV.G.C. NascimentoV.V. RibeiroS.F.F. RodriguesR. PeralesJ. FerreiraT.A. CarvalhoA.O. FernandesK.V.S. GomesV.M. Characterization of peptides from capsicum annuum hybrid seeds with inhibitory activity against α-amylase, serine proteinases and fungi.Protein J.201534212212910.1007/s10930‑015‑9604‑3 25750185
    [Google Scholar]
  451. RegenteM.C. GiudiciA.M. VillalaínJ. CanalL. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells.Lett. Appl. Microbiol.200540318318910.1111/j.1472‑765X.2004.01647.x 15715642
    [Google Scholar]
  452. CamposD.C.O. CostaA.S. LimaA.D.R. SilvaF.D.A. LoboM.D.P. MoreiraM.A.C.O. MoreiraR.A. LealL.K.A.M. MironD. VasconcelosI.M. OliveiraH.D. First isolation and antinociceptive activity of a lipid transfer protein from noni (Morinda citrifolia) seeds.Int. J. Biol. Macromol.201686717910.1016/j.ijbiomac.2016.01.029 26783638
    [Google Scholar]
  453. BogdanovI.V. ShenkarevZ.O. FinkinaE.I. MelnikovaD.N. RumynskiyE.I. ArsenievA.S. OvchinnikovaT.V. A novel lipid transfer protein from the pea Pisum sativum: Isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.BMC Plant Biol.201616110710.1186/s12870‑016‑0792‑6 27137920
    [Google Scholar]
  454. NazeerM. WaheedH. SaeedM. AliS.Y. ChoudharyM.I. HaqU.Z. AhmedA. Purification and characterization of a nonspecific lipid transfer protein 1 (nsLTP1) from ajwain (Trachyspermum ammi) seeds.Sci. Rep.201991414810.1038/s41598‑019‑40574‑x 30858403
    [Google Scholar]
  455. CasteelsP. RomagnoloJ. CastleM. JossonC.K. BromageE.H. TempstP. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance.J. Biol. Chem.199426942261072611510.1016/S0021‑9258(18)47165‑7 7929322
    [Google Scholar]
  456. JossonC.K. CapaciT. CasteelsP. TempstP. Apidaecin multipeptide precursor structure: A putative mechanism for amplification of the insect antibacterial response.EMBO J.19931241569157810.1002/j.1460‑2075.1993.tb05801.x 8467807
    [Google Scholar]
  457. BroekaertW.F. MariënW. TerrasF.R.G. BolleD.M.F.C. ProostP. DammeV.J. DillenL. ClaeysM. ReesS.B. VanderleydenJ. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins.Biochemistry199231174308431410.1021/bi00132a023 1567877
    [Google Scholar]
  458. LeeD.G. ShinS.Y. KimD.H. SeoM.Y. KangJ.H. LeeY. KimK.L. HahmK.S. Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans.Biotechnol. Lett.199921121047105010.1023/A:1005636610512
    [Google Scholar]
  459. SlezinaM.P. OdintsovaT.I. Plant antimicrobial peptides: Insights into structure-function relationships for practical applications.Curr. Issues Mol. Biol.20234543674370410.3390/cimb45040239 37185763
    [Google Scholar]
  460. PatelS.U. OsbornR. ReesS. ThorntonJ.M. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1).Biochemistry199837498399010.1021/bi971747d 9454588
    [Google Scholar]
  461. FanX. ReichlingJ. WinkM. Antibacterial activity of the recombinant antimicrobial peptide Ib-AMP4 from Impatiens balsamina and its synergy with other antimicrobial agents against drug resistant bacteria.Pharmazie2013687628630 23923648
    [Google Scholar]
  462. FanX. SchäferH. ReichlingJ. WinkM. Bactericidal properties of the antimicrobial peptide Ib‐AMP4 from Impatiens balsamina produced as a recombinant fusion‐protein in Escherichia coli.Biotechnol. J.20138101213122010.1002/biot.201300121 23713064
    [Google Scholar]
  463. WuW.H. DiR. MatthewsK.R. Antibacterial mode of action of Ib-AMP1 against escherichia coli O157:H7.Probiotics Antimicrob. Proteins20135213114110.1007/s12602‑013‑9127‑1 26782738
    [Google Scholar]
  464. WalujonoK. ScholmaR.A. BeintemaJ.J. AntonM. HahnA.M. Amino acid sequence of Hevein [of latex].In: International Rubber ConferenceKuala Lumpur (Malaysia),1975
    [Google Scholar]
  465. ChapotM.P. PeumansW.J. StrosbergA.D. Extensive homologies between lectins from non‐leguminous plants.FEBS Lett.19861951-223123410.1016/0014‑5793(86)80166‑1
    [Google Scholar]
  466. SlavokhotovaA.A. NaumannT.A. PriceN.P.J. RogozhinE.A. AndreevY.A. VassilevskiA.A. OdintsovaT.I. Novel mode of action of plant defense peptides - hevein‐like antimicrobial peptides from wheat inhibit fungal metalloproteases.FEBS J.2014281204754476410.1111/febs.13015 25154438
    [Google Scholar]
  467. AndersenN.H. CaoB. RomeroR.A. ArreguinB. Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif.Biochemistry19933261407142210.1021/bi00057a004 8431421
    [Google Scholar]
  468. ArcherB.L. The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein.Biochem. J.196075223624010.1042/bj0750236 13794068
    [Google Scholar]
  469. GalelliA. BachiT.P. Urtica dioica agglutinin. A superantigenic lectin from stinging nettle rhizome.J. Immunol.1993151418211831
    [Google Scholar]
  470. BarberoJ.J. CañadaJ.F. AsensioJ.L. AboitizN. VidalP. CanalesA. GrovesP. GabiusH.J. SiebertH.C. Hevein domains: An attractive model to study carbohydrate-protein interactions at atomic resolution.Adv. Carbohydr. Chem. Biochem.20066030335410.1016/S0065‑2318(06)60007‑3 16750446
    [Google Scholar]
  471. PeralesD.A. ColladaC. BlancoC. MongeS.R. CarrilloT. AragoncilloC. SalcedoG. Cross-reactions in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans.J. Allergy Clin. Immunol.1999104368168710.1016/S0091‑6749(99)70342‑8 10482846
    [Google Scholar]
  472. KiniS.G. NguyenP.Q.T. WeissbachS. MallagarayA. ShinJ. YoonH.S. TamJ.P. Studies on the chitin binding property of novel cysteine-rich peptides from Alternanthera sessilis.Biochemistry201554436639664910.1021/acs.biochem.5b00872 26467613
    [Google Scholar]
  473. EgorovT.A. OdintsovaT.I. Defense peptides of plant immunity.Russ. J. Bioorganic Chem.20123811910.1134/S1068162012010062
    [Google Scholar]
  474. AndreevY.A. KorostylevaT.V. SlavokhotovaA.A. RogozhinE.A. UtkinaL.L. VassilevskiA.A. GrishinE.V. EgorovT.A. OdintsovaT.I. Genes encoding hevein-like defense peptides in wheat: Distribution, evolution, and role in stress response.Biochimie20129441009101610.1016/j.biochi.2011.12.023 22227377
    [Google Scholar]
  475. BeintemaJ.J. Structural features of plant chitinases and chitin‐binding proteins.FEBS Lett.19943502-315916310.1016/0014‑5793(94)00753‑5 8070556
    [Google Scholar]
  476. AsensioJ.L. SiebertH-C. von Der LiethC-W. LaynezJ. BruixM. SoedjanaamadjaU.M. BeintemaJ.J. CañadaF.J. GabiusH.J. BarberoJ.J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N′,N”-triacetylchitotriose.Proteins200040221823610.1002/(SICI)1097‑0134(20000801)40:2<218::AID‑PROT50>3.0.CO;2‑P 10842338
    [Google Scholar]
  477. NielsenS.B. OtzenD.E. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity.J. Colloid Interface Sci.2010345224825610.1016/j.jcis.2010.01.065 20153477
    [Google Scholar]
  478. HuangX. XieW. GongZ. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba.FEBS Lett.20004781-212312610.1016/S0014‑5793(00)01834‑2 10922482
    [Google Scholar]
  479. RogozhinE. RyazantsevD. SmirnovA. ZavrievS. Primary structure analysis of antifungal peptides from cultivated and wild cereals.Plants2018737410.3390/plants7030074 30213105
    [Google Scholar]
  480. LiS.S. ClaesonP. Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds.Phytochemistry200363324925510.1016/S0031‑9422(03)00116‑X 12737975
    [Google Scholar]
  481. Van den BerghK. DammeE. PeumansW. CoosemansJ. Ee-CBP, a Hevein-Type antimicrobial peptide from bark of the spindle tree (Euonymus Europaeus L.).Mededel.200267327331
    [Google Scholar]
  482. UtkinaL.L. AndreevY.A. RogozhinE.A. KorostylevaT.V. SlavokhotovaA.A. OparinP.B. VassilevskiA.A. GrishinE.V. EgorovT.A. OdintsovaT.I. Genes encoding 4‐Cys antimicrobial peptides in wheatT riticum kiharae Dorof. et Migush.: Multimodular structural organization, instraspecific variability, distribution and role in defence.FEBS J.2013280153594360810.1111/febs.12349 23702306
    [Google Scholar]
  483. OdintsovaT.I. VassilevskiA.A. SlavokhotovaA.A. MusolyamovA.K. FinkinaE.I. KhadeevaN.V. RogozhinE.A. KorostylevaT.V. PukhalskyV.A. GrishinE.V. EgorovT.A. A novel antifungal hevein‐type peptide from Triticum kiharae seeds with a unique 10‐cysteine motif.FEBS J.2009276154266427510.1111/j.1742‑4658.2009.07135.x 19583772
    [Google Scholar]
  484. ChávezM.I. PerellóV.M. CañadaF.J. AndreuD. BarberoJ.J. Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR.Carbohydr. Res.2010345101461146810.1016/j.carres.2010.02.019 20303073
    [Google Scholar]
  485. EspinosaJ.F. AsensioJ.L. GarcíaJ.L. LaynezJ. BruixM. WrightC. SiebertH.C. GabiusH.J. CañadaF.J. BarberoJ.J. NMR investigations of protein-carbohydrate interactions.Eur. J. Biochem.2000267133965397810.1046/j.1432‑1327.2000.01415.x 10866795
    [Google Scholar]
  486. IyerS. AcharyaK.R. Tying the knot: The cystine signature and molecular‐recognition processes of the vascular endothelial growth factor family of angiogenic cytokines.FEBS J.2011278224304432210.1111/j.1742‑4658.2011.08350.x 21917115
    [Google Scholar]
  487. ReesD.C. LipscombW.N. Structure of the potato inhibitor complex of carboxypeptidase A at 2.5-A resolution.Proc. Natl. Acad. Sci.19807784633463710.1073/pnas.77.8.4633 6933511
    [Google Scholar]
  488. HassG.M. HermodsonM.A. Amino acid sequence of a carboxypeptidase inhibitor from tomato fruit.Biochemistry19812082256226010.1021/bi00511a029 7236596
    [Google Scholar]
  489. PearJ.R. RidgeN. RasmusgenR. RoseR.E. HouckC.M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomato.Plant Mol. Biol.198913663965110.1007/BF00016019 2491680
    [Google Scholar]
  490. MolnárA. LovasÁ. BánfalviZ. LakatosL. PolgárZ. HorváthS. Tissue-specific signal(s) activate the promoter of a metallocarboxypeptidase inhibitor gene family in potato tuber and berry.Plant Mol. Biol.200146330131110.1023/A:1010649503229 11488477
    [Google Scholar]
  491. HeW.J. ChanL.Y. ClarkR.J. TangJ. ZengG.Z. FrancoO.L. CantacessiC. CraikD.J. DalyN.L. TanN.H. Novel inhibitor cystine knot peptides from Momordica charantia.PLoS One2013810e7533410.1371/journal.pone.0075334 24116036
    [Google Scholar]
  492. ChanL.Y. HeW. TanN. ZengG. CraikD.J. DalyN.L. A new family of cystine knot peptides from the seeds of Momordica cochinchinensis.Peptides201339293510.1016/j.peptides.2012.09.018 23127518
    [Google Scholar]
  493. NguyenP.Q.T. WangS. KumarA. YapL.J. LuuT.T. LescarJ. TamJ.P. Discovery and characterization of pseudocyclic cystine‐knot α‐amylase inhibitors with high resistance to heat and proteolytic degradation.FEBS J.2014281194351436610.1111/febs.12939 25040200
    [Google Scholar]
  494. GracyJ. NguyenL.D. GellyJ-C. KaasQ. HeitzA. ChicheL. KNOTTIN: The knottin or inhibitor cystine knot scaffold in 2007.Nucleic Acids Res.200836Database issueD314D319 18025039
    [Google Scholar]
  495. GellyJ.C. GracyJ. KaasQ. NguyenL.D. HeitzA. ChicheL. The KNOTTIN website and database: A new information system dedicated to the knottin scaffold.Nucleic Acids Res.20043290001156D15910.1093/nar/gkh015 14681383
    [Google Scholar]
  496. QuilisJ. GarcíaL.B. MeynardD. GuiderdoniE. SegundoS.B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.Plant Biotechnol. J.201412336737710.1111/pbi.12143 24237606
    [Google Scholar]
  497. CavalliniC. TretteneM. DeganM. DelvaP. MolesiniB. MinuzP. PandolfiniT. Anti‐angiogenic effects of two cystine‐knot miniproteins from tomato fruit.Br. J. Pharmacol.201116261261127310.1111/j.1476‑5381.2010.01154.x 21175567
    [Google Scholar]
  498. TreggiariD. ZoccatelliG. MolesiniB. DeganM. RotinoG.L. SalaT. CavalliniC. MacRaeC.A. MinuzP. PandolfiniT. A cystine‐knot miniprotein from tomato fruit inhibits endothelial cell migration and angiogenesis by affecting vascular endothelial growth factor receptor (VEGFR) activation and nitric oxide production.Mol. Nutr. Food Res.201559112255226610.1002/mnfr.201500267 26255647
    [Google Scholar]
  499. RodríguezG.J.J. ZarzosaO.A. GómezL.R. MezaL.J.E. Plant antimicrobial peptides as potential anticancer agents.BioMed Res. Int.2015201511110.1155/2015/735087 25815333
    [Google Scholar]
  500. GruberC.W. ElliottA.G. IrelandD.C. DelpreteP.G. DesseinS. GöranssonU. TrabiM. WangC.K. KinghornA.B. RobbrechtE. CraikD.J. Distribution and evolution of circular miniproteins in flowering plants.Plant Cell20082092471248310.1105/tpc.108.062331 18827180
    [Google Scholar]
  501. CraikD.J. Host-defense activities of cyclotides.Toxins20124213915610.3390/toxins4020139 22474571
    [Google Scholar]
  502. JenningsC. WestJ. WaineC. CraikD. AndersonM. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis.Proc. Natl. Acad. Sci.20019819106141061910.1073/pnas.191366898 11535828
    [Google Scholar]
  503. DuvickJ.P. RoodT. RaoA.G. MarshakD.R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels.J. Biol. Chem.199226726188141882010.1016/S0021‑9258(19)37034‑6 1527010
    [Google Scholar]
  504. OparinP.B. MineevK.S. DunaevskyY.E. ArsenievA.S. BelozerskyM.A. GrishinE.V. EgorovT.A. VassilevskiA.A. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.Biochem. J.20124461697710.1042/BJ20120548 22612157
    [Google Scholar]
  505. NoldeS.B. VassilevskiA.A. RogozhinE.A. BarinovN.A. BalashovaT.A. SamsonovaO.V. BaranovY.V. FeofanovA.V. EgorovT.A. ArsenievA.S. GrishinE.V. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli).J. Biol. Chem.201128628251452515310.1074/jbc.M110.200378 21561864
    [Google Scholar]
  506. SlavokhotovaA.A. RogozhinE.A. Defense peptides from the α-hairpinin family are components of plant innate immunity.Front. Plant Sci.20201146510.3389/fpls.2020.00465 32391035
    [Google Scholar]
  507. MarcusJ.P. GoulterK.C. MannersJ.M. Peptide fragments from plant vicilins expressed in escherichia coli exhibit antimicrobial activity in vitro.Plant Mol. Biol. Report.2008262758710.1007/s11105‑008‑0024‑9
    [Google Scholar]
  508. ParkS.S. AbeK. KimuraM. UrisuA. YamasakiN. Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrum esculentum Moench).FEBS Lett.1997400110310710.1016/S0014‑5793(96)01367‑1 9000522
    [Google Scholar]
  509. CuiH. ZhangC. LiC. LinL. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm.Lebensm. Wiss. Technol.202012210905710.1016/j.lwt.2020.109057
    [Google Scholar]
  510. CuiZ. LiX. NishidaY. Synthesis and bioactivity of novel carvacrol and thymol derivatives containing 5-phenyl-2-furan.Lett. Drug Des. Discov.201411787788510.2174/1570180811666140220005252
    [Google Scholar]
  511. ConnersR. KonarevA.V. ForsythJ. LovegroveA. MarshJ. HorneJ.T. ShewryP. BradyR.L. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.).J. Biol. Chem.200728238277602776810.1074/jbc.M703871200 17640870
    [Google Scholar]
  512. YamadaK. ShimadaT. KondoM. NishimuraM. NishimuraH.I. Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme.J. Biol. Chem.199927442563257010.1074/jbc.274.4.2563 9891029
    [Google Scholar]
  513. KimuraM. ParkS.S. SakaiR. YamasakiN. FunatsuG. Primary structure of 6.5k-arginine/glutamate-rich polypeptide from the seeds of sponge gourd (Luffa cylindrica).Biosci. Biotechnol. Biochem.199761698498810.1271/bbb.61.984 9214759
    [Google Scholar]
  514. FrenchG. Clinical impact and relevance of antibiotic resistance.Adv. Drug Deliv. Rev.200557101514152710.1016/j.addr.2005.04.005 15978698
    [Google Scholar]
  515. BreithauptH. The new antibiotics.Nat. Biotechnol.199917121165116910.1038/70705 10585711
    [Google Scholar]
  516. CassoneM. OtvosL.Jr Synergy among antibacterial peptides and between peptides and small-molecule antibiotics.Expert Rev. Anti Infect. Ther.20108670371610.1586/eri.10.38 20521897
    [Google Scholar]
  517. BhattacharjyaS. RamamoorthyA. Multifunctional host defense peptides: Functional and mechanistic insights from NMR structures of potent antimicrobial peptides.FEBS J.2009276226465647310.1111/j.1742‑4658.2009.07357.x 19817858
    [Google Scholar]
  518. HilchieA.L. WuerthK. HancockR.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides.Nat. Chem. Biol.201391276176810.1038/nchembio.1393 24231617
    [Google Scholar]
  519. AboyeT.L. StrömstedtA.A. GunasekeraS. BruhnJ.G. SeediE.H. RosengrenK.J. GöranssonU. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.ChemBioChem20151671068107710.1002/cbic.201402704 25821084
    [Google Scholar]
  520. GanzT. The role of antimicrobial peptides in innate immunity.Integr. Comp. Biol.200343230030410.1093/icb/43.2.300 21680437
    [Google Scholar]
  521. ChoiK.Y. ChowL.N.Y. MookherjeeN. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation.J. Innate Immun.20124436137010.1159/000336630 22739631
    [Google Scholar]
  522. ShiW. HouT. GuoD. HeH. Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat.J. Funct. Foods20195413614510.1016/j.jff.2019.01.001
    [Google Scholar]
  523. PintoM.E.F. NajasJ.Z.G. MagalhãesL.G. BobeyA.F. MendonçaJ.N. LopesN.P. LemeF.M. TeixeiraS.P. TrovóM. AndricopuloA.D. KoehbachJ. GruberC.W. CilliE.M. BolzaniV.S. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria.J. Nat. Prod.20188151203120810.1021/acs.jnatprod.7b00969 29757646
    [Google Scholar]
  524. BhutiaS.K. PandaP.K. SinhaN. PraharajP.P. BholC.S. PanigrahiD.P. MahapatraK.K. SahaS. PatraS. MishraS.R. BeheraB.P. PatilS. MaitiT.K. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death.Pharmacol. Res.201914481810.1016/j.phrs.2019.04.001 30951812
    [Google Scholar]
  525. MukhopadhyayS. PandaP.K. DasD.N. SinhaN. BeheraB. MaitiT.K. BhutiaS.K. Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death.Acta Pharmacol. Sin.201435681482410.1038/aps.2014.15 24793310
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266345963250121112522
Loading
/content/journals/ctmc/10.2174/0115680266345963250121112522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antimicrobial peptides; cyclotides; defensins; plant peptides; snakins; thionins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test