Skip to content
2000
image of Exploring the Therapeutic Potential of Natural Flavonoids in Inflammatory Bowel Disease: Insights into Intestinal Mucosal Barrier Regulation

Abstract

Inflammatory Bowel Disease (IBD) is a chronic non-specific disease that affects the gastrointestinal tract, and Intestinal Mucosal Barrier (IMB) damage is closely related to its pathogenesis. The management of IBD often involves repairing the mechanical, chemical, immune, or biological barriers of the intestinal mucosa to alleviate symptoms. Currently, the treatment of IBD patients requires continuous medication or surgical interventions, which can cause irreversible damage to the patient's body over time. Natural flavonoids, commonly found in human diets, offer a safe, effective, and non-toxic alternative, presenting significant potential for promoting intestinal health and disease prevention. This article aimed to explore current research concerning the role of natural flavonoids in modulating the IMB in IBD, offering a new perspective for the prevention and management of IBD and highlighting new opportunities for the development and application of natural flavonoids.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337430241127112031
2025-01-15
2025-07-07
Loading full text...

Full text loading...

References

  1. Pallikkunnath James J. Riis L.B. Malham M. Høgdall E. Langholz E. Nielsen B.S. P003 MicroRNAs as biomarkers in Inflammatory Bowel Disease unclassified (IBDU) patient samples may predict the development from IBDU to Crohn’s Disease or Ulcerative Colitis. J. Crohn’s Colitis 2023 17 Suppl. 1 i171 i173 10.1093/ecco‑jcc/jjac190.0133
    [Google Scholar]
  2. Chen Y. Gao H. Zhao J. Ross R.P. Stanton C. Zhang H. Chen W. Yang B. Exploiting lactic acid bacteria for inflammatory bowel disease: A recent update. Trends Food Sci. Technol. 2023 138 126 140 10.1016/j.tifs.2023.06.007
    [Google Scholar]
  3. Kayama H. Okumura R. Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 2020 38 1 23 48 10.1146/annurev‑immunol‑070119‑115104 32340570
    [Google Scholar]
  4. Karner M. Kocjan A. Stein J. Schreiber S. von Boyen G. Uebel P. Schmidt C. Kupcinskas L. Dina I. Zuelch F. Keilhauer G. Stremmel W. First multicenter study of modified release phosphatidylcholine “LT-02” in ulcerative colitis: A randomized, placebo-controlled trial in mesalazine-refractory courses. Am. J. Gastroenterol. 2014 109 7 1041 1051 10.1038/ajg.2014.104 24796768
    [Google Scholar]
  5. Blonski W. Buchner A.M. Aberra F. Lichtenstein G. Teduglutide in Crohn’s disease. Expert Opin. Biol. Ther. 2013 13 8 1207 1214 10.1517/14712598.2013.815721 23834252
    [Google Scholar]
  6. Vezza T. Rodríguez-Nogales A. Algieri F. Utrilla M. Rodriguez-Cabezas M. Galvez J. Flavonoids in inflammatory bowel disease: A review. Nutrients 2016 8 4 211 10.3390/nu8040211 27070642
    [Google Scholar]
  7. Shi S. Jiang H. Ma W. Guan Z. Han M. Man S. Wu Z. He S. Preclinical studies of natural flavonoids in inflammatory bowel disease based on macrophages: A systematic review with meta-analysis and network pharmacology. Naunyn Schmiedebergs Arch. Pharmacol. 2024 10.1007/s00210‑024‑03501‑0 39422746
    [Google Scholar]
  8. Biedermann L. Mwinyi J. Scharl M. Frei P. Zeitz J. Kullak-Ublick G.A. Vavricka S.R. Fried M. Weber A. Humpf H.U. Peschke S. Jetter A. Krammer G. Rogler G. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis — An open pilot study. J. Crohn’s Colitis 2013 7 4 271 279 10.1016/j.crohns.2012.07.010 22883440
    [Google Scholar]
  9. Jang J.Y. Im E. Kim N.D. Therapeutic potential of bioactive components from Scutellaria baicalensis georgi in inflammatory bowel disease and colorectal cancer: A Review. Int. J. Mol. Sci. 2023 24 3 1954 10.3390/ijms24031954 36768278
    [Google Scholar]
  10. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009 9 11 799 809 10.1038/nri2653 19855405
    [Google Scholar]
  11. Di Tommaso N. Gasbarrini A. Ponziani F.R. Intestinal barrier in human health and disease. Int. J. Environ. Res. Public Health 2021 18 23 12836 10.3390/ijerph182312836 34886561
    [Google Scholar]
  12. Rathinam V.A.K. Chan F.K.M. Inflammasome, inflammation, and tissue homeostasis. Trends Mol. Med. 2018 24 3 304 318 10.1016/j.molmed.2018.01.004 29433944
    [Google Scholar]
  13. Noah T.K. Donahue B. Shroyer N.F. Intestinal development and differentiation. Exp. Cell Res. 2011 317 19 2702 2710 10.1016/j.yexcr.2011.09.006 21978911
    [Google Scholar]
  14. Vancamelbeke M. Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017 11 9 821 834 10.1080/17474124.2017.1343143 28650209
    [Google Scholar]
  15. Groschwitz K.R. Hogan S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009 124 1 3 20 10.1016/j.jaci.2009.05.038 19560575
    [Google Scholar]
  16. Ren Z. Guo C. Yu S. Zhu L. Wang Y. Hu H. Deng J. Progress in mycotoxins affecting intestinal mucosal barrier function. Int. J. Mol. Sci. 2019 20 11 2777 10.3390/ijms20112777 31174254
    [Google Scholar]
  17. Wang K. Wu L. Dou C. Guan X. Wu H. Liu H. Research advance in intestinal mucosal barrier and pathogenesis of Crohn’s disease. Gastroenterol. Res. Pract. 2016 2016 1 6 10.1155/2016/9686238 27651792
    [Google Scholar]
  18. Kakodkar S. Mutlu E.A. Diet as a therapeutic option for adult inflammatory bowel disease. Gastroenterol. Clin. North Am. 2017 46 4 745 767 10.1016/j.gtc.2017.08.016 29173519
    [Google Scholar]
  19. Turnbaugh P.J. Ridaura V.K. Faith J.J. Rey F.E. Knight R. Gordon J.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009 1 6 6ra14 10.1126/scitranslmed.3000322 20368178
    [Google Scholar]
  20. De Filippo C. Cavalieri D. Di Paola M. Ramazzotti M. Poullet J.B. Massart S. Collini S. Pieraccini G. Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010 107 33 14691 14696 10.1073/pnas.1005963107 20679230
    [Google Scholar]
  21. Zhang J. Zhu S. Ma N. Johnston L.J. Wu C. Ma X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med. Res. Rev. 2021 41 2 1061 1088 10.1002/med.21752 33174230
    [Google Scholar]
  22. De Santis S. Cavalcanti E. Mastronardi M. Jirillo E. Chieppa M. Nutritional keys for intestinal barrier modulation. Front. Immunol. 2015 6 612 10.3389/fimmu.2015.00612 26697008
    [Google Scholar]
  23. Hollon J. Puppa E. Greenwald B. Goldberg E. Guerrerio A. Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 2015 7 3 1565 1576 10.3390/nu7031565 25734566
    [Google Scholar]
  24. Shao Y. Wolf P.G. Guo S. Guo Y. Gaskins H.R. Zhang B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J. Nutr. Biochem. 2017 43 18 26 10.1016/j.jnutbio.2017.01.013 28193579
    [Google Scholar]
  25. Liang L. Xiong Q. Kong J. Tian C. Miao L. Zhang X. Du H. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function. Biomed. Pharmacother. 2021 144 112253 10.1016/j.biopha.2021.112253 34607106
    [Google Scholar]
  26. Lin H. Chen D. Du Q. Pan T. Tu H. Xu Y. Teng T. Tu J. Li J. Lin Z. Wang X. Xu L. Chen Y.P. Dietary copper plays an important role in maintaining intestinal barrier integrity during alcohol-induced liver disease through regulation of the intestinal HIF-1α signaling pathway and oxidative stress. Front. Physiol. 2020 11 369 10.3389/fphys.2020.00369 32457642
    [Google Scholar]
  27. Shulzhenko N. Morgun A. Hsiao W. Battle M. Yao M. Gavrilova O. Orandle M. Mayer L. Macpherson A.J. McCoy K.D. Fraser-Liggett C. Matzinger P. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 2011 17 12 1585 1593 10.1038/nm.2505 22101768
    [Google Scholar]
  28. Garber J.J. Mallick E.M. Scanlon K.M. Turner J.R. Donnenberg M.S. Leong J.M. Snapper S.B. Attaching-and-effacing pathogens exploit junction regulatory activities of N-WASP and SNX9 to disrupt the intestinal barrier. Cell. Mol. Gastroenterol. Hepatol. 2018 5 3 273 288 10.1016/j.jcmgh.2017.11.015 29675452
    [Google Scholar]
  29. Frantz A.L. Rogier E.W. Weber C.R. Shen L. Cohen D.A. Fenton L.A. Bruno M.E.C. Kaetzel C.S. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 2012 5 5 501 512 10.1038/mi.2012.23 22491177
    [Google Scholar]
  30. Kaplan G.G. Windsor J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021 18 1 56 66 10.1038/s41575‑020‑00360‑x 33033392
    [Google Scholar]
  31. Hartwig O. Shetab Boushehri M.A. Shalaby K.S. Loretz B. Lamprecht A. Lehr C.M. Drug delivery to the inflamed intestinal mucosa – targeting technologies and human cell culture models for better therapies of IBD. Adv. Drug Deliv. Rev. 2021 175 113828 10.1016/j.addr.2021.113828 34157320
    [Google Scholar]
  32. Turpin W. Goethel A. Bedrani L. Croitoru Mdcm K. Determinants of IBD heritability: Genes, bugs, and more. Inflamm. Bowel Dis. 2018 24 6 1133 1148 10.1093/ibd/izy085 29701818
    [Google Scholar]
  33. Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015 12 4 205 217 10.1038/nrgastro.2015.34 25732745
    [Google Scholar]
  34. Pasvol T.J. Bloom S. Segal A.W. Rait G. Horsfall L. Use of contraceptives and risk of inflammatory bowel disease: A nested case–control study. Aliment. Pharmacol. Ther. 2022 55 3 318 326 10.1111/apt.16647 34662440
    [Google Scholar]
  35. Kvasnovsky C.L. Aujla U. Bjarnason I. Nonsteroidal anti-inflammatory drugs and exacerbations of inflammatory bowel disease. Scand. J. Gastroenterol. 2015 50 3 255 263 10.3109/00365521.2014.966753 25314574
    [Google Scholar]
  36. Lochhead P. Khalili H. Sachs M.C. Chan A.T. Olén O. Ludvigsson J.F. Statin use and risk of inflammatory bowel diseases: Authors’ reply. J. Crohn’s Colitis 2021 15 8 1403 1404 10.1093/ecco‑jcc/jjab015 33474560
    [Google Scholar]
  37. Mentella MC. Nutrition, IBD and gut microbiota: A review. Nutrients 2020 12 944 10.3390/nu12040944 32235316
    [Google Scholar]
  38. Mehandru S. Colombel J.F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 2021 18 2 83 84 10.1038/s41575‑020‑00399‑w 33318680
    [Google Scholar]
  39. Jäger S. Stange E.F. Wehkamp J. Inflammatory bowel disease: An impaired barrier disease. Langenbecks Arch. Surg. 2013 398 1 1 12 10.1007/s00423‑012‑1030‑9 23160753
    [Google Scholar]
  40. Wang L. Gao M. Kang G. Huang H. The potential role of phytonutrients flavonoids influencing gut microbiota in the prophylaxis and treatment of inflammatory bowel disease. Front. Nutr. 2021 8 798038 10.3389/fnut.2021.798038 34970585
    [Google Scholar]
  41. Kim H.P. Son K.H. Chang H.W. Kang S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004 96 3 229 245 10.1254/jphs.CRJ04003X 15539763
    [Google Scholar]
  42. Jing S. Chen H. Liu E. Zhang M. Zeng F. Shen H. Fang Y. Muhitdinov B. Huang Y. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr. Polym. 2023 316 121025 10.1016/j.carbpol.2023.121025 37321723
    [Google Scholar]
  43. Liu D. Peng R. Chen Z. Yu H. Wang S. Dong S. Li W. Shao W. Dai J. Li F. Jiang Q. Sun W. The protective effects of apigenin against radiation‐induced intestinal injury. Dose Response 2022 20 3 15593258221113791 10.1177/15593258221113791 35859853
    [Google Scholar]
  44. Li Y. Wang X. Su Y. Wang Q. Huang S. Pan Z. Chen Y. Liang J. Zhang M. Xie X. Wu Z. Chen J. Zhou L. Luo X. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin. 2022 43 6 1495 1507 10.1038/s41401‑021‑00781‑7 34671110
    [Google Scholar]
  45. Liu Y. Huang W. Ji S. Wang J. Luo J. Lu B. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chem. 2022 393 133395 10.1016/j.foodchem.2022.133395 35691061
    [Google Scholar]
  46. Lissner D. Schumann M. Batra A. Kredel L.I. Kühl A.A. Erben U. May C. Schulzke J.D. Siegmund B. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm. Bowel Dis. 2015 21 6 1 10.1097/MIB.0000000000000384 25901973
    [Google Scholar]
  47. Li J. Zhang L. Li Y. Wu Y. Wu T. Feng H. Xu Z. Liu Y. Ruan Z. Zhou S. Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier. J. Funct. Foods 2020 75 104246 10.1016/j.jff.2020.104246
    [Google Scholar]
  48. Mu J. Xu J. Wang L. Chen C. Chen P. Anti-inflammatory effects of purple sweet potato anthocyanin extract in DSS-induced colitis: Modulation of commensal bacteria and attenuated bacterial intestinal infection. Food Funct. 2021 12 22 11503 11514 10.1039/D1FO02454J 34700334
    [Google Scholar]
  49. Wang W. Xia T. Yu X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro . Inflamm. Res. 2015 64 6 423 431 10.1007/s00011‑015‑0822‑0 25917044
    [Google Scholar]
  50. Suzuki T. Hara H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J. Nutr. 2009 139 5 965 974 10.3945/jn.108.100867 19297429
    [Google Scholar]
  51. Bian Y. Dong Y. Sun J. Sun M. Hou Q. Lai Y. Zhang B. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J. Agric. Food Chem. 2020 68 1 160 167 10.1021/acs.jafc.9b06294 31825618
    [Google Scholar]
  52. Li C. Wang L. Zhao J. Wei Y. Zhai S. Tan M. Guan K. Huang Z. Chen C. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine 2022 104 154284 10.1016/j.phymed.2022.154284 35777121
    [Google Scholar]
  53. Azuma T. Shigeshiro M. Kodama M. Tanabe S. Suzuki T. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J. Nutr. 2013 143 6 827 834 10.3945/jn.113.174508 23596159
    [Google Scholar]
  54. Shigeshiro M. Tanabe S. Suzuki T. Dietary polyphenols modulate intestinal barrier defects and inflammation in a murine model of colitis. J. Funct. Foods 2013 5 2 949 955 10.1016/j.jff.2013.02.008
    [Google Scholar]
  55. Kim S.E. Kawaguchi K. Hayashi H. Furusho K. Maruyama M. Remission effects of dietary soybean isoflavones on DSS-induced murine colitis and an LPS-activated macrophage cell line. Nutrients 2019 11 8 1746 10.3390/nu11081746 31362418
    [Google Scholar]
  56. Salaritabar A. Darvishi B. Hadjiakhoondi F. Manayi A. Sureda A. Nabavi S.F. Fitzpatrick L.R. Nabavi S.M. Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017 23 28 5097 5114 10.3748/wjg.v23.i28.5097 28811706
    [Google Scholar]
  57. Wu W. Liu L. Zhu Y. Ni J. Lu J. Wang X. Ma L. Jiang Y. Zinc-rutin particles ameliorate DSS-induced acute and chronic colitis via anti-inflammatory and antioxidant protection of the intestinal epithelial barrier. J. Agric. Food Chem. 2023 71 34 12715 12729 10.1021/acs.jafc.3c03195 37581468
    [Google Scholar]
  58. Nunes C. Almeida L. Barbosa R.M. Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017 8 1 387 396 10.1039/C6FO01529H 28067377
    [Google Scholar]
  59. Damiano S. Sasso A. De Felice B. Di Gregorio I. La Rosa G. Lupoli G.A. Belfiore A. Mondola P. Santillo M. Quercetin increases MUC2 and MUC5AC gene expression and secretion in intestinal goblet cell-like LS174T via PLC/PKCα/ERK1-2 pathway. Front. Physiol. 2018 9 357 10.3389/fphys.2018.00357 29681865
    [Google Scholar]
  60. Cao H. Liu J. Shen P. Cai J. Han Y. Zhu K. Fu Y. Zhang N. Zhang Z. Cao Y. Protective effect of naringin on DSS-induced ulcerative colitis in mice. J. Agric. Food Chem. 2018 66 50 13133 13140 10.1021/acs.jafc.8b03942 30472831
    [Google Scholar]
  61. Luo D. Huang Z. Jia G. Zhao H. Liu G. Chen X. Naringin mitigates LPS-induced intestinal barrier injury in mice. Food Funct. 2023 14 3 1617 1626 10.1039/D2FO03586C 36688440
    [Google Scholar]
  62. Zhang J. Lei H. Hu X. Dong W. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur. J. Pharmacol. 2020 873 172992 10.1016/j.ejphar.2020.172992 32035144
    [Google Scholar]
  63. Park H.Y. Yu J.H. Hesperidin enhances intestinal barrier function in Caco‐2 cell monolayers via AMPK‐mediated tight junction‐related proteins. FEBS Open Bio 2023 13 3 532 544 10.1002/2211‑5463.13564 36700348
    [Google Scholar]
  64. He W. Liu M. Li Y. Yu H. Wang D. Chen Q. Chen Y. Zhang Y. Wang T. Flavonoids from Citrus aurantium ameliorate TNBS-induced ulcerative colitis through protecting colonic mucus layer integrity. Eur. J. Pharmacol. 2019 857 172456 10.1016/j.ejphar.2019.172456 31220438
    [Google Scholar]
  65. Pierre J.F. Heneghan A.F. Feliciano R.P. Shanmuganayagam D. Krueger C.G. Reed J.D. Kudsk K.A. Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition. JPEN J. Parenter. Enteral Nutr. 2014 38 1 107 114 10.1177/0148607112473654 23359014
    [Google Scholar]
  66. Wu L.H. Xu Z.L. Dong D. He S.A. Yu H. Protective effect of anthocyanins extract from blueberry on TNBS‐Induced IBD model of mice. Evid. Based Complement. Alternat. Med. 2011 2011 1 525462 10.1093/ecam/neq040 21785630
    [Google Scholar]
  67. Gao J. Yu W. Zhang C. Liu H. Fan J. Wei J. The protective effect and mechanism of Aornia melanocarpa Elliot anthocyanins on IBD model mice. Food Biosci. 2021 41 101075 10.1016/j.fbio.2021.101075
    [Google Scholar]
  68. Wu B. Bhatnagar R. Indukuri V.V. Chopra S. March K. Cordero N. Chopra S. Reddivari L. Intestinal mucosal barrier function restoration in mice by maize diet containing enriched flavan-4-ols. Nutrients 2020 12 4 896 10.3390/nu12040896 32218287
    [Google Scholar]
  69. Contreras T.C. Ricciardi E. Cremonini E. Oteiza P.I. (−)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch. Biochem. Biophys. 2015 573 84 91 10.1016/j.abb.2015.01.024 25795020
    [Google Scholar]
  70. Liu F. Zhang X. Ji Y. Total flavonoid extract from hawthorn (Crataegus pinnatifida) improves inflammatory cytokines-evoked epithelial barrier deficit. Med. Sci. Monit. 2020 26 e920170 10.12659/MSM.920170 32065826
    [Google Scholar]
  71. Sharma D. Kanneganti T.D. Inflammatory cell death in intestinal pathologies. Immunol. Rev. 2017 280 1 57 73 10.1111/imr.12602 29027223
    [Google Scholar]
  72. Stio M. Retico L. Annese V. Bonanomi A.G. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand. J. Gastroenterol. 2016 51 10 1193 1199 10.1080/00365521.2016.1185463 27207502
    [Google Scholar]
  73. Edelblum K.L. Turner J.R. The tight junction in inflammatory disease: Communication breakdown. Curr. Opin. Pharmacol. 2009 9 6 715 720 10.1016/j.coph.2009.06.022 19632896
    [Google Scholar]
  74. Noda S. Tanabe S. Suzuki T. Differential effects of flavonoids on barrier integrity in human intestinal Caco-2 cells. J. Agric. Food Chem. 2012 60 18 4628 4633 10.1021/jf300382h 22506771
    [Google Scholar]
  75. Suzuki T. Tanabe S. Hara H. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells. J. Nutr. 2011 141 1 87 94 10.3945/jn.110.125633 21068182
    [Google Scholar]
  76. Tan Y. Zheng C. Effects of alpinetin on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium-induced ulcerative colitis mice. Am. J. Med. Sci. 2018 355 4 377 386 10.1016/j.amjms.2018.01.002 29661352
    [Google Scholar]
  77. Wan M.L.Y. Co V.A. El-Nezami H. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food Sci. Nutr. 2021 61 4 690 711 10.1080/10408398.2020.1744512 32208932
    [Google Scholar]
  78. Crispi S. Filosa S. Di Meo F. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 2018 13 12 2055 2059 10.4103/1673‑5374.241429 30323120
    [Google Scholar]
  79. Van der Sluis M. De Koning B.A.E. De Bruijn A.C.J.M. Velcich A. Meijerink J.P.P. Van Goudoever J.B. Büller H.A. Dekker J. Van Seuningen I. Renes I.B. Einerhand A.W.C. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006 131 1 117 129 10.1053/j.gastro.2006.04.020 16831596
    [Google Scholar]
  80. Meng W. Chen L. Ouyang K. Lin S. Zhang Y. He J. Wang W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. Food Sci. Hum. Wellness 2023 12 6 2440 2450 10.1016/j.fshw.2023.03.011
    [Google Scholar]
  81. Arsenescu R. Bruno M.E.C. Rogier E.W. Stefka A.T. McMahan A.E. Wright T.B. Nasser M.S. de Villiers W.J.S. Kaetzel C.S. Signature biomarkers in Crohn’s disease: toward a molecular classification. Mucosal Immunol. 2008 1 5 399 411 10.1038/mi.2008.32 19079204
    [Google Scholar]
  82. Zhang M. Kou J. Wu Y. Wang M. Zhou X. Yang Y. Wu Z. Dietary genistein supplementation improves intestinal mucosal barrier function in Escherichia coli O78-challenged broilers. J. Nutr. Biochem. 2020 77 108267 10.1016/j.jnutbio.2019.108267 32000135
    [Google Scholar]
  83. da Silva L.M. Pezzini B.C. Somensi L.B. Bolda Mariano L.N. Mariott M. Boeing T. dos Santos A.C. Longo B. Cechinel-Filho V. de Souza P. de Andrade S.F. Hesperidin, a citrus flavanone glycoside, accelerates the gastric healing process of acetic acid-induced ulcer in rats. Chem. Biol. Interact. 2019 308 45 50 10.1016/j.cbi.2019.05.011 31095933
    [Google Scholar]
  84. Zhou K. Cheng R. Liu B. Wang L. Xie H. Zhang C. Eupatilin ameliorates dextran sulphate sodium-induced colitis in mice partly through promoting AMPK activation. Phytomedicine 2018 46 46 56 10.1016/j.phymed.2018.04.033 30097122
    [Google Scholar]
  85. Gil-Cardoso K. Ginés I. Pinent M. Ardévol A. Arola L. Blay M. Terra X. Chronic supplementation with dietary proanthocyanidins protects from diet‐induced intestinal alterations in obese rats. Mol. Nutr. Food Res. 2017 61 8 1601039 10.1002/mnfr.201601039 28218448
    [Google Scholar]
  86. Hao N.B. Lü M.H. Fan Y.H. Cao Y.L. Zhang Z.R. Yang S.M. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012 2012 1 11 10.1155/2012/948098 22778768
    [Google Scholar]
  87. Abron J.D. Singh N.P. Price R.L. Nagarkatti M. Nagarkatti P.S. Singh U.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS One 2018 13 7 e0199631 10.1371/journal.pone.0199631 30024891
    [Google Scholar]
  88. Yan J. Luo M. Chen Z. He B. Tian J. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. J. Immunol. Res. 2020 2020 1 8 10.1155/2020/8813558 33381606
    [Google Scholar]
  89. Parkar S.G. Stevenson D.E. Skinner M.A. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol. 2008 124 3 295 298 10.1016/j.ijfoodmicro.2008.03.017 18456359
    [Google Scholar]
  90. Lyu Y.L. Zhou H.F. Yang J. Wang F.X. Sun F. Li J.Y. Biological activities underlying the therapeutic effect of quercetin on inflammatory bowel disease. Mediators Inflamm. 2022 2022 1 8 10.1155/2022/5665778 35915741
    [Google Scholar]
  91. Steinmann J. Buer J. Pietschmann T. Steinmann E. Anti‐infective properties of epigallocatechin‐3‐gallate (EGCG), a component of green tea. Br. J. Pharmacol. 2013 168 5 1059 1073 10.1111/bph.12009 23072320
    [Google Scholar]
  92. Wu J. Zhao Y. Wang X. Kong L. Johnston L.J. Lu L. Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit. Rev. Food Sci. Nutr. 2022 62 3 783 797 10.1080/10408398.2020.1828813 33043708
    [Google Scholar]
  93. Shao B.Z. Yao Y. Zhai J.S. Zhu J.H. Li J.P. Wu K. The role of autophagy in inflammatory bowel disease. Front. Physiol. 2021 12 621132 10.3389/fphys.2021.621132 33633585
    [Google Scholar]
  94. Xiong Y. Deng Z. Liu J. Qiu J. Guo L. Feng P. Sui J. Chen D. Guo H. Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol. Res. 2019 148 104461 10.1016/j.phrs.2019.104461 31542404
    [Google Scholar]
  95. Zhou H. Jiang F. Leng Y. Propofol ameliorates ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway: A novel therapeutic strategy in atherosclerosis. Front. Mol. Biosci. 2021 8 695336 10.3389/fmolb.2021.695336 34250023
    [Google Scholar]
  96. Chen S. Jiang J. Chao G. Hong X. Cao H. Zhang S. Pure total flavonoids from citrus protect against nonsteroidal anti-inflammatory drug-induced small intestine injury by promoting autophagy in vivo and in vitro. Front. Pharmacol. 2021 12 622744 10.3389/fphar.2021.622744 33953669
    [Google Scholar]
  97. Lv Q. Xing Y. Liu J. Dong D. Liu Y. Qiao H. Zhang Y. Hu L. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm. Sin. B 2021 11 9 2880 2899 10.1016/j.apsb.2021.03.011 34589402
    [Google Scholar]
  98. Naama M. Telpaz S. Awad A. Ben-Simon S. Harshuk-Shabso S. Modilevsky S. Rubin E. Sawaed J. Zelik L. Zigdon M. Asulin N. Turjeman S. Werbner M. Wongkuna S. Feeney R. Schroeder B.O. Nyska A. Nuriel-Ohayon M. Bel S. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe 2023 31 3 433 446.e4 10.1016/j.chom.2023.01.006 36738733
    [Google Scholar]
  99. Glover L.E. Lee J.S. Colgan S.P. Oxygen metabolism and barrier regulation in the intestinal mucosa. J. Clin. Invest. 2016 126 10 3680 3688 10.1172/JCI84429 27500494
    [Google Scholar]
  100. Grisham M. Oxidants and free radicals in inflammatory bowel disease. Lancet 1994 344 8926 859 861 10.1016/S0140‑6736(94)92831‑2 7916405
    [Google Scholar]
  101. Al-Rejaie S.S. Abuohashish H.M. Al-Enazi M.M. Al-Assaf A.H. Parmar M.Y. Ahmed M.M. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol. 2013 19 34 5633 5644 10.3748/wjg.v19.i34.5633 24039355
    [Google Scholar]
  102. Singh D.P. Borse S.P. Nivsarkar M. Overcoming the exacerbating effects of ranitidine on NSAID-induced small intestinal toxicity with quercetin: Providing a complete GI solution. Chem. Biol. Interact. 2017 272 53 64 10.1016/j.cbi.2017.04.006 28400101
    [Google Scholar]
  103. Xiao H. Wen B. Shen X. Bian Z. Potential of plant-sourced phenols for inflammatory bowel disease. Curr. Med. Chem. 2019 25 38 5191 5217 10.2174/0929867324666171009100900 28990509
    [Google Scholar]
  104. Xiong Y. Chen D. Yu C. Lv B. Peng J. Wang J. Lin Y. Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function. Mol. Nutr. Food Res. 2015 59 5 829 842 10.1002/mnfr.201400614 25655748
    [Google Scholar]
  105. Wang K. Jin X. Chen Y. Song Z. Jiang X. Hu F. Conlon M. Topping D. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling. Nutrients 2016 8 5 272 10.3390/nu8050272 27164138
    [Google Scholar]
  106. Watson J.L. Ansari S. Cameron H. Wang A. Akhtar M. McKay D.M. Green tea polyphenol (−)-epigallocatechin gallate blocks epithelial barrier dysfunction provoked by IFN-γ but not by IL-4. Am. J. Physiol. Gastrointest. Liver Physiol. 2004 287 5 G954 G961 10.1152/ajpgi.00302.2003 15231486
    [Google Scholar]
  107. Hämäläinen M. Nieminen R. Vuorela P. Heinonen M. Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007 2007 45673 10.1155/2007/45673 18274639
    [Google Scholar]
  108. Wells C.L. Jechorek R.P. Kinneberg K.M. Debol S.M. Erlandsen S.L. The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes. J. Nutr. 1999 129 3 634 640 10.1093/jn/129.3.634 10082767
    [Google Scholar]
  109. Ma H. Zhang B. Hu Y. Wang J. Liu J. Qin R. Lv S. Wang S. Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice. J. Agric. Food Chem. 2019 67 26 7325 7335 10.1021/acs.jafc.9b02211 31184120
    [Google Scholar]
  110. Lan H. Wang H. Chen C. Hu W. Ai C. Chen L. Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit. Rev. Food Sci. Nutr. 2023 ••• 1 19 37409462
    [Google Scholar]
  111. Andres S. Pevny S. Ziegenhagen R. Bakhiya N. Schäfer B. Hirsch-Ernst K.I. Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018 62 1 1700447 10.1002/mnfr.201700447 29127724
    [Google Scholar]
  112. Wang X. Guo X.Y. Xu L. Liu B. Zhou L.L. Wang X.F. Wang D. Sun T. Studies on the competitive binding of cleviprex and flavonoids to plasma protein by multi-spectroscopic methods: A prediction of food-drug interaction. J. Photochem. Photobiol. B 2017 175 192 199 10.1016/j.jphotobiol.2017.08.037 28892755
    [Google Scholar]
  113. Lv F. Zhang Y. Peng Q. Zhao X. Hu D. Wen J. Liu K. Li R. Wang K. Sun J. Apigenin-Mn(II) loaded hyaluronic acid nanoparticles for ulcerative colitis therapy in mice. Front Chem. 2022 10 969962 10.3389/fchem.2022.969962 35936086
    [Google Scholar]
  114. Stevens Barrón J.C. Chapa González C. Álvarez Parrilla E. De la Rosa L.A. Nanoparticle-mediated delivery of flavonoids: Impact on proinflammatory cytokine production: A systematic review. Biomolecules 2023 13 7 1158 10.3390/biom13071158 37509193
    [Google Scholar]
  115. Ranjbar S. Emamjomeh A. Sharifi F. Zarepour A. Aghaabbasi K. Dehshahri A. Sepahvand A.M. Zarrabi A. Beyzaei H. Zahedi M.M. Mohammadinejad R. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics 2023 15 7 1944 10.3390/pharmaceutics15071944 37514130
    [Google Scholar]
  116. Caddeo C. Díez-Sales O. Pons R. Carbone C. Ennas G. Puglisi G. Fadda A.M. Manconi M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J. Colloid Interface Sci. 2016 461 69 78 10.1016/j.jcis.2015.09.013 26397912
    [Google Scholar]
  117. Yamasaki M. Muraki Y. Nishimoto Y. Murakawa Y. Matsuo T. Fluorescence-labeled liposome accumulation in injured colon of a mouse model of T-cell transfer-mediated inflammatory bowel disease. Biochem. Biophys. Res. Commun. 2017 494 1-2 188 193 10.1016/j.bbrc.2017.10.058 29037813
    [Google Scholar]
  118. Li M. Weigmann B. Effect of a flavonoid combination of apigenin and epigallocatechin-3-gallate on alleviating intestinal inflammation in experimental colitis models. Int. J. Mol. Sci. 2023 24 22 16031 10.3390/ijms242216031 38003220
    [Google Scholar]
  119. Yeon N.R. Cho J.S. Yoo H.S. Jeon S.H. Yi C.M. Jung M.J. Lee Y.S. Shin E.B. Kim N. Kim H. Seong J. Kim N.J. Lee J.K. Inn K.S. Dextran sodium sulfate (DSS)-induced colitis is alleviated in mice after administration of flavone-derived NRF2-activating molecules. Life Sci. 2024 340 122424 10.1016/j.lfs.2024.122424 38242497
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266337430241127112031
Loading
/content/journals/ctmc/10.2174/0115680266337430241127112031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test