Skip to content
2000
image of Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity

Abstract

Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266340766250124063854
2025-02-28
2025-07-12
Loading full text...

Full text loading...

References

  1. WHO. Global cancer burden growing, amidst mounting need for services. Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services#:~:text=In 2022
  2. Hulvat M.C. Cancer Incidence and Trends. Surg. Clin. North Am. 2020 100 3 469 481 10.1016/j.suc.2020.01.002 32402294
    [Google Scholar]
  3. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  4. Omran A.R. The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q. 2005 83 4 731 757 10.1111/j.1468‑0009.2005.00398.x 16279965
    [Google Scholar]
  5. Gersten O. Wilmoth J.R. The Cancer Transition in Japan since 1951. Demogr. Res. 2002 7 271 306 10.4054/DemRes.2002.7.5
    [Google Scholar]
  6. Srinath A. van Merode F. Rao S.V. Pavlova M. Barriers to cervical cancer and breast cancer screening uptake in low- and middle-income countries: a systematic review. Health Policy Plan. 2023 38 4 509 527 10.1093/heapol/czac104 36525529
    [Google Scholar]
  7. Pramesh C.S. Badwe R.A. Bhoo-Pathy N. Booth C.M. Chinnaswamy G. Dare A.J. de Andrade V.P. Hunter D.J. Gopal S. Gospodarowicz M. Gunasekera S. Ilbawi A. Kapambwe S. Kingham P. Kutluk T. Lamichhane N. Mutebi M. Orem J. Parham G. Ranganathan P. Sengar M. Sullivan R. Swaminathan S. Tannock I.F. Tomar V. Vanderpuye V. Varghese C. Weiderpass E. Priorities for cancer research in low- and middle-income countries: a global perspective. Nat. Med. 2022 28 4 649 657 10.1038/s41591‑022‑01738‑x 35440716
    [Google Scholar]
  8. Barretina J. Caponigro G. Stransky N. Venkatesan K. Margolin A.A. Kim S. Wilson C.J. Lehár J. Kryukov G.V. Sonkin D. Reddy A. Liu M. Murray L. Berger M.F. Monahan J.E. Morais P. Meltzer J. Korejwa A. Jané-Valbuena J. Mapa F.A. Thibault J. Bric-Furlong E. Raman P. Shipway A. Engels I.H. Cheng J. Yu G.K. Yu J. Aspesi P. Jr de Silva M. Jagtap K. Jones M.D. Wang L. Hatton C. Palescandolo E. Gupta S. Mahan S. Sougnez C. Onofrio R.C. Liefeld T. MacConaill L. Winckler W. Reich M. Li N. Mesirov J.P. Gabriel S.B. Getz G. Ardlie K. Chan V. Myer V.E. Weber B.L. Porter J. Warmuth M. Finan P. Harris J.L. Meyerson M. Golub T.R. Morrissey M.P. Sellers W.R. Schlegel R. Garraway L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012 483 7391 603 607 10.1038/nature11003 22460905
    [Google Scholar]
  9. Silva B.V. Horta B.A.C. Alencastro R.B. Pinto A.C. Proteínas quinases: características estruturais e inibidores químicos. Quim. Nova 2009 32 2 453 462 10.1590/S0100‑40422009000200032
    [Google Scholar]
  10. Sherr C.J. Roberts J.M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004 18 22 2699 2711 10.1101/gad.1256504 15545627
    [Google Scholar]
  11. Avila C.M. Romeiro N.C. Protein Tyrosine Kinases: Challenges in the Development of Drugs Aimed at Cancer Therapy. Rev. Virtual Química 2010 2
    [Google Scholar]
  12. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  13. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  14. Zhong F. Xing J. Li X. Liu X. Fu Z. Xiong Z. Lu D. Wu X. Zhao J. Tan X. Li F. Luo X. Li Z. Chen K. Zheng M. Jiang H. Artificial intelligence in drug design. Sci. China Life Sci. 2018 61 10 1191 1204 10.1007/s11427‑018‑9342‑2 30054833
    [Google Scholar]
  15. Lyu J. Wang S. Balius T.E. Singh I. Levit A. Moroz Y.S. O’Meara M.J. Che T. Algaa E. Tolmachova K. Tolmachev A.A. Shoichet B.K. Roth B.L. Irwin J.J. Ultra-large library docking for discovering new chemotypes. Nature 2019 566 7743 224 229 10.1038/s41586‑019‑0917‑9 30728502
    [Google Scholar]
  16. Adeshina Y.O. Deeds E.J. Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc. Natl. Acad. Sci. USA 2020 117 31 18477 18488 10.1073/pnas.2000585117 32669436
    [Google Scholar]
  17. Nascimento I.J.S. de Aquino T.M. da Silva-Júnior E.F. The New Era of Drug Discovery: The Power of Computer-aided Drug Design (CADD). Lett. Drug Des. Discov. 2022 19 11 951 955 10.2174/1570180819666220405225817
    [Google Scholar]
  18. Surabhi S. Singh B.K. COMPUTER AIDED DRUG DESIGN: AN OVERVIEW. J. Drug Deliv. Ther. 2018 8 5 504 509 10.22270/jddt.v8i5.1894
    [Google Scholar]
  19. Hassan Baig M. Ahmad K. Roy S. Mohammad Ashraf J. Adil M. Haris Siddiqui M. Khan S. Amjad Kamal M. Provazník I. Choi I. Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 2016 22 5 572 581 10.2174/1381612822666151125000550 26601966
    [Google Scholar]
  20. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  21. Kim K.H. Kim N.D. Seong B.L. Pharmacophore-based virtual screening: a review of recent applications. Expert Opin. Drug Discov. 2010 5 3 205 222 10.1517/17460441003592072 22823018
    [Google Scholar]
  22. Ahmed L. Georgiev V. Capuccini M. Toor S. Schaal W. Laure E. Spjuth O. Efficient iterative virtual screening with Apache Spark and conformal prediction. J. Cheminform. 2018 10 1 8 10.1186/s13321‑018‑0265‑z 29492726
    [Google Scholar]
  23. Xiao S. Wei L. Hong Z. Rao L. Ren Y. Wan J. Feng L. Design, synthesis and algicides activities of thiourea derivatives as the novel scaffold aldolase inhibitors. Bioorg. Med. Chem. 2019 27 5 805 812 10.1016/j.bmc.2019.01.023 30711311
    [Google Scholar]
  24. Yao C. Shen Z. Shen L. Kadier K. Zhao J. Guo Y. Xu L. Cao J. Dong X. Yang B. Identification of Potential JNK3 Inhibitors: A Combined Approach Using Molecular Docking and Deep Learning-Based Virtual Screening. Pharmaceuticals (Basel) 2023 16 10 1459 10.3390/ph16101459 37895928
    [Google Scholar]
  25. Bohr H. Drug Discovery and Molecular Modeling Using Artificial Intelligence. Artificial Intelligence in Healthcare. Elsevier 2020 61 83 10.1016/B978‑0‑12‑818438‑7.00003‑4
    [Google Scholar]
  26. Mendolia I. Contino S. Perricone U. Ardizzone E. Pirrone R. Convolutional architectures for virtual screening. BMC Bioinformatics 2020 21 S8 Suppl. 8 310 10.1186/s12859‑020‑03645‑9 32938359
    [Google Scholar]
  27. He F. Wang X. Wu Q. Liu S. Cao Y. Guo X. Yin S. Yin N. Li B. Fang M. Identification of potential ATP-competitive cyclin-dependent kinase 1 inhibitors: De novo drug generation, molecular docking, and molecular dynamics simulation. Comput. Biol. Med. 2023 155 106645 10.1016/j.compbiomed.2023.106645 36774892
    [Google Scholar]
  28. Pierce A.C. Rao G. Bemis G.W. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J. Med. Chem. 2004 47 11 2768 2775 10.1021/jm030543u 15139755
    [Google Scholar]
  29. Divya V. Pushpa V.L. Sarithamol S. Manoj K.B. Computational approach for generating robust models for discovering novel molecules as Cyclin Dependent Kinase 4 inhibitors. J. Mol. Graph. Model. 2018 82 48 58 10.1016/j.jmgm.2018.04.001 29680736
    [Google Scholar]
  30. Pang X. Zhao Y. Li G. Liu J. Yan A. A SAR and QSAR study on cyclin dependent kinase 4 inhibitors using machine learning methods. Digit. Discov. 2023 2 4 1026 1041 10.1039/D2DD00143H
    [Google Scholar]
  31. Goel S. DeCristo M.J. McAllister S.S. Zhao J.J. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018 28 11 911 925 10.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  32. Loibl S. Gianni L. HER2-positive breast cancer. Lancet 2017 389 10087 2415 2429 10.1016/S0140‑6736(16)32417‑5 27939064
    [Google Scholar]
  33. Kleandrova V.V. Scotti M.T. Scotti L. Speck-Planche A. Multi-target Drug Discovery via PTML Modeling: Applications to the Design of Virtual Dual Inhibitors of CDK4 and HER2. Curr. Top. Med. Chem. 2021 21 7 661 675 10.2174/18734294MTEznNDIcy 33463472
    [Google Scholar]
  34. Zhang H. Huang J. Chen R. Cai H. Chen Y. He S. Xu J. Zhang J. Wang L. Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia. Bioorg. Med. Chem. 2022 72 116994 10.1016/j.bmc.2022.116994 36087428
    [Google Scholar]
  35. Wen T. Wang J. Lu R. Tan S. Li P. Yao X. Liu H. Yi Z. Li L. Liu S. Gao P. Qian H. Xie G. Ma F. Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. Eur. J. Med. Chem. 2023 250 115199 10.1016/j.ejmech.2023.115199 36827953
    [Google Scholar]
  36. Sharma T. Saralamma V.V.G. Lee D.C. Imran M.A. Choi J. Baig M.H. Dong J.J. Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors. Int. J. Biol. Macromol. 2022 222 Pt A 239 250 10.1016/j.ijbiomac.2022.09.151 36130643
    [Google Scholar]
  37. Gaulton A. Hersey A. Nowotka M. Bento A.P. Chambers J. Mendez D. Mutowo P. Atkinson F. Bellis L.J. Cibrián-Uhalte E. Davies M. Dedman N. Karlsson A. Magariños M.P. Overington J.P. Papadatos G. Smit I. Leach A.R. The ChEMBL database in 2017. Nucleic Acids Res. 2017 45 D1 D945 D954 10.1093/nar/gkw1074 27899562
    [Google Scholar]
  38. Goodsell D.S. Zardecki C. Di Costanzo L. Duarte J.M. Hudson B.P. Persikova I. Segura J. Shao C. Voigt M. Westbrook J.D. Young J.Y. Burley S.K. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci. 2020 29 1 52 65 10.1002/pro.3730 31531901
    [Google Scholar]
  39. Halder D. Das S. R A. R S J. Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: a computational study. RSC Advances 2022 12 33 21452 21467 10.1039/D2RA03451D 35975074
    [Google Scholar]
  40. Zhu J. Li K. Xu L. Cai Y. Chen Y. Zhao X. Li H. Huang G. Jin J. Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation. J. Adv. Res. 2022 36 1 13 10.1016/j.jare.2021.04.007 35127160
    [Google Scholar]
  41. Wein M.N. Foretz M. Fisher D.E. Xavier R.J. Kronenberg H.M. Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol. Metab. 2018 29 10 723 735 10.1016/j.tem.2018.08.004 30150136
    [Google Scholar]
  42. Zhu W. Liu X. Li Q. Gao F. Liu T. Chen X. Zhang M. Aliper A. Ren F. Ding X. Zhavoronkov A. Discovery of novel and selective SIK2 inhibitors by the application of AlphaFold structures and generative models. Bioorg. Med. Chem. 2023 91 117414 10.1016/j.bmc.2023.117414 37467565
    [Google Scholar]
  43. Nuche-Berenguer B. Jensen R.T. Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2015 1853 10 2371 2382 10.1016/j.bbamcr.2015.05.011 25979836
    [Google Scholar]
  44. Rane C. Senapedis W. Baloglu E. Landesman Y. Crochiere M. Das-Gupta S. Minden A. A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth. Sci. Rep. 2017 7 1 42555 10.1038/srep42555 28198380
    [Google Scholar]
  45. Iwaloye O. Elekofehinti O.O. Kikiowo B. Oluwarotimi E.A. Fadipe T.M. Machine Learning-Based Virtual Screening Strategy RevealsSome Natural Compounds as Potential PAK4 Inhibitors in Triple Negative Breast Cancer. Curr. Proteomics 2021 18 5 753 769 10.2174/1570164618999201223092209
    [Google Scholar]
  46. Qin Z. Qin L. Feng X. Li Z. Bian J. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. J. Med. Chem. 2021 64 18 13191 13211 10.1021/acs.jmedchem.1c00985 34519506
    [Google Scholar]
  47. Lindberg M.F. Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int. J. Mol. Sci. 2021 22 11 6047 10.3390/ijms22116047 34205123
    [Google Scholar]
  48. Al-Tawil M.F. Daoud S. Hatmal M.M. Taha M.O. Discovery of new Cdc2-like kinase 4 (CLK4) inhibitors via pharmacophore exploration combined with flexible docking-based ligand/receptor contact fingerprints and machine learning. RSC Advances 2022 12 17 10686 10700 10.1039/D2RA00136E 35424985
    [Google Scholar]
  49. Yang R. Zha X. Gao X. Wang K. Cheng B. Yan B. Multi-stage virtual screening of natural products against p38α mitogen-activated protein kinase: predictive modeling by machine learning, docking study and molecular dynamics simulation. Heliyon 2022 8 9 e10495 10.1016/j.heliyon.2022.e10495 36105464
    [Google Scholar]
  50. Vettorazzi M. Díaz I. Angelina E. Salido S. Gutierrez L. Alvarez S.E. Cobo J. Enriz R.D. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg. Chem. 2024 144 107112 10.1016/j.bioorg.2024.107112 38237390
    [Google Scholar]
  51. Dong X. Jiang C. Hu H. Yan J. Chen J. Hu Y. QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine. Eur. J. Med. Chem. 2009 44 10 4090 4097 10.1016/j.ejmech.2009.04.050 19497644
    [Google Scholar]
  52. Erickson J.A. Mader M.M. Watson I.A. Webster Y.W. Higgs R.E. Bell M.A. Vieth M. Structure-guided expansion of kinase fragment libraries driven by support vector machine models. Biochim. Biophys. Acta. Proteins Proteomics 2010 1804 3 642 652 10.1016/j.bbapap.2009.12.002 20005305
    [Google Scholar]
  53. Kong Y. Yan A. QSAR models for predicting the bioactivity of Polo-like Kinase 1 inhibitors. Chemom. Intell. Lab. Syst. 2017 167 214 225 10.1016/j.chemolab.2017.06.011
    [Google Scholar]
  54. Schöning V. Krähenbühl S. Drewe J. The hepatotoxic potential of protein kinase inhibitors predicted with Random Forest and Artificial Neural Networks. Toxicol. Lett. 2018 299 145 148 10.1016/j.toxlet.2018.10.009 30315951
    [Google Scholar]
  55. Miljković F. Rodríguez-Pérez R. Bajorath J. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. J. Med. Chem. 2020 63 16 8738 8748 10.1021/acs.jmedchem.9b00867 31469557
    [Google Scholar]
  56. Arian R. Hariri A. Mehridehnavi A. Fassihi A. Ghasemi F. Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm. Comput. Biol. Chem. 2020 86 107269 10.1016/j.compbiolchem.2020.107269 32413830
    [Google Scholar]
  57. Zhou Y. Portelli S. Pat M. Rodrigues C.H.M. Nguyen T.B. Pires D.E.V. Ascher D.B. Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase. Comput. Struct. Biotechnol. J. 2021 19 5381 5391 10.1016/j.csbj.2021.09.016 34667533
    [Google Scholar]
  58. Tanramluk D. Pakotiprapha D. Phoochaijaroen S. Chantravisut P. Thampradid S. Vanichtanankul J. Narupiyakul L. Akavipat R. Yuvaniyama J. MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances. Structure 2022 30 1 181 189.e5 10.1016/j.str.2021.09.004 34614393
    [Google Scholar]
  59. Shimazaki T. Tachikawa M. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. ACS Omega 2022 7 12 10372 10381 10.1021/acsomega.1c06976 35382271
    [Google Scholar]
  60. Yoshizawa T. Ishida S. Sato T. Ohta M. Honma T. Terayama K. Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search. J. Chem. Inf. Model. 2022 62 22 5351 5360 10.1021/acs.jcim.2c00787 36334094
    [Google Scholar]
  61. Liu C. Kutchukian P. Nguyen N.D. AlQuraishi M. Sorger P.K. A Hybrid Structure-Based Machine Learning Approach for Predicting Kinase Inhibition by Small Molecules. J. Chem. Inf. Model. 2023 63 17 5457 5472 10.1021/acs.jcim.3c00347 37595065
    [Google Scholar]
  62. Zhou J.B. Tang D. He L. Lin S. Lei J.H. Sun H. Xu X. Deng C.X. Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation. Pharmacol. Res. 2023 194 106830 10.1016/j.phrs.2023.106830 37343647
    [Google Scholar]
  63. Qian X. Dai X. Luo L. Lin M. Xu Y. Zhao Y. Huang D. Qiu H. Liang L. Liu H. Liu Y. Gu L. Lu T. Chen Y. Zhang Y. An Interpretable Multitask Framework BiLAT Enables Accurate Prediction of Cyclin-Dependent Protein Kinase Inhibitors. J. Chem. Inf. Model. 2023 63 11 3350 3368 10.1021/acs.jcim.3c00473 37171216
    [Google Scholar]
  64. Srisongkram T. Khamtang P. Weerapreeyakul N. Prediction of KRASG12C inhibitors using conjoint fingerprint and machine learning-based QSAR models. J. Mol. Graph. Model. 2023 122 108466 10.1016/j.jmgm.2023.108466 37058997
    [Google Scholar]
  65. Lin X. Ma Q. Chen L. Guo W. Huang Z. Huang T. Cai Y.D. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods. Biochim. Biophys. Acta, Gen. Subj. 2023 1867 12 130484 10.1016/j.bbagen.2023.130484 37805078
    [Google Scholar]
  66. Zhang V.Y. O’Connor S.L. Welsh W.J. James M.H. Machine learning models to predict ligand binding affinity for the orexin 1 receptor. Artificial Intelligence Chemistry 2024 2 1 100040 10.1016/j.aichem.2023.100040 38476266
    [Google Scholar]
  67. Duan H. Zhang Y. Qiu H. Fu X. Liu C. Zang X. Xu A. Wu Z. Li X. Zhang Q. Zhang Z. Cui F. Machine learning-based prediction model for distant metastasis of breast cancer. Comput. Biol. Med. 2024 169 107943 10.1016/j.compbiomed.2024.107943 38211382
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266340766250124063854
Loading
/content/journals/ctmc/10.2174/0115680266340766250124063854
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test