Skip to content
2000
image of Computer-aided Drug Discovery of Epigenetic Modulators in Dual-target Therapy of Multifactorial Diseases

Abstract

Numerous studies suggest that common genetic and epigenetic factors such as p53, histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), the (Ataxia Telangiectasia mutated) ATM gene, cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3) and altered expression of microRNA (miRNA) play a crucial role in cancer and neurodegeneration. As there is growing evidence that epigenetic aberrations in cancer and neurological diseases lead to complex pathophysiological changes, the simultaneous targeting of epigenetic and other related pathways by dual-target inhibitors may contribute to the discovery of more effective and personalized therapeutic options. Computer-Aided Drug Design (CADD) provides comprehensive bioinformatic, chemoinformatic, and chemometric approaches for the design of novel chemotypes of epigenetic dual-target inhibitors, enabling efficient discovery of new drug candidates for innovative treatments of these multifactorial diseases. The detailed anticancer mechanisms by which the epigenetic dual-target inhibitors alter metastatic and tumorigenic properties, influence the tumor microenvironment, or regulate the immune response are also presented and discussed in the review. To improve our understanding of the pathogenesis of cancer and neurodegeneration, this review discusses novel therapeutic agents targeting different molecular mechanisms involved in these multifactorial diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337668241025061804
2024-11-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Qureshi I.A. Mehler M.F. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013 70 6 703 710 10.1001/jamaneurol.2013.1443 23571666
    [Google Scholar]
  2. Qureshi I.A. Mehler M.F. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. Neurotherapeutics 2014 11 4 708 720 10.1007/s13311‑014‑0302‑1 25261112
    [Google Scholar]
  3. Ptak C. Petronis A. Epigenetics and complex disease: From etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol. 2008 48 1 257 276 10.1146/annurev.pharmtox.48.113006.094731 17883328
    [Google Scholar]
  4. Tateishi-Karimata H. Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res. 2021 49 14 7839 7855 10.1093/nar/gkab580 34244785
    [Google Scholar]
  5. Varela L. Garcia-Rendueles M.E.R. Oncogenic pathways in neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 6 3223 10.3390/ijms23063223 35328644
    [Google Scholar]
  6. Jakovcevski M. Akbarian S. Epigenetic mechanisms in neurological disease. Nat. Med. 2012 18 8 1194 1204 10.1038/nm.2828 22869198
    [Google Scholar]
  7. Weth F.R. Hoggarth G.B. Weth A.F. Paterson E. White M.P.J. Tan S.T. Peng L. Gray C. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024 130 5 703 715 10.1038/s41416‑023‑02502‑9 38012383
    [Google Scholar]
  8. Lardenoije R. Iatrou A. Kenis G. Kompotis K. Steinbusch H.W.M. Mastroeni D. Coleman P. Lemere C.A. Hof P.R. van den Hove D.L.A. Rutten B.P.F. The epigenetics of aging and neurodegeneration. Prog. Neurobiol. 2015 131 21 64 10.1016/j.pneurobio.2015.05.002 26072273
    [Google Scholar]
  9. Landgrave-Gómez J. Mercado-Gómez O. Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front. Cell. Neurosci. 2015 9 58 10.3389/fncel.2015.00058 25774124
    [Google Scholar]
  10. Hwang J.Y. Aromolaran K.A. Zukin R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 2017 18 6 347 361 10.1038/nrn.2017.46 28515491
    [Google Scholar]
  11. Marei H.E. Althani A. Afifi N. Hasan A. Caceci T. Pozzoli G. Morrione A. Giordano A. Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021 21 1 703 10.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  12. Talebi M. Talebi M. Kakouri E. Farkhondeh T. Pourbagher-Shahri A.M. Tarantilis P.A. Samarghandian S. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int. J. Biol. Macromol. 2021 172 93 103 10.1016/j.ijbiomac.2021.01.042 33440210
    [Google Scholar]
  13. West A.C. Johnstone R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 2014 124 1 30 39 10.1172/JCI69738 24382387
    [Google Scholar]
  14. Rodrigues D.A. Pinheiro P.S.M. Sagrillo F.S. Bolognesi M.L. Fraga C.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med. Res. Rev. 2020 40 6 2177 2211 10.1002/med.21701 32588916
    [Google Scholar]
  15. Autry A.E. Monteggia L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012 64 2 238 258 10.1124/pr.111.005108 22407616
    [Google Scholar]
  16. Khanna K.K. Cancer risk and the ATM gene: A continuing debate. J. Natl. Cancer Inst. 2000 92 10 795 802 10.1093/jnci/92.10.795 10814674
    [Google Scholar]
  17. Lee J.H. Paull T.T. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat. Rev. Mol. Cell Biol. 2021 22 12 796 814 10.1038/s41580‑021‑00394‑2 34429537
    [Google Scholar]
  18. Mapelli M. Massimiliano L. Crovace C. Seeliger M.A. Tsai L.H. Meijer L. Musacchio A. Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem. 2005 48 3 671 679 10.1021/jm049323m 15689152
    [Google Scholar]
  19. Łukasik P. Załuski M. Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development–review. Int. J. Mol. Sci. 2021 22 6 2935 10.3390/ijms22062935 33805800
    [Google Scholar]
  20. Thapa R. Gupta G. Bhat A.A. Almalki W.H. Alzarea S.I. Kazmi I. Saleem S. Khan R. Altwaijry N. Dureja H. Singh S.K. Dua K. A review of glycogen synthase kinase-3 (GSK3) inhibitors for cancers therapies. Int. J. Biol. Macromol. 2023 253 Pt 7 127375 10.1016/j.ijbiomac.2023.127375 37839597
    [Google Scholar]
  21. Phukan S. Babu V.S. Kannoji A. Hariharan R. Balaji V.N. GSK3β: Role in therapeutic landscape and development of modulators. Br. J. Pharmacol. 2010 160 1 1 19 10.1111/j.1476‑5381.2010.00661.x 20331603
    [Google Scholar]
  22. Li Z. Rana T.M. Therapeutic targeting of microRNAs: Current status and future challenges. Nat. Rev. Drug Discov. 2014 13 8 622 638 10.1038/nrd4359 25011539
    [Google Scholar]
  23. Singh T. Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res. Rev. 2020 60 101068 10.1016/j.arr.2020.101068 32283224
    [Google Scholar]
  24. Yee A.J. Bensinger W.I. Supko J.G. Voorhees P.M. Berdeja J.G. Richardson P.G. Libby E.N. Wallace E.E. Birrer N.E. Burke J.N. Tamang D.L. Yang M. Jones S.S. Wheeler C.A. Markelewicz R.J. Raje N.S. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 2016 17 11 1569 1578 10.1016/S1470‑2045(16)30375‑8 27646843
    [Google Scholar]
  25. Guo H. Zeng D. Zhang H. Bell T. Yao J. Liu Y. Huang S. Li C.J. Lorence E. Zhou S. Gong T. Jiang C. Ahmed M. Yao Y. Nomie K.J. Zhang L. Wang M. Dual inhibition of PI3K signaling and histone deacetylation halts proliferation and induces lethality in mantle cell lymphoma. Oncogene 2019 38 11 1802 1814 10.1038/s41388‑018‑0550‑3 30361685
    [Google Scholar]
  26. Galloway T.J. Wirth L.J. Colevas A.D. Gilbert J. Bauman J.E. Saba N.F. Raben D. Mehra R. Ma A.W. Atoyan R. Wang J. Burtness B. Jimeno A. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 2015 21 7 1566 1573 10.1158/1078‑0432.CCR‑14‑2820 25573383
    [Google Scholar]
  27. Senderowicz A.M. Small-molecule cyclin-dependent kinase modulators. Oncogene 2003 22 42 6609 6620 10.1038/sj.onc.1206954 14528286
    [Google Scholar]
  28. Nishikawa S. Iwakuma T. Drugs targeting p53 mutations with FDA approval and in clinical trials. Cancers (Basel) 2023 15 2 429 10.3390/cancers15020429 36672377
    [Google Scholar]
  29. Nagahara A.H. Tuszynski M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 2011 10 3 209 219 10.1038/nrd3366 21358740
    [Google Scholar]
  30. Jin M.H. Oh D.Y. ATM in DNA repair in cancer. Pharmacol. Ther. 2019 203 107391 10.1016/j.pharmthera.2019.07.002 31299316
    [Google Scholar]
  31. Waqar S.N. Robinson C. Olszanski A.J. Spira A. Hackmaster M. Lucas L. Sponton L. Jin H. Hering U. Cronier D. Grinberg M. Seithel-Keuth A. Diaz-Padilla I. Berlin J. Phase I trial of ATM inhibitor M3541 in combination with palliative radiotherapy in patients with solid tumors. Invest. New Drugs 2022 40 3 596 605 10.1007/s10637‑022‑01216‑8 35150356
    [Google Scholar]
  32. Tolosa E. Litvan I. Höglinger G.U. Burn D. Lees A. Andrés M.V. Gómez-Carrillo B. León T. del Ser T. Ven Gerpen J. TAUROS Investigators A phase 2 trial of the GSK‐3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 2014 29 4 470 478 10.1002/mds.25824 24532007
    [Google Scholar]
  33. del Ser T. Steinwachs K.C. Gertz H.J. Andrés M.V. Gómez-Carrillo B. Medina M. Vericat J.A. Redondo P. Fleet D. León T. Treatment of alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study. J. Alzheimers Dis. 2012 33 1 205 215 10.3233/JAD‑2012‑120805 22936007
    [Google Scholar]
  34. Saiyed A.N. Vasavada A.R. Johar S.R.K. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Future J. Pharm. Sci. 2022 8 1 24 10.1186/s43094‑022‑00413‑9 35382490
    [Google Scholar]
  35. Gao Y. Zhang H. Lirussi F. Garrido C. Ye X.Y. Xie T. Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem. Pharmacol. 2020 182 114224 10.1016/j.bcp.2020.114224 32956642
    [Google Scholar]
  36. Park S.Y. Kim J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 2020 52 2 204 212 10.1038/s12276‑020‑0382‑4 32071378
    [Google Scholar]
  37. Li G. Tian Y. Zhu W.G. The roles of histone deacetylases and their inhibitors in cancer therapy. Front. Cell Dev. Biol. 2020 8 576946 10.3389/fcell.2020.576946 33117804
    [Google Scholar]
  38. Shukla S. Tekwani B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol. 2020 11 537 10.3389/fphar.2020.00537 32390854
    [Google Scholar]
  39. LoPresti P. HDAC6 in diseases of cognition and of neurons. Cells 2020 10 1 12 10.3390/cells10010012 33374719
    [Google Scholar]
  40. Bardai F.H. Price V. Zaayman M. Wang L. D’Mello S.R. Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J. Biol. Chem. 2012 287 42 35444 35453 10.1074/jbc.M112.394544 22918830
    [Google Scholar]
  41. Bardai F.H. D’Mello S.R. Selective toxicity by HDAC3 in neurons: Regulation by Akt and GSK3β. J. Neurosci. 2011 31 5 1746 1751 10.1523/JNEUROSCI.5704‑10.2011 21289184
    [Google Scholar]
  42. Gupta R. Ambasta R.K. Kumar P. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci. 2020 243 117278 10.1016/j.lfs.2020.117278 31926248
    [Google Scholar]
  43. Sausville E.A. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol. Med. 2002 8 4 Suppl. S32 S37 10.1016/S1471‑4914(02)02308‑0 11927285
    [Google Scholar]
  44. Shapiro G.I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 2006 24 11 1770 1783 10.1200/JCO.2005.03.7689 16603719
    [Google Scholar]
  45. Harper J.W. Elledge S.J. The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev. 1998 12 3 285 289 10.1101/gad.12.3.285 9450924
    [Google Scholar]
  46. Morgan D.O. Principles of CDK regulation. Nature 1995 374 6518 131 134 10.1038/374131a0 7877684
    [Google Scholar]
  47. Sherr C.J. Roberts J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995 9 10 1149 1163 10.1101/gad.9.10.1149 7758941
    [Google Scholar]
  48. Meinhart A. Kamenski T. Hoeppner S. Baumli S. Cramer P. A structural perspective of CTD function. Genes Dev. 2005 19 12 1401 1415 10.1101/gad.1318105 15964991
    [Google Scholar]
  49. Song M. Qiang Y. Zhao X. Song F. Cyclin-dependent Kinase 5 and neurodegenerative diseases. Mol. Neurobiol. 2024 61 10 7287 7302 10.1007/s12035‑024‑04047‑1 38378992
    [Google Scholar]
  50. Batra S. Jahan S. Ashraf A. Alharby B. Jawaid T. Islam A. Hassan I. A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int. J. Biol. Macromol. 2023 230 123259 10.1016/j.ijbiomac.2023.123259 36641018
    [Google Scholar]
  51. Tian Z. Feng B. Wang X.Q. Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front. Mol. Neurosci. 2022 15 1030639 10.3389/fnmol.2022.1030639 36438186
    [Google Scholar]
  52. Prives C. Hall P.A. The p53 pathway. J. Pathol. 1999 187 1 112 126 10.1002/(SICI)1096‑9896(199901)187:1<112::AID‑PATH250>3.0.CO;2‑3 10341712
    [Google Scholar]
  53. Cho Y. Gorina S. Jeffrey P.D. Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 1994 265 5170 346 355 10.1126/science.8023157 8023157
    [Google Scholar]
  54. Sigal A. Rotter V. Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res. 2000 60 24 6788 6793 11156366
    [Google Scholar]
  55. Komori T. Okamura K. Ikehara M. Yamamuro K. Endo N. Okumura K. Yamauchi T. Ikawa D. Ouji-Sageshima N. Toritsuka M. Takada R. Kayashima Y. Ishida R. Mori Y. Kamikawa K. Noriyama Y. Nishi Y. Ito T. Saito Y. Nishi M. Kishimoto T. Tanaka K.F. Hiroi N. Makinodan M. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol. Psychiatry 2024 29 5 1338 1349 10.1038/s41380‑024‑02413‑y 38243072
    [Google Scholar]
  56. Amidfar M. de Oliveira J. Kucharska E. Budni J. Kim Y.K. The role of CREB and BDNF in neurobiology and treatment of alzheimer’s disease. Life Sci. 2020 257 118020 10.1016/j.lfs.2020.118020 32603820
    [Google Scholar]
  57. Arévalo J.C. Deogracias R. Mechanisms controlling the expression and secretion of BDNF. Biomolecules 2023 13 5 789 10.3390/biom13050789 37238659
    [Google Scholar]
  58. Josiane Tatiani Francielle Michelle Alexandra The involvement of BDNF, NGF and GDNF in aging and alzheimer’s disease. Aging Dis. 2015 6 5 331 341 10.14336/AD.2015.0825 26425388
    [Google Scholar]
  59. Perroud N. Salzmann A. Prada P. Nicastro R. Hoeppli M-E. Furrer S. Ardu S. Krejci I. Karege F. Malafosse A. Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl. Psychiatry 2013 3 1 e207 e207 10.1038/tp.2012.140 23422958
    [Google Scholar]
  60. Gao L. Zhang Y. Sterling K. Song W. Brain-derived neurotrophic factor in alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022 11 1 4 10.1186/s40035‑022‑00279‑0 35090576
    [Google Scholar]
  61. Cremona C.A. Behrens A. ATM signalling and cancer. Oncogene 2014 33 26 3351 3360 10.1038/onc.2013.275 23851492
    [Google Scholar]
  62. Smith J. Tho L.M. Xu N. Gillespie D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010 108 73 112 10.1016/B978‑0‑12‑380888‑2.00003‑0 21034966
    [Google Scholar]
  63. Phan L.M. Rezaeian A.H. ATM: Main features, signaling pathways, and its diverse roles in DNA damage response, tumor suppression, and cancer development. Genes (Basel) 2021 12 6 845 10.3390/genes12060845 34070860
    [Google Scholar]
  64. Weber A.M. Ryan A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 2015 149 124 138 10.1016/j.pharmthera.2014.12.001 25512053
    [Google Scholar]
  65. Beurel E. Grieco S.F. Jope R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015 148 114 131 10.1016/j.pharmthera.2014.11.016 25435019
    [Google Scholar]
  66. Jope R. Roh M.S. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets 2006 7 11 1421 1434 10.2174/1389450110607011421 17100582
    [Google Scholar]
  67. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  68. Eldar-Finkelman H. Martinez A. GSK-3 inhibitors: Preclinical and clinical focus on CNS. Front. Mol. Neurosci. 2011 4 32 10.3389/fnmol.2011.00032 22065134
    [Google Scholar]
  69. Kwak P.B. Iwasaki S. Tomari Y. The microRNA pathway and cancer. Cancer Sci. 2010 101 11 2309 2315 10.1111/j.1349‑7006.2010.01683.x 20726859
    [Google Scholar]
  70. Gulyaeva L.F. Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016 14 1 143 10.1186/s12967‑016‑0893‑x 27197967
    [Google Scholar]
  71. Harms K.L. Chen X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 2007 67 7 3145 3152 10.1158/0008‑5472.CAN‑06‑4397 17409421
    [Google Scholar]
  72. Karakostis K. Malbert-Colas L. Thermou A. Vojtesek B. Fåhraeus R. The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway. Mol. Cancer 2024 23 1 21 10.1186/s12943‑024‑01933‑z 38263180
    [Google Scholar]
  73. Proctor C.J. Gray D.A. GSK3 and p53 - Is there a link in alzheimer’s disease? Mol. Neurodegener. 2010 5 1 7 10.1186/1750‑1326‑5‑7 20181016
    [Google Scholar]
  74. Gregorova J. Vychytilova-Faltejskova P. Sevcikova S. Epigenetic regulation of MicroRNA clusters and families during tumor development. Cancers (Basel) 2021 13 6 1333 10.3390/cancers13061333 33809566
    [Google Scholar]
  75. Tan L. Yu J.T. Tan L. Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol. 2015 51 3 1249 1262 10.1007/s12035‑014‑8803‑9 24973986
    [Google Scholar]
  76. Lai K.O. Wong A.S.L. Cheung M.C. Xu P. Liang Z. Lok K.C. Xie H. Palko M.E. Yung W.H. Tessarollo L. Cheung Z.H. Ip N.Y. TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat. Neurosci. 2012 15 11 1506 1515 10.1038/nn.3237 23064382
    [Google Scholar]
  77. Gräff J. Rei D. Guan J.S. Wang W.Y. Seo J. Hennig K.M. Nieland T.J.F. Fass D.M. Kao P.F. Kahn M. Su S.C. Samiei A. Joseph N. Haggarty S.J. Delalle I. Tsai L.H. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012 483 7388 222 226 10.1038/nature10849 22388814
    [Google Scholar]
  78. Medina-Franco J.L. Giulianotti M.A. Welmaker G.S. Houghten R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today 2013 18 9-10 495 501 10.1016/j.drudis.2013.01.008 23340113
    [Google Scholar]
  79. Anighoro A. Bajorath J. Rastelli G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem. 2014 57 19 7874 7887 10.1021/jm5006463 24946140
    [Google Scholar]
  80. Zhou J. Jiang X. He S. Jiang H. Feng F. Liu W. Qu W. Sun H. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J. Med. Chem. 2019 62 20 8881 8914 10.1021/acs.jmedchem.9b00017 31082225
    [Google Scholar]
  81. Nikolic K. Mavridis L. Djikic T. Vucicevic J. Agbaba D. Yelekci K. Mitchell J.B.O. Drug design for CNS diseases: Polypharmacological profiling of compounds using cheminformatic, 3d-qsar and virtual screening methodologies. Front. Neurosci. 2016 10 265 10.3389/fnins.2016.00265 27375423
    [Google Scholar]
  82. Bottegoni G. Favia A.D. Recanatini M. Cavalli A. The role of fragment-based and computational methods in polypharmacology. Drug Discov. Today 2012 17 1-2 23 34 10.1016/j.drudis.2011.08.002 21864710
    [Google Scholar]
  83. Morphy R. Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005 48 21 6523 6543 10.1021/jm058225d 16220969
    [Google Scholar]
  84. Bondarev A.D. Attwood M.M. Jonsson J. Chubarev V.N. Tarasov V.V. Schiöth H.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br. J. Clin. Pharmacol. 2021 87 12 4577 4597 10.1111/bcp.14889 33971031
    [Google Scholar]
  85. Tate C.R. Rhodes L.V. Segar H.C. Driver J.L. Pounder F.N. Burow M.E. Collins-Burow B.M. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012 14 3 R79 10.1186/bcr3192 22613095
    [Google Scholar]
  86. Beljkas M. Ilic A. Cebzan A. Radovic B. Djokovic N. Ruzic D. Nikolic K. Oljacic S. Targeting histone deacetylases 6 in dual-target therapy of cancer. Pharmaceutics 2023 15 11 2581 10.3390/pharmaceutics15112581 38004560
    [Google Scholar]
  87. Ramsay R.R. Popovic-Nikolic M.R. Nikolic K. Uliassi E. Bolognesi M.L. A perspective on multi‐target drug discovery and design for complex diseases. Clin. Transl. Med. 2018 7 1 e3 10.1186/s40169‑017‑0181‑2 29340951
    [Google Scholar]
  88. Macalino S.J.Y. Gosu V. Hong S. Choi S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 2015 38 9 1686 1701 10.1007/s12272‑015‑0640‑5 26208641
    [Google Scholar]
  89. Sliwoski G. Kothiwale S. Meiler J. Lowe E.W. Jr Computational methods in drug discovery. Pharmacol. Rev. 2014 66 1 334 395 10.1124/pr.112.007336 24381236
    [Google Scholar]
  90. Vemula D. Jayasurya P. Sushmitha V. Kumar Y.N. Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci. 2023 181 106324 10.1016/j.ejps.2022.106324 36347444
    [Google Scholar]
  91. Gane P.J. Dean P.M. Recent advances in structure-based rational drug design. Curr. Opin. Struct. Biol. 2000 10 4 401 404 10.1016/S0959‑440X(00)00105‑6 10981625
    [Google Scholar]
  92. Dawood M. Elbadawi M. Böckers M. Bringmann G. Efferth T. Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 inhibitors with cytotoxicity against leukemia cells. Biomed. Pharmacother. 2020 129 110454 10.1016/j.biopha.2020.110454 32768947
    [Google Scholar]
  93. Riccardi L. Genna V. De Vivo M. Metal–ligand interactions in drug design. Nat. Rev. Chem. 2018 2 7 100 112 10.1038/s41570‑018‑0018‑6
    [Google Scholar]
  94. Ajjarapu S. M. Tiwari A. Ramteke P. W. Singh D. B. Kumar S. Ligand-based drug designing. Academic Press 2022 10.1016/B978‑0‑323‑89775‑4.00018‑3
    [Google Scholar]
  95. Wilson G.L. Lill M.A. Integrating structure-based and ligand-based approaches for computational drug design. Future Med. Chem. 2011 3 6 735 750 10.4155/fmc.11.18 21554079
    [Google Scholar]
  96. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  97. Oda A. Saijo K. Ishioka C. Narita K. Katoh T. Watanabe Y. Fukuyoshi S. Takahashi O. Takahashi O. Predicting the structures of complexes between phosphoinositide 3-kinase (PI3K) and romidepsin-related compounds for the drug design of PI3K/histone deacetylase dual inhibitors using computational docking and the ligand-based drug design approach. J. Mol. Graph. Model. 2014 54 46 53 10.1016/j.jmgm.2014.08.007 25254927
    [Google Scholar]
  98. Fruman D.A. Meyers R.E. Cantley L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 1998 67 1 481 507 10.1146/annurev.biochem.67.1.481 9759495
    [Google Scholar]
  99. Samuels Y. Wang Z. Bardelli A. Silliman N. Ptak J. Szabo S. Yan H. Gazdar A. Powell S.M. Riggins G.J. Willson J.K.V. Markowitz S. Kinzler K.W. Vogelstein B. Velculescu V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004 304 5670 554 554 10.1126/science.1096502 15016963
    [Google Scholar]
  100. Fan Q.W. Cheng C.K. Nicolaides T.P. Knight Z.A. Shokat K.M. Weiss W.A. A dual PI3K α/mTOR inhibitor cooperates with blockade of EGFR in PTEN-mutant glioma. Cancer Res. 2007 67 17 7960 10.1158/0008‑5472.CAN‑07‑2154 17804702
    [Google Scholar]
  101. Sos M.L. Fischer S. Ullrich R. Peifer M. Heuckmann J.M. Koker M. Heynck S. Stückrath I. Weiss J. Fischer F. Michel K. Goel A. Regales L. Politi K.A. Perera S. Getlik M. Heukamp L.C. Ansén S. Zander T. Beroukhim R. Kashkar H. Shokat K.M. Sellers W.R. Rauh D. Orr C. Hoeflich K.P. Friedman L. Wong K.K. Pao W. Thomas R.K. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc. Natl. Acad. Sci. USA 2009 106 43 18351 18356 10.1073/pnas.0907325106 19805051
    [Google Scholar]
  102. Wee S. Jagani Z. Xiang K.X. Loo A. Dorsch M. Yao Y.M. Sellers W.R. Lengauer C. Stegmeier F. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009 69 10 4286 4293 10.1158/0008‑5472.CAN‑08‑4765 19401449
    [Google Scholar]
  103. Qian C. Lai C.J. Bao R. Wang D.G. Wang J. Xu G.X. Atoyan R. Qu H. Yin L. Samson M. Zifcak B. Ma A.W.S. DellaRocca S. Borek M. Zhai H.X. Cai X. Voi M. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res. 2012 18 15 4104 4113 10.1158/1078‑0432.CCR‑12‑0055 22693356
    [Google Scholar]
  104. Wozniak M.B. Villuendas R. Bischoff J.R. Aparicio C.B. Martínez Leal J.F. de La Cueva P. Rodriguez M.E. Herreros B. Martin-Perez D. Longo M.I. Herrera M. Piris M.A. Ortiz-Romero P.L. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica 2010 95 4 613 621 10.3324/haematol.2009.013870 20133897
    [Google Scholar]
  105. Younes A. Berdeja J.G. Patel M.R. Flinn I. Gerecitano J.F. Neelapu S.S. Kelly K.R. Copeland A.R. Akins A. Clancy M.S. Gong L. Wang J. Ma A. Viner J.L. Oki Y. Phase 1 safety and dose escalation of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K in relapsed or refractory lymphoma and multiple myeloma. Lancet Oncol. 2016 17 5 622 10.1016/S1470‑2045(15)00584‑7 27049457
    [Google Scholar]
  106. Reddy S.A. Romidepsin for the treatment of relapsed/refractory cutaneous T-cell lymphoma (mycosis fungoides/Sézary syndrome): Use in a community setting. Crit. Rev. Oncol. Hematol. 2016 106 99 107 10.1016/j.critrevonc.2016.07.001 27637355
    [Google Scholar]
  107. Saijo K. Katoh T. Shimodaira H. Oda A. Takahashi O. Ishioka C. Romidepsin ( FK 228) and its analogs directly inhibit phosphatidylinositol 3‐kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3‐kinase dual inhibitors. Cancer Sci. 2012 103 11 1994 2001 10.1111/cas.12002 22924958
    [Google Scholar]
  108. Yuan Z. Sun Q. Li D. Miao S. Chen S. Song L. Gao C. Chen Y. Tan C. Jiang Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur. J. Med. Chem. 2017 134 281 292 10.1016/j.ejmech.2017.04.017 28419930
    [Google Scholar]
  109. Kuck D. Singh N. Lyko F. Medina-Franco J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem. 2010 18 2 822 829 10.1016/j.bmc.2009.11.050 20006515
    [Google Scholar]
  110. Chen S. Wang Y. Zhou W. Li S. Peng J. Shi Z. Hu J. Liu Y.C. Ding H. Lin Y. Li L. Cheng S. Liu J. Lu T. Jiang H. Liu B. Zheng M. Luo C. Identifying novel selective non-nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J. Med. Chem. 2014 57 21 9028 9041 10.1021/jm501134e 25333769
    [Google Scholar]
  111. Marks P.A. Breslow R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007 25 1 84 90 10.1038/nbt1272 17211407
    [Google Scholar]
  112. Yuan Z. Chen S. Gao C. Dai Q. Zhang C. Sun Q. Lin J.S. Guo C. Chen Y. Jiang Y. Development of a versatile DNMT and HDAC inhibitor C02S modulating multiple cancer hallmarks for breast cancer therapy. Bioorg. Chem. 2019 87 200 208 10.1016/j.bioorg.2019.03.027 30901675
    [Google Scholar]
  113. Prieto-Martínez F. D. Fernández-de Gortari E. Medina-Franco J. L. Espinoza-Fonseca L. M. An in silico pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition. Artif. Intell. Life Sci. 2021 1
    [Google Scholar]
  114. Lai C.J. Bao R. Tao X. Wang J. Atoyan R. Qu H. Wang D.G. Yin L. Samson M. Forrester J. Zifcak B. Xu G.X. DellaRocca S. Zhai H.X. Cai X. Munger W.E. Keegan M. Pepicelli C.V. Qian C. CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res. 2010 70 9 3647 3656 10.1158/0008‑5472.CAN‑09‑3360 20388807
    [Google Scholar]
  115. Bai X. Sun P. Wang X. Long C. Liao S. Dang S. Zhuang S. Du Y. Zhang X. Li N. He K. Zhang Z. Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discov. 2023 9 1 18 10.1038/s41421‑023‑00523‑5 36781849
    [Google Scholar]
  116. Seshacharyulu P. Ponnusamy M.P. Haridas D. Jain M. Ganti A.K. Batra S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 15 31 10.1517/14728222.2011.648617 22239438
    [Google Scholar]
  117. Chuang D.M. Leng Y. Marinova Z. Kim H.J. Chiu C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009 32 11 591 601 10.1016/j.tins.2009.06.002 19775759
    [Google Scholar]
  118. Reisberg B. Doody R. Stöffler A. Schmitt F. Ferris S. Möbius H.J. Memantine Study Group Memantine in moderate-to-severe alzheimer’s disease. N. Engl. J. Med. 2003 348 14 1333 1341 10.1056/NEJMoa013128 12672860
    [Google Scholar]
  119. He F. Ran Y. Li X. Wang D. Zhang Q. Lv J. Yu C. Qu Y. Zhang X. Xu A. Wei C. Chou C.J. Wu J. Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for alzheimer’s disease. Bioorg. Chem. 2020 103 104109 10.1016/j.bioorg.2020.104109 32768741
    [Google Scholar]
  120. Strebl M.G. Wang C. Schroeder F.A. Placzek M.S. Wey H.Y. Van de Bittner G.C. Neelamegam R. Hooker J.M. Development of a fluorinated class-I HDAC radiotracer reveals key chemical determinants of brain penetrance. ACS Chem. Neurosci. 2016 7 5 528 533 10.1021/acschemneuro.5b00297 26675505
    [Google Scholar]
  121. Tallant C. Marrero A. Gomis-Rüth F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res. 2010 1803 1 20 28 10.1016/j.bbamcr.2009.04.003 19374923
    [Google Scholar]
  122. Overall C.M. López-Otín C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat. Rev. Cancer 2002 2 9 657 672 10.1038/nrc884 12209155
    [Google Scholar]
  123. Halder A.K. Mallick S. Shikha D. Saha A. Saha K.D. Jha T. Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore mapping, molecular docking, synthesis and biological activity. RSC Advances 2015 5 88 72373 72386 10.1039/C5RA12606A
    [Google Scholar]
  124. Mittal K. Ebos J. Rini B. Angiogenesis and the tumor microenvironment: Vascular endothelial growth factor and beyond. Semin. Oncol. 2014 41 2 235 251 10.1053/j.seminoncol.2014.02.007 24787295
    [Google Scholar]
  125. Park C. Jun J.A. Jeong K.J. Heo H.J. Sohn J.S. Lee H.Y. Park C.G. Kang J. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol. Rep. 2011 25 6 1677 1681 10.3892/or.2011.1236 21455583
    [Google Scholar]
  126. Liu L.T. Chang H.C. Chiang L.C. Hung W.C. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res. 2003 63 12 3069 3072 12810630
    [Google Scholar]
  127. Halder A.K. Saha A. Jha T. Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors. J. Pharm. Pharmacol. 2013 65 10 1541 1554 10.1111/jphp.12133 24028622
    [Google Scholar]
  128. Venkatesan A.M. Davis J.M. Grosu G.T. Baker J. Zask A. Levin J.I. Ellingboe J. Skotnicki J.S. DiJoseph J.F. Sung A. Jin G. Xu W. McCarthy D.J. Barone D. Synthesis and structure-activity relationships of 4-alkynyloxy phenyl sulfanyl, sulfinyl, and sulfonyl alkyl hydroxamates as tumor necrosis factor-α converting enzyme and matrix metalloproteinase inhibitors. J. Med. Chem. 2004 47 25 6255 6269 10.1021/jm040086x 15566296
    [Google Scholar]
  129. Verma R.P. Hansch C. Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorg. Med. Chem. 2007 15 6 2223 2268 10.1016/j.bmc.2007.01.011 17275314
    [Google Scholar]
  130. Vargová V. Pytliak M. Mechírová V. Matrix metalloproteinases. Matrix metalloproteinase inhibitors: Specificity of binding and structure-activity relationships, Matrix Metalloproteinases. Matrix Metalloproteinase Inhibitors. Gupta S. Experientia Supplementum 2012 Vol. 103 1 33 10.1007/978‑3‑0348‑0364‑9_1
    [Google Scholar]
  131. Valente S. Mai A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: A patent review (2011 – 2013). Expert Opin. Ther. Pat. 2014 24 4 401 415 10.1517/13543776.2014.877446 24397271
    [Google Scholar]
  132. Seclì L. Avalle L. Poggio P. Fragale G. Cannata C. Conti L. Iannucci A. Carrà G. Rubinetto C. Miniscalco B. Hirsch E. Poli V. Morotti A. De Andrea M. Turco E. Cavallo F. Fusella F. Brancaccio M. Targeting the extracellular HSP90 co-chaperone morgana inhibits cancer cell migration and promotes anticancer immunity. Cancer Res. 2021 81 18 4794 4807 10.1158/0008‑5472.CAN‑20‑3150 34193441
    [Google Scholar]
  133. Wu J. Liu T. Rios Z. Mei Q. Lin X. Cao S. Heat shock proteins and cancer. Trends Pharmacol. Sci. 2017 38 3 226 256 10.1016/j.tips.2016.11.009 28012700
    [Google Scholar]
  134. Mahalingam D. Swords R. Carew J.S. Nawrocki S.T. Bhalla K. Giles F.J. Targeting HSP90 for cancer therapy. Br. J. Cancer 2009 100 10 1523 1529 10.1038/sj.bjc.6605066 19401686
    [Google Scholar]
  135. Wei H. Zhang Y. Jia Y. Chen X. Niu T. Chatterjee A. He P. Hou G. Heat shock protein 90: Biological functions, diseases, and therapeutic targets. MedComm 2024 5 2 e470 10.1002/mco2.470 38283176
    [Google Scholar]
  136. Pinzi L. Benedetti R. Altucci L. Rastelli G. Design of dual inhibitors of histone deacetylase 6 and heat shock protein 90. ACS Omega 2020 5 20 11473 11480 10.1021/acsomega.0c00559 32478236
    [Google Scholar]
  137. Bonanni D. Citarella A. Moi D. Pinzi L. Bergamini E. Rastelli G. Dual targeting strategies on histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90). Curr. Med. Chem. 2022 29 9 1474 1502 10.2174/0929867328666210902145102 34477503
    [Google Scholar]
  138. Kovacs J.J. Murphy P.J.M. Gaillard S. Zhao X. Wu J.T. Nicchitta C.V. Yoshida M. Toft D.O. Pratt W.B. Yao T.P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 2005 18 5 601 607 10.1016/j.molcel.2005.04.021 15916966
    [Google Scholar]
  139. Murphy P.J.M. Morishima Y. Kovacs J.J. Yao T.P. Pratt W.B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem. 2005 280 40 33792 33799 10.1074/jbc.M506997200 16087666
    [Google Scholar]
  140. Kovacs J.J. Cohen T.J. Yao T.P. Chaperoning steroid hormone signaling via reversible acetylation. Nucl. Recept. Signal. 2005 3 1 nrs.03004 10.1621/nrs.03004 16604172
    [Google Scholar]
  141. Trifluoromethyl-oxadiazole derivatives and their use in the treatment of disease Patent US-9056843-B2, 2023
  142. Recillas-Targa F. Cancer epigenetics: An overview. Arch. Med. Res. 2022 53 8 732 740 10.1016/j.arcmed.2022.11.003 36411173
    [Google Scholar]
  143. Wu Y. Sarkissyan M. Vadgama J.V. Epigenetics in breast and prostate cancer. Methods Mol. Biol. 2015 1238 425 466 10.1007/978‑1‑4939‑1804‑1_23 25421674
    [Google Scholar]
  144. Lopez-Bertoni H. Lal B. Li A. Caplan M. Guerrero-Cázares H. Eberhart C.G. Quiñones-Hinojosa A. Glas M. Scheffler B. Laterra J. Li Y. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 2015 34 30 3994 4004 10.1038/onc.2014.334 25328136
    [Google Scholar]
  145. Huang W. Li H. Yu Q. Xiao W. Wang D.O. Correction: LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J. Exp. Clin. Cancer Res. 2022 41 1 262 10.1186/s13046‑022‑02468‑1 36028910
    [Google Scholar]
  146. Li Y. Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 2016 6 10 a026831 10.1101/cshperspect.a026831 27599530
    [Google Scholar]
  147. Cheng B. Pan W. Xiao Y. Ding Z. Zhou Y. Fei X. Liu J. Su Z. Peng X. Chen J. HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur. J. Med. Chem. 2024 265 116129 10.1016/j.ejmech.2024.116129 38211468
    [Google Scholar]
  148. Holdgate G.A. Bardelle C. Lanne A. Read J. O’Donovan D.H. Smith J.M. Selmi N. Sheppard R. Drug discovery for epigenetics targets. Drug Discov. Today 2022 27 4 1088 1098 10.1016/j.drudis.2021.10.020 34728375
    [Google Scholar]
  149. Jan Z. Ahmed W.S. Biswas K.H. Jithesh P.V. Identification of a potential DNA methyltransferase (DNMT) inhibitor. J. Biomol. Struct. Dyn. 2023 ••• 1 15 10.1080/07391102.2023.2233637 37424222
    [Google Scholar]
  150. Hellebrekers D.M.E.I. Griffioen A.W. van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochim. Biophys. Acta Rev. Cancer 2007 1775 1 76 91 10.1016/j.bbcan.2006.07.003 16930846
    [Google Scholar]
  151. Pommier Y. Sun Y. Huang S.N. Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016 17 11 703 721 10.1038/nrm.2016.111 27649880
    [Google Scholar]
  152. Champoux J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 2001 70 1 369 413 10.1146/annurev.biochem.70.1.369 11395412
    [Google Scholar]
  153. Madkour M.M. Ramadan W.S. Saleh E. El-Awady R. Epigenetic modulations in cancer: Predictive biomarkers and potential targets for overcoming the resistance to topoisomerase I inhibitors. Ann. Med. 2023 55 1 2203946 10.1080/07853890.2023.2203946 37092854
    [Google Scholar]
  154. Candelaria M. Gallardo-Rincón D. Arce C. Cetina L. Aguilar-Ponce J.L. Arrieta Ó. González-Fierro A. Chávez-Blanco A. de la Cruz-Hernández E. Camargo M.F. Trejo-Becerril C. Pérez-Cárdenas E. Pérez-Plasencia C. Taja-Chayeb L. Wegman-Ostrosky T. Revilla-Vazquez A. Dueñas-González A. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol. 2007 18 9 1529 1538 10.1093/annonc/mdm204 17761710
    [Google Scholar]
  155. Chen J. Li D. Li W. Yin J. Zhang Y. Yuan Z. Gao C. Liu F. Jiang Y. Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors. Bioorg. Med. Chem. 2018 26 14 3958 3966 10.1016/j.bmc.2018.06.016 29954683
    [Google Scholar]
  156. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  157. Ersahin T. Tuncbag N. Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 2015 11 7 1946 1954 10.1039/C5MB00101C 25924008
    [Google Scholar]
  158. Porta C. Paglino C. Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 2014 4 64 10.3389/fonc.2014.00064 24782981
    [Google Scholar]
  159. Chen Y. Zhou X. Research progress of mTOR inhibitors. Eur. J. Med. Chem. 2020 208 112820 10.1016/j.ejmech.2020.112820 32966896
    [Google Scholar]
  160. Wani A.K. Singh R. Akhtar N. Prakash A. Nepovimova E. Oleksak P. Chrienova Z. Alomar S. Chopra C. Kuca K. Targeted inhibition of the PI3K/Akt/mTOR signaling axis: Potential for sarcoma therapy. Mini Rev. Med. Chem. 2024 24 16 1496 1520 10.2174/0113895575270904231129062137 38265369
    [Google Scholar]
  161. Wedel S. Hudak L. Seibel J.M. Juengel E. Tsaur I. Wiesner C. Haferkamp A. Blaheta R.A. Inhibitory effects of the HDAC inhibitor valproic acid on prostate cancer growth are enhanced by simultaneous application of the mTOR inhibitor RAD001. Life Sci. 2011 88 9-10 418 424 10.1016/j.lfs.2010.12.017 21192952
    [Google Scholar]
  162. Zhang A. Lau N.A. Wong A. Brown L.G. Coleman I.M. De Sarkar N. Li D. DeLucia D.C. Labrecque M.P. Nguyen H.M. Conner J.L. Dumpit R.F. True L.D. Lin D.W. Corey E. Alumkal J.J. Nelson P.S. Morrissey C. Lee J.K. Concurrent targeting of HDAC and PI3K to Overcome phenotypic heterogeneity of castration-resistant and neuroendocrine prostate cancers. Cancer Res. Commun. 2023 3 11 2358 2374 10.1158/2767‑9764.CRC‑23‑0250 37823778
    [Google Scholar]
  163. Şansaçar M. Sağır H. Gencer Akçok E.B. Inhibition of PI3K-AKT-mTOR pathway and modulation of histone deacetylase enzymes reduce the growth of acute myeloid leukemia cells. Med. Oncol. 2023 41 1 31 10.1007/s12032‑023‑02247‑8 38148433
    [Google Scholar]
  164. Mahalingam D. Medina E.C. Esquivel J.A. II Espitia C.M. Smith S. Oberheu K. Swords R. Kelly K.R. Mita M.M. Mita A.C. Carew J.S. Giles F.J. Nawrocki S.T. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin. Cancer Res. 2010 16 1 141 153 10.1158/1078‑0432.CCR‑09‑1385 20028765
    [Google Scholar]
  165. Zhang M. Wei W. Peng C. Ma X. He X. Zhang H. Zhou M. Discovery of novel pyrazolopyrimidine derivatives as potent mTOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy. Bioorg. Med. Chem. Lett. 2021 49 128286 10.1016/j.bmcl.2021.128286 34314844
    [Google Scholar]
  166. Landsburg D.J. Barta S.K. Ramchandren R. Batlevi C. Iyer S. Kelly K. Micallef I.N. Smith S.M. Stevens D.A. Alvarez M. Califano A. Shen Y. Bosker G. Parker J. Soikes R. Martinez E. von Roemeling R. Martell R.E. Oki Y. Fimepinostat (CUDC‐907) in patients with relapsed/refractory diffuse large B cell and high‐grade B‐cell lymphoma: Report of a phase 2 trial and exploratory biomarker analyses. Br. J. Haematol. 2021 195 2 201 209 10.1111/bjh.17730 34341990
    [Google Scholar]
  167. Chen Y. Wang X. Xiang W. He L. Tang M. Wang F. Wang T. Yang Z. Yi Y. Wang H. Niu T. Zheng L. Lei L. Li X. Song H. Chen L. Development of purine-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem. 2016 59 11 5488 5504 10.1021/acs.jmedchem.6b00579 27186676
    [Google Scholar]
  168. Chen D. Soh C.K. Goh W.H. Wang H. Design, synthesis, and preclinical evaluation of fused pyrimidine-based hydroxamates for the treatment of hepatocellular carcinoma. J. Med. Chem. 2018 61 4 1552 1575 10.1021/acs.jmedchem.7b01465 29360358
    [Google Scholar]
  169. Lin S. Wang C. Ji M. Wu D. Lv Y. Zhang K. Dong Y. Jin J. Chen J. Zhang J. Sheng L. Li Y. Chen X. Xu H. Discovery and optimization of 2-Amino-4-methylquinazoline derivatives as highly potent Phosphatidylinositol 3-Kinase inhibitors for cancer treatment. J. Med. Chem. 2018 61 14 6087 6109 10.1021/acs.jmedchem.8b00416 29927604
    [Google Scholar]
  170. Zhang K. Lai F. Lin S. Ji M. Zhang J. Zhang Y. Jin J. Fu R. Wu D. Tian H. Xue N. Sheng L. Zou X. Li Y. Chen X. Xu H. Design, synthesis, and biological evaluation of 4-Methyl quinazoline derivatives as anticancer agents simultaneously targeting Phosphoinositide 3-Kinases and histone deacetylases. J. Med. Chem. 2019 62 15 6992 7014 10.1021/acs.jmedchem.9b00390 31117517
    [Google Scholar]
  171. Zhang K. Huang R. Ji M. Lin S. Lai F. Wu D. Tian H. Bi J. Peng S. Hu J. Sheng L. Li Y. Chen X. Xu H. Rational design and optimization of novel 4-methyl quinazoline derivatives as PI3K/HDAC dual inhibitors with benzamide as zinc binding moiety for the treatment of acute myeloid leukemia. Eur. J. Med. Chem. 2024 264 116015 10.1016/j.ejmech.2023.116015 38048697
    [Google Scholar]
  172. Nussinov R. Tsai C.J. Jang H. Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 2021 59 100796 10.1016/j.drup.2021.100796 34953682
    [Google Scholar]
  173. Tang Y. Zang H. Wen Q. Fan S. AXL in cancer: A modulator of drug resistance and therapeutic target. J. Exp. Clin. Cancer Res. 2023 42 1 148 10.1186/s13046‑023‑02726‑w 37328828
    [Google Scholar]
  174. Zhu C. Wei Y. Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019 18 1 153 10.1186/s12943‑019‑1090‑3 31684958
    [Google Scholar]
  175. Falcone I. Conciatori F. Bazzichetto C. Bria E. Carbognin L. Malaguti P. Ferretti G. Cognetti F. Milella M. Ciuffreda L. AXL receptor in breast cancer: Molecular involvement and therapeutic limitations. Int. J. Mol. Sci. 2020 21 22 8419 10.3390/ijms21228419 33182542
    [Google Scholar]
  176. Tanaka M. Siemann D.W. Therapeutic targeting of the Gas6/Axl signaling pathway in cancer. Int. J. Mol. Sci. 2021 22 18 9953 10.3390/ijms22189953 34576116
    [Google Scholar]
  177. Ben-Batalla I. Erdmann R. Jørgensen H. Mitchell R. Ernst T. von Amsberg G. Schafhausen P. Velthaus J.L. Rankin S. Clark R.E. Koschmieder S. Schultze A. Mitra S. Vandenberghe P. Brümmendorf T.H. Carmeliet P. Hochhaus A. Pantel K. Bokemeyer C. Helgason G.V. Holyoake T.L. Loges S. Axl blockade by BGB324 inhibits BCR-ABL tyrosine kinase inhibitor–sensitive and -resistant chronic myeloid leukemia. Clin. Cancer Res. 2017 23 9 2289 2300 10.1158/1078‑0432.CCR‑16‑1930 27856601
    [Google Scholar]
  178. Qiao X. Wu X. Chen S. Niu M.M. Hua H. Zhang Y. Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation. J. Enzyme Inhib. Med. Chem. 2024 39 1 2295241 10.1080/14756366.2023.2295241 38134358
    [Google Scholar]
  179. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  180. Weller J. Budson A. Current understanding of alzheimer’s disease diagnosis and treatment. F1000Res. 2018 7 F1000 10.12688/f1000research.14506.1
    [Google Scholar]
  181. Yang S. Zhang R. Wang G. Zhang Y. The development prospection of HDAC inhibitors as a potential therapeutic direction in alzheimer’s disease. Transl. Neurodegener. 2017 6 1 19 10.1186/s40035‑017‑0089‑1 28702178
    [Google Scholar]
  182. Santana D.A. Smith M.A.C. Chen E.S. Histone modifications in alzheimer’s disease. Genes (Basel) 2023 14 2 347 10.3390/genes14020347 36833274
    [Google Scholar]
  183. Nabavi S.M. Talarek S. Listos J. Nabavi S.F. Devi K.P. Roberto de Oliveira M. Tewari D. Argüelles S. Mehrzadi S. Hosseinzadeh A. D’onofrio G. Orhan I.E. Sureda A. Xu S. Momtaz S. Farzaei M.H. Phosphodiesterase inhibitors say NO to alzheimer’s disease. Food Chem. Toxicol. 2019 134 110822 10.1016/j.fct.2019.110822 31536753
    [Google Scholar]
  184. Xi M. Sun T. Chai S. Xie M. Chen S. Deng L. Du K. Shen R. Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in alzheimer’s disease. Eur. J. Med. Chem. 2022 232 114170 10.1016/j.ejmech.2022.114170 35144038
    [Google Scholar]
  185. García-Barroso C. Ricobaraza A. Pascual-Lucas M. Unceta N. Rico A.J. Goicolea M.A. Sallés J. Lanciego J.L. Oyarzabal J. Franco R. Cuadrado-Tejedor M. García-Osta A. Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 2013 64 114 123 10.1016/j.neuropharm.2012.06.052 22776546
    [Google Scholar]
  186. Sanders O. Sildenafil for the treatment of alzheimer’s disease: A systematic review. J. Alzheimers Dis. Rep. 2020 4 1 91 106 10.3233/ADR‑200166 32467879
    [Google Scholar]
  187. Athira K.V. Sadanandan P. Chakravarty S. Repurposing vorinostat for the treatment of disorders affecting brain. Neuromolecular Med. 2021 23 4 449 465 10.1007/s12017‑021‑08660‑4 33948878
    [Google Scholar]
  188. Kumar V. Kundu S. Singh A. Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr. Neuropharmacol. 2022 20 1 158 178 10.2174/1570159X19666210609160017 34151764
    [Google Scholar]
  189. Cuadrado-Tejedor M. Garcia-Barroso C. Sánchez-Arias J.A. Rabal O. Pérez-González M. Mederos S. Ugarte A. Franco R. Segura V. Perea G. Oyarzabal J. Garcia-Osta A. A first-in-class small-molecule that acts as a dual inhibitor of hdac and pde5 and that rescues hippocampal synaptic impairment in alzheimer’s disease mice. Neuropsychopharmacology 2017 42 2 524 539 10.1038/npp.2016.163 27550730
    [Google Scholar]
  190. Rabal O. Sánchez-Arias J.A. Cuadrado-Tejedor M. de Miguel I. Pérez-González M. García-Barroso C. Ugarte A. Estella-Hermoso de Mendoza A. Sáez E. Espelosin M. Ursua S. Haizhong T. Wei W. Musheng X. Garcia-Osta A. Oyarzabal J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of alzheimer’s disease. Eur. J. Med. Chem. 2018 150 506 524 10.1016/j.ejmech.2018.03.005 29549837
    [Google Scholar]
  191. Rabal O. Sánchez-Arias J.A. Cuadrado-Tejedor M. de Miguel I. Pérez-González M. García-Barroso C. Ugarte A. Estella-Hermoso de Mendoza A. Sáez E. Espelosin M. Ursua S. Haizhong T. Wei W. Musheng X. Garcia-Osta A. Oyarzabal J. Discovery of in Vivo chemical probes for treating alzheimer’s disease: Dual Phosphodiesterase 5 (PDE5) and Class I histone deacetylase selective inhibitors. ACS Chem. Neurosci. 2019 10 3 1765 1782 10.1021/acschemneuro.8b00648 30525452
    [Google Scholar]
  192. Zhang F. Su B. Wang C. Siedlak S.L. Mondragon-Rodriguez S. Lee H. Wang X. Perry G. Zhu X. Posttranslational modifications of α-tubulin in alzheimer disease. Transl. Neurodegener. 2015 4 1 9 10.1186/s40035‑015‑0030‑4 26029362
    [Google Scholar]
  193. Kandoth C. McLellan M.D. Vandin F. Ye K. Niu B. Lu C. Xie M. Zhang Q. McMichael J.F. Wyczalkowski M.A. Leiserson M.D.M. Miller C.A. Welch J.S. Walter M.J. Wendl M.C. Ley T.J. Wilson R.K. Raphael B.J. Ding L. Mutational landscape and significance across 12 major cancer types. Nature 2013 502 7471 333 339 10.1038/nature12634 24132290
    [Google Scholar]
  194. Xiong S. Mouse models of Mdm2 and Mdm4 and their clinical implications. Chin. J. Cancer 2013 32 7 371 375 10.5732/cjc.012.10286 23327795
    [Google Scholar]
  195. Koo N. Sharma A.K. Narayan S. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int. J. Mol. Sci. 2022 23 9 5005 10.3390/ijms23095005 35563397
    [Google Scholar]
  196. Guerlavais V. Sawyer T.K. Carvajal L. Chang Y.S. Graves B. Ren J.G. Sutton D. Olson K.A. Packman K. Darlak K. Elkin C. Feyfant E. Kesavan K. Gangurde P. Vassilev L.T. Nash H.M. Vukovic V. Aivado M. Annis D.A. Discovery of Sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-Helical peptide in clinical development. J. Med. Chem. 2023 66 14 9401 9417 10.1021/acs.jmedchem.3c00623 37439511
    [Google Scholar]
  197. Pairawan S. Zhao M. Yuca E. Annis A. Evans K. Sutton D. Carvajal L. Ren J.G. Santiago S. Guerlavais V. Akcakanat A. Tapia C. Yang F. Bose P.S.C. Zheng X. Dumbrava E.I. Aivado M. Meric-Bernstam F. First in class dual MDM2/MDMX inhibitor ALRN-6924 enhances antitumor efficacy of chemotherapy in TP53 wild-type hormone receptor-positive breast cancer models. Breast Cancer Res. 2021 23 1 29 10.1186/s13058‑021‑01406‑x 33663585
    [Google Scholar]
  198. Nunes R.C. Ribeiro C.J.A. Monteiro Â. Rodrigues C.M.P. Amaral J.D. Santos M.M.M. In vitro targeting of colon cancer cells using spiropyrazoline oxindoles. Eur. J. Med. Chem. 2017 139 168 179 10.1016/j.ejmech.2017.07.057 28800455
    [Google Scholar]
  199. Espadinha M. Lopes E.A. Marques V. Amaral J.D. dos Santos D.J.V.A. Mori M. Daniele S. Piccarducci R. Zappelli E. Martini C. Rodrigues C.M.P. Santos M.M.M. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors. Eur. J. Med. Chem. 2022 241 114637 10.1016/j.ejmech.2022.114637 35961068
    [Google Scholar]
  200. Yao Q. Chen Y. Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019 51 11 17 10.1016/j.cbpa.2019.01.024 30825741
    [Google Scholar]
  201. Lu T.X. Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol. 2018 141 4 1202 1207 10.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  202. Ferragut Cardoso A.P. Banerjee M. Nail A.N. Lykoudi A. States J.C. miRNA dysregulation is an emerging modulator of genomic instability. Semin. Cancer Biol. 2021 76 120 131 10.1016/j.semcancer.2021.05.004 33979676
    [Google Scholar]
  203. Diener C. Keller A. Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 2022 38 6 613 626 10.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  204. Abidin S.Z. Mat Pauzi N.A. Mansor N.I. Mohd Isa N.I. Hamid A.A. A new perspective on alzheimer’s disease: microRNAs and circular RNAs. Front. Genet. 2023 14 1231486 10.3389/fgene.2023.1231486 37790702
    [Google Scholar]
  205. Gong G. An F. Wang Y. Bian M. Yu L.J. Wei C. miR-15b represses BACE1 expression in sporadic alzheimer’s disease. Oncotarget 2017 8 53 91551 91557 10.18632/oncotarget.21177 29207665
    [Google Scholar]
  206. Gabr M.T. Brogi S. MicroRNA-based multitarget approach for alzheimer’s disease: Discovery of the first-in-class dual inhibitor of Acetylcholinesterase and MicroRNA-15b biogenesis. J. Med. Chem. 2020 63 17 9695 9704 10.1021/acs.jmedchem.0c00756 32787143
    [Google Scholar]
  207. Papa A. Cursaro I. Pozzetti L. Contri C. Cappello M. Pasquini S. Carullo G. Ramunno A. Gemma S. Varani K. Butini S. Campiani G. Vincenzi F. Pioneering first‐in‐class FAAH‐HDAC inhibitors as potential multitarget neuroprotective agents. Arch. Pharm. (Weinheim) 2023 356 12 2300410 10.1002/ardp.202300410 37750286
    [Google Scholar]
  208. Basavarajappa B.S. Shivakumar M. Joshi V. Subbanna S. Endocannabinoid system in neurodegenerative disorders. J. Neurochem. 2017 142 5 624 648 10.1111/jnc.14098 28608560
    [Google Scholar]
  209. Duranti A. Beldarrain G. Álvarez A. Sbriscia M. Carloni S. Balduini W. Alonso-Alconada D. The endocannabinoid system as a target for neuroprotection/neuroregeneration in perinatal hypoxic–ischemic brain injury. Biomedicines 2022 11 1 28 10.3390/biomedicines11010028 36672536
    [Google Scholar]
  210. Sánchez A.J. García-Merino A. Neuroprotective agents: Cannabinoids. Clin. Immunol. 2012 142 1 57 67 10.1016/j.clim.2011.02.010 21420365
    [Google Scholar]
  211. Zhu S. Zhang T. Zheng L. Liu H. Song W. Liu D. Li Z. Pan C. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 2021 14 1 156 10.1186/s13045‑021‑01164‑5 34579759
    [Google Scholar]
  212. Ponomarev A.V. Shubina I.Z. Insights into mechanisms of tumor and immune system interaction: Association with wound healing. Front. Oncol. 2019 9 1115 10.3389/fonc.2019.01115 31709183
    [Google Scholar]
  213. Huo J.L. Wang Y.T. Fu W.J. Lu N. Liu Z.S. The promising immune checkpoint LAG-3 in cancer immunotherapy: From basic research to clinical application. Front. Immunol. 2022 13 956090 10.3389/fimmu.2022.956090 35958563
    [Google Scholar]
  214. Dutta S. Ganguly A. Chatterjee K. Spada S. Mukherjee S. Targets of immune escape mechanisms in cancer: Basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel) 2023 12 2 218 10.3390/biology12020218 36829496
    [Google Scholar]
  215. Basudan A.M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 2022 13 1 22 40 10.3390/clinpract13010003 36648843
    [Google Scholar]
  216. Bashash D. Zandi Z. Kashani B. Pourbagheri-Sigaroodi A. Salari S. Ghaffari S.H. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J. Cell. Physiol. 2022 237 1 346 372 10.1002/jcp.30575 34498289
    [Google Scholar]
  217. Dąbrowska A. Grubba M. Balihodzic A. Szot O. Sobocki B.K. Perdyan A. The role of regulatory T cells in cancer treatment resistance. Int. J. Mol. Sci. 2023 24 18 14114 10.3390/ijms241814114 37762416
    [Google Scholar]
  218. Parab A. Kumar Bhatt L. Omri A. Targeting epigenetic mechanisms: A boon for cancer immunotherapy. Biomedicines 2023 11 1 169 10.3390/biomedicines11010169 36672677
    [Google Scholar]
  219. Wang S. Wang J. Chen Z. Luo J. Guo W. Sun L. Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis. Oncol. 2024 8 1 31 10.1038/s41698‑024‑00522‑z 38341519
    [Google Scholar]
  220. Lodewijk I. Nunes S.P. Henrique R. Jerónimo C. Dueñas M. Paramio J.M. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin. Epigenetics 2021 13 1 63 10.1186/s13148‑021‑01046‑0 33761971
    [Google Scholar]
  221. Waight J.D. Takai S. Marelli B. Qin G. Hance K.W. Zhang D. Tighe R. Lan Y. Lo K.M. Sabzevari H. Hofmeister R. Wilson N.S. Cutting edge: Epigenetic regulation of Foxp3 defines a stable population of CD4+ regulatory T cells in tumors from mice and humans. J. Immunol. 2015 194 3 878 882 10.4049/jimmunol.1402725 25548231
    [Google Scholar]
  222. Wang D. Quiros J. Mahuron K. Pai C.C. Ranzani V. Young A. Silveria S. Harwin T. Abnousian A. Pagani M. Rosenblum M.D. Van Gool F. Fong L. Bluestone J.A. DuPage M. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018 23 11 3262 3274 10.1016/j.celrep.2018.05.050 29898397
    [Google Scholar]
  223. Mantovani A. Marchesi F. Malesci A. Laghi L. Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017 14 7 399 416 10.1038/nrclinonc.2016.217 28117416
    [Google Scholar]
  224. Hashimoto A. Fukumoto T. Zhang R. Gabrilovich D. Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunol. Immunother. 2020 69 9 1929 1936 10.1007/s00262‑020‑02588‑7 32435850
    [Google Scholar]
  225. Wang H.F. Ning F. Liu Z.C. Wu L. Li Z.Q. Qi Y.F. Zhang G. Wang H.S. Cai S.H. Du J. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro. Cancer Immunol. Immunother. 2017 66 3 355 366 10.1007/s00262‑016‑1935‑1 27915371
    [Google Scholar]
  226. Cui Y. Cai J. Wang W. Wang S. Regulatory effects of histone deacetylase inhibitors on myeloid-derived suppressor cells. Front. Immunol. 2021 12 690207 10.3389/fimmu.2021.690207 34149732
    [Google Scholar]
  227. Draghiciu O. Lubbers J. Nijman H.W. Daemen T. Myeloid derived suppressor cells—An overview of combat strategies to increase immunotherapy efficacy. OncoImmunology 2015 4 1 e954829 10.4161/21624011.2014.954829 25949858
    [Google Scholar]
  228. Duan Z. Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 127 10.1038/s41392‑021‑00506‑6 33767177
    [Google Scholar]
  229. Niu Y. Chen J. Qiao Y. Epigenetic modifications in tumor-associated macrophages: A new perspective for an old foe. Front. Immunol. 2022 13 836223 10.3389/fimmu.2022.836223 35140725
    [Google Scholar]
  230. Gomez S. Tabernacki T. Kobyra J. Roberts P. Chiappinelli K.B. Combining epigenetic and immune therapy to overcome cancer resistance. Semin. Cancer Biol. 2020 65 99 113 10.1016/j.semcancer.2019.12.019 31877341
    [Google Scholar]
  231. Guo R. Li J. Hu J. Fu Q. Yan Y. Xu S. Wang X. Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int. Immunopharmacol. 2023 120 110417 10.1016/j.intimp.2023.110417 37276826
    [Google Scholar]
  232. Woods D.M. Sodré A.L. Villagra A. Sarnaik A. Sotomayor E.M. Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 2015 3 12 1375 1385 10.1158/2326‑6066.CIR‑15‑0077‑T 26297712
    [Google Scholar]
  233. Peng D. Kryczek I. Nagarsheth N. Zhao L. Wei S. Wang W. Sun Y. Zhao E. Vatan L. Szeliga W. Kotarski J. Tarkowski R. Dou Y. Cho K. Hensley-Alford S. Munkarah A. Liu R. Zou W. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015 527 7577 249 253 10.1038/nature15520 26503055
    [Google Scholar]
  234. Mazzone R. Zwergel C. Mai A. Valente S. Epi-drugs in combination with immunotherapy: A new avenue to improve anticancer efficacy. Clin. Epigenetics 2017 9 1 59 10.1186/s13148‑017‑0358‑y 28572863
    [Google Scholar]
  235. Duruisseaux M. Esteller M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol. 2018 51 116 128 10.1016/j.semcancer.2017.09.005 28919484
    [Google Scholar]
  236. Di Giacomo A.M. Covre A. Finotello F. Rieder D. Danielli R. Sigalotti L. Giannarelli D. Petitprez F. Lacroix L. Valente M. Cutaia O. Fazio C. Amato G. Lazzeri A. Monterisi S. Miracco C. Coral S. Anichini A. Bock C. Nemc A. Oganesian A. Lowder J. Azab M. Fridman W.H. Sautès-Fridman C. Trajanoski Z. Maio M. Guadecitabine plus ipilimumab in unresectable melanoma: The NIBIT-M4 clinical trial. Clin. Cancer Res. 2019 25 24 7351 7362 10.1158/1078‑0432.CCR‑19‑1335 31530631
    [Google Scholar]
  237. Dhiman A. Sharma R. Singh R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B 2022 12 7 3006 3027 10.1016/j.apsb.2022.03.021 35865090
    [Google Scholar]
  238. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019 89 103021 10.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  239. Kumari A. Singh R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem. 2020 96 103578 10.1016/j.bioorg.2020.103578 31978684
    [Google Scholar]
  240. Singh R.K. Kumar S. Prasad D.N. Bhardwaj T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem. 2018 151 401 433 10.1016/j.ejmech.2018.04.001 29649739
    [Google Scholar]
  241. Sethi N.S. Prasad D.N. Singh R.K. Synthesis, anticancer, and antibacterial studies of benzylidene bearing 5-substituted and 3, 5-disubstituted-2, 4-thiazolidinedione derivatives. Med. Chem. 2021 17 4 369 379 10.2174/1573406416666200512073640 32394843
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266337668241025061804
Loading
/content/journals/ctmc/10.2174/0115680266337668241025061804
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Computer-aided drug design (CADD)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test