Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Healthy skin is essential for balanced health. Currently, skin diseases are considered a major global health issue, impacting individuals of all ages. Skin conditions can vary broadly, ranging from common issues like acne and eczema to more serious diseases such as psoriasis, melanoma, and other types of skin cancer. In recent years, computational methods have appeared as powerful tools for explaining the lurking mechanisms of skin diseases and the advancement of the discovery regarding updated therapeutics. This review spotlights the notable researches that have been performed in using computational approaches such as virtual screening, molecular modelling, and molecular dynamics simulations to discover potential treatments for dermatological conditions such as eczema, psoriasis, acne vulgaris, skin cancer, and tyrosinase-related disorders. Moreover, using methods, researchers have explored the molecular interactions between cosmetic actives and skin targets, providing insights into the binding affinities, stability, and efficacy of these compounds. This computational exploration allows the identification of potential off-target effects and toxicity profiles, ensuring that only the most promising candidates proceed to clinical testing. In addition, the use of molecular dynamics simulations helps to understand conformational changes and interaction dynamics over time, further refining the selection of effective cosmetic actives. Overall, the integration of computational chemistry into dermo-cosmetic research has immense potential to accelerate the discovery and development of innovative treatments to improve skin health and address dermatological concerns.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337405240926114604
2024-10-09
2025-06-27
Loading full text...

Full text loading...

References

  1. SemlinL. Schäfer-KortingM. BorelliC. KortingH.C. In vitro models for human skin disease.Drug Discov. Today2011163-413213910.1016/j.drudis.2010.12.00121146629
    [Google Scholar]
  2. NourH. DaouiO. AbchirO. ElKhattabiS. BelaidiS. ChtitaS. Combined computational approaches for developing new anti-Alzheimer drug candidates: 3D-QSAR, molecular docking and molecular dynamics studies of liquiritigenin derivatives.Heliyon2022812e1199110.1016/j.heliyon.2022.e1199136544815
    [Google Scholar]
  3. AbchirO. DaouiO. BelaidiS. OuassafM. QaisF.A. ElKhattabiS. BelaaouadS. ChtitaS. Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies.J. Mol. Model.202228410610.1007/s00894‑022‑05097‑935352175
    [Google Scholar]
  4. DaouiO. NourH. AbchirO. ElkhattabiS. BakhouchM. ChtitaS. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations.J. Biomol. Struct. Dyn.202341167768778510.1080/07391102.2022.212445636120976
    [Google Scholar]
  5. YamariI. AbchirO. MaliS.N. ErrouguiA. TalbiM. KoualiM.E. ChtitaS. The anti-SARS-CoV-2 activity of novel 9, 10-dihydrophenanthrene derivatives: An insight into molecular docking, ADMET analysis, and molecular dynamics simulation.Sci. Am.202321e0175410.1016/j.sciaf.2023.e0175437332393
    [Google Scholar]
  6. DaouiO. ElkhattabiS. ChtitaS. Design and prediction of ADME/Tox properties of novel magnolol derivatives as anticancer agents for NSCLC using 3D-QSAR, molecular docking, MOLCAD and MM-GBSA studies.Lett. Drug Des. Discov.202320554556910.2174/1570180819666220510141710
    [Google Scholar]
  7. AbchirO. YamariI. NourH. DaouiO. ElkhattabiS. ErrouguiA. ChtitaS. Structure‐based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates α‐amylase inhibitors.ChemistrySelect2023826e20230109210.1002/slct.202301092
    [Google Scholar]
  8. BelhassanA. ChtitaS. ZakiH. AlaqarbehM. AlsakhenN. AlmohtasebF. LakhlifiT. BouachrineM. In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling.J. Mol. Struct.2022125813265210.1016/j.molstruc.2022.13265235194243
    [Google Scholar]
  9. YamariI. AbchirO. SiddiqueF. ZakiH. ErrouguiA. TalbiM. BouachrineM. ElKoualiM. ChtitaS. The anticoagulant potential of Lippia Alba extract in inhibiting SARS-CoV-2 Mpro: Density functional calculation, molecular docking analysis, and molecular dynamics simulations.Sci. Am.202423e0198610.1016/j.sciaf.2023.e01986.
    [Google Scholar]
  10. OuassafM. BelaidiS. ChtitaS. LanezT. Abul QaisF. Md AmiruddinH. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease.J. Biomol. Struct. Dyn.20224021112641127310.1080/07391102.2021.195771234315340
    [Google Scholar]
  11. ZhaoZ. LiuG. MengY. TianJ. ChenX. ShenM. LiY. LiB. GaoC. WuS. LiC. HeX. JiangR. QianM. ZhengX. Synthesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues.Bioorg. Chem.20199310331610.1016/j.bioorg.2019.10331631585271
    [Google Scholar]
  12. VanjareB.D. MahajanP.G. DigeN.C. RazaH. HassanM. HanY. KimS.J. SeoS.Y. LeeK.H. Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: Synthesis, kinetic mechanism, cytotoxicity and computational studies.Mol. Divers.202033101632399854
    [Google Scholar]
  13. RoulierB. PérèsB. HaudecoeurR. Advances in the design of genuine human tyrosinase inhibitors for targeting melanogenesis and related pigmentations.J. Med. Chem.20206322134281344310.1021/acs.jmedchem.0c0099432787103
    [Google Scholar]
  14. AbbasQ. AshrafZ. HassanM. NadeemH. LatifM. AfzalS. SeoS.Y. Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies.Drug Des. Devel. Ther.2017112029204610.2147/DDDT.S13755028740364
    [Google Scholar]
  15. BangE. NohS.G. HaS. JungH.J. KimD.H. LeeA.K. HyunM.K. KangD. LeeS. ParkC. MoonH.R. ChungH.Y. Evaluation of the novel synthetic tyrosinase inhibitor (z)-3-(3-bromo-4-hydroxybenzylidene) thiochroman-4-one (MHY1498) in vitro and in silico. Molecules20182312330710.3390/molecules2312330730551624
    [Google Scholar]
  16. DigeN.C. MahajanP.G. RazaH. HassanM. VanjareB.D. HongH. Hwan LeeK. latipJ. SeoS.Y. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies.Bioorg. Chem.20199210320110.1016/j.bioorg.2019.10320131445195
    [Google Scholar]
  17. ZolghadriS. BahramiA. Hassan KhanM.T. Munoz-MunozJ. Garcia-MolinaF. Garcia-CanovasF. SabouryA.A. A comprehensive review on tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201934127930910.1080/14756366.2018.154576730734608
    [Google Scholar]
  18. MosquitaK.C. IgrejaA.C.S.M. CostaI.M.C. Atopic dermatitis and vitamin D: Facts and controversies.An Bras Dermatol20138869455310.1590/abd1806‑4841.20132660.
    [Google Scholar]
  19. DeckersI.A.G. McLeanS. LinssenS. MommersM. van SchayckC.P. SheikhA. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: A systematic review of epidemiological studies.PLoS One201277e3980310.1371/journal.pone.003980322808063
    [Google Scholar]
  20. YousefiM. BarikbinB. KamalinejadM. AbolhasaniE. EbadiA. YounespourS. ManouchehrianM. HejaziS. Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema.J. Eur. Acad. Dermatol. Venereol.201327121498150410.1111/jdv.1203323198836
    [Google Scholar]
  21. SternT. BayerlC. Black cumin oil ointment, a new option for topical treatment of atopic eczema? - A prospective, double-blind, single-center, placebo-controlled study.Curr Derm.2002283747910.1055/s‑2002‑25234
    [Google Scholar]
  22. BrandtE. B. GibsonA. M. BassS. RydyznskiC. Khurana HersheyG. K. Exacerbation of allergen-induced eczema in TLR4- and TRIF-deficient mice.J Immunol2013191735192510.4049/jimmunol.1300789.
    [Google Scholar]
  23. DrénoB. PécastaingsS. CorvecS. VeraldiS. KhammariA. RoquesC. Cutibacterium acnes ( Propionibacterium acnes ) and acne vulgaris: A brief look at the latest updates.J. Eur. Acad. Dermatol. Venereol.201832S251410.1111/jdv.1504329894579
    [Google Scholar]
  24. AntigaE. VerdelliA. BoncianiD. BoncioliniV. CaproniM. FabbriP. Acne: A new model of immune-mediated chronic inflammatory skin disease.G. Ital. Dermatol. Venereol.2015150224725425876146
    [Google Scholar]
  25. SinhaP. SrivastavaS. MishraN. YadavN.P. New perspectives on antiacne plant drugs: Contribution to modern therapeutics.BioMed Res. Int.2014201411910.1155/2014/30130425147793
    [Google Scholar]
  26. AzimiH. Fallah-TaftiM. KhakshurA.A. AbdollahiM. A review of phytotherapy of acne vulgaris: Perspective of new pharmacological treatments.Fitoterapia20128381306131710.1016/j.fitote.2012.03.02622521501
    [Google Scholar]
  27. VowelsB.R. YangS. LeydenJ.J. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne.Infect. Immun.19956383158316510.1128/iai.63.8.3158‑3165.19957542639
    [Google Scholar]
  28. GrahamG.M. FarrarM.D. Cruse-SawyerJ.E. HollandK.T. InghamE. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL.Br. J. Dermatol.2004150342142810.1046/j.1365‑2133.2004.05762.x15030323
    [Google Scholar]
  29. CongT.X. HaoD. WenX. LiX.H. HeG. JiangX. From pathogenesis of acne vulgaris to anti-acne agents.Arch. Dermatol. Res.2019311533734910.1007/s00403‑019‑01908‑x30859308
    [Google Scholar]
  30. DurrantJ.D. McCammonJ.A. Molecular dynamics simulations and drug discovery.BMC Biol.2011917110.1186/1741‑7007‑9‑7122035460
    [Google Scholar]
  31. HourfaneS. MechqoqH. ErrajouaniF. RochaJ. El AouadN. In vitro and in silico evaluations of Boswellia carterii resin dermocosmetic activities.Cosmetics20229613110.3390/cosmetics9060131
    [Google Scholar]
  32. IsmayaW.T. RozeboomH.J. WeijnA. MesJ.J. FusettiF. WichersH.J. DijkstraB.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone.Biochemistry201150245477548610.1021/bi200395t21598903
    [Google Scholar]
  33. KimY.J. UyamaH. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future.Cell. Mol. Life Sci.200562151707172310.1007/s00018‑005‑5054‑y15968468
    [Google Scholar]
  34. VanjareB.D. ChoiN.G. MahajanP.G. RazaH. HassanM. HanY. YuS.M. KimS.J. SeoS.Y. LeeK.H. Novel 1,3,4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro , and in-silico studies.Bioorg. Med. Chem.20214111622210.1016/j.bmc.2021.11622234058664
    [Google Scholar]
  35. JiaoR. YangZ. WangY. ZhouJ. ZengY. LiuZ. The effectiveness and safety of acupuncture for patients with atopic eczema: A systematic review and meta-analysis.Acupunct. Med.202038131410.1177/096452841987105831495184
    [Google Scholar]
  36. KarakayaG. TüreA. ErcanA. ÖncülS. AytemirM.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives.Bioorg. Chem.20198810295010.1016/j.bioorg.2019.10295031075740
    [Google Scholar]
  37. ZhangL. ZhaoX. TaoG.J. ChenJ. ZhengZ.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis.Food Chem.2017223404810.1016/j.foodchem.2016.12.01728069121
    [Google Scholar]
  38. KhanM.T.H. ChoudharyM.I. KhanK.M. RaniM. Atta-ur-Rahman, Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues.Bioorg. Med. Chem.200513103385339510.1016/j.bmc.2005.03.01215934142
    [Google Scholar]
  39. XueC.B. ZhangL. LuoW.C. XieX.Y. JiangL. XiaoT. 3D-QSAR and molecular docking studies of benzaldehyde thiosemicarbazone, benzaldehyde, benzoic acid, and their derivatives as phenoloxidase inhibitors.Bioorg. Med. Chem.201911924653017258462
    [Google Scholar]
  40. ŞöhretoğluD. SariS. BarutB. ÖzelA. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies.Bioorg. Chem.20188116817410.1016/j.bioorg.2018.08.02030130649
    [Google Scholar]
  41. WuC. LiW. B. LiuY. YanX. N. Exploring the mechanism of action of San Huang lotion for the topical treatment of eczema based on network pharmacology and molecular docking techniques.TMR Pharm Res202222910.53388/PR202202009.
    [Google Scholar]
  42. MaT. ChaiY. LiS. SunX. WangY. XuR. ChenJ. ZhouM. ZhouM. LiB. XuW. LiX. Efficacy and safety of Qinzhuliangxue decoction for treating atopic eczema: A randomized controlled trial.Ann. Palliat. Med.20209387088210.21037/apm.2020.04.1732389012
    [Google Scholar]
  43. Balasaheb D. VANJARE, CHOI, Nam Gyu, MAHAJAN, Prasad G., et al. Novel 1, 3, 4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro, and in-silico studies.Bioorganic & Medicinal Chemistry2021vol. 41p. 116222
    [Google Scholar]
  44. EarliaN. Muslem, SuhendraR. AminM. PrakoeswaC.R.S. Khairan, IdroesR. GC/MS analysis of fatty acids on Pliek U oil and its pharmacological study by molecular docking to filaggrin as a drug candidate in atopic dermatitis treatment.ScientificWorldJournal201920191710.1155/2019/8605743
    [Google Scholar]
  45. ZhengY. LaiW. Progress in the pathogenesis of eczema.Ital. J. Dermatol. Venereol.2013392113115
    [Google Scholar]
  46. MlcekJ. JurikovaT. SkrovankovaS. SochorJ. Quercetin and its anti-allergic immune response.Molecules201621562310.3390/molecules2105062327187333
    [Google Scholar]
  47. ShenR.M. LiG.Q. ZhongL.B. Anti-inflammatory effect of luteolin in acute gouty arthritis model rats.Hainan Yixueyuan Xuebao2019251713001303
    [Google Scholar]
  48. WangJ. LiK. LiY. WangY. Mediating macrophage immunity with wogonin in mice with vascular inflammation.Mol. Med. Rep.20171668434844010.3892/mmr.2017.761128983597
    [Google Scholar]
  49. SunY. GaoL. HouW. WuJ. β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells.BioMed Res. Int.2020202011010.1155/2020/7532306
    [Google Scholar]
  50. WU, Can, LI, Wen-Bin, LIU, Yong, et al. Exploring the mechanism of action of San Huang lotion for the topical treatment of eczema based on network pharmacology and molecular docking techniques.Diabetes2022vol. 7p. 8
    [Google Scholar]
  51. WangW. WangY. ZouJ. JiaY. WangY. LiJ. WangC. SunJ. GuoD. WangF. WuZ. YangM. WuL. ZhangX. ShiY. The mechanism action of German chamomile (Matricaria recutita L.) in the treatment of eczema: Based on dose-effect weight coefficient network pharmacology.Front. Pharmacol.20211270683610.3389/fphar.2021.70683634658853
    [Google Scholar]
  52. DegliespostiG. PortioliC. ParentiM.D. RastelliG. BEAR, a novel virtual screening methodology for drug discovery.SLAS Discov.201116112913310.1177/108705711038827621084717
    [Google Scholar]
  53. LiuP.F. HsiehY.D. LinY.C. TwoA. ShuC.W. HuangC.M. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris.Curr. Drug Metab.201516424525410.2174/138920021666615081212480126264195
    [Google Scholar]
  54. KildaciI. Budama-KilincY. Kecel-GunduzS. AltuntasE. Linseed oil nanoemulsions for treatment of atopic dermatitis disease: Formulation, characterization, in vitro and in silico evaluations.J. Drug Deliv. Sci. Technol.20216410265210.1016/j.jddst.2021.102652
    [Google Scholar]
  55. HuX. IvashkivL.B. Cross-regulation of signaling pathways by interferon-γ: Implications for immune responses and autoimmune diseases.Immunity200931453955010.1016/j.immuni.2009.09.00219833085
    [Google Scholar]
  56. KimJ. OchoaM.T. KrutzikS.R. TakeuchiO. UematsuS. LegaspiA.J. BrightbillH.D. HollandD. CunliffeW.J. AkiraS. SielingP.A. GodowskiP.J. ModlinR.L. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses.J. Immunol.200216931535154110.4049/jimmunol.169.3.153512133981
    [Google Scholar]
  57. AslamI. FleischerA. FeldmanS. Emerging drugs for the treatment of acne.Expert Opin. Emerg. Drugs20152019110110.1517/14728214.2015.99037325474485
    [Google Scholar]
  58. Kola-MustaphaA.T. De novo design of pimarane diterpenoid compounds as potential alternatives to sarecycline for acne vulgaris treatment.Pharmacia20237041167117610.3897/pharmacia.70.e113065
    [Google Scholar]
  59. MayslichC. GrangeP.A. DupinN. Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors.Microorganisms20219230310.3390/microorganisms902030333540667
    [Google Scholar]
  60. DarusmanF. FakihT.M. Comprehensive in silico analysis of christinin molecular behavior from Ziziphus spina-Christi leaves on Propionibacterium acnes.Pharm Sci Res2021815564
    [Google Scholar]
  61. GhoshS. SinhaM. BhattacharyyaA. SadhasivamS. MeghaJ. ReddyS. SainiS. SinghH. KumarD. KaurS.P. MishraM. UsharaniD. GhoshS. SenguptaS. A rationally designed multifunctional antibiotic for the treatment of drug-resistant acne.J. Invest. Dermatol.201813861400140810.1016/j.jid.2017.11.04129409921
    [Google Scholar]
  62. ParentiM.D. RastelliG. Advances and applications of binding affinity prediction methods in drug discovery.Biotechnol. Adv.2011771225021856406
    [Google Scholar]
  63. TufferyP. DerreumauxP. Flexibility and binding affinity in protein–ligand, protein–protein and multi-component protein interactions: limitations of current computational approaches.J. R. Soc. Interface2012966203310.1098/rsif.2011.058421993006
    [Google Scholar]
  64. CheonD. LeeW.C. LeeY. LeeJ.Y. KimY. Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase.Biochem. Biophys. Res. Commun.2019509132232810.1016/j.bbrc.2018.12.13430587339
    [Google Scholar]
  65. KruegerR.C. The inhibition of tyrosinase.Arch. Biochem. Biophys.1955571526010.1016/0003‑9861(55)90175‑213239183
    [Google Scholar]
  66. MarnettL.J. HurdH.K. HollsteinM.C. LevinD.E. EsterbauerH. AmesB.N. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104.Mutat. Res.19851481-2253410.1016/0027‑5107(85)90204‑03881660
    [Google Scholar]
  67. SchvartsmanG. TarantoP. GlitzaI.C. AgarwalaS.S. AtkinsM.B. BuzaidA.C. Management of metastatic cutaneous melanoma: updates in clinical practice.Ther. Adv. Med. Oncol.20191110.1177/175883591985166331205512
    [Google Scholar]
  68. BellanD.L. BiscaiaS.M.P. RossiG.R. CristalA.M. GonçalvesJ.P. OliveiraC.C. SimasF.F. SabryD.A. RochaH.A.O. FrancoC.R.C. ChammasR. GilliesR.J. TrindadeE.S. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features.Carbohydr. Polym.202025011686910.1016/j.carbpol.2020.11686933049818
    [Google Scholar]
  69. SoutoE.B. SampaioA.C. CamposJ.R. Martins-GomesC. AiresA. SilvaA.M. Polyphenols for skin cancer: Chemical properties, structure-related mechanisms of action and new delivery systems.Studies in Natural Products Chemistry. AttaurR. Amsterdam, The NetherlandsElsevier201963214210.1016/B978‑0‑12‑817901‑7.00002‑2.
    [Google Scholar]
  70. ImranM. RaufA. Abu-IzneidT. NadeemM. ShariatiM.A. KhanI.A. ImranA. OrhanI.E. RizwanM. AtifM. GondalT.A. MubarakM.S. Luteolin, a flavonoid, as an anticancer agent: A review.Biomed. Pharmacother.201911210861210.1016/j.biopha.2019.10861230798142
    [Google Scholar]
  71. Agrawal, Anurag, and Giriraj T. Kulkarni. "Molecular docking study to elucidate the anti-pruritic mechanism of selected natural ligands by desensitizing TRPV3 ion channel in Psoriasis: An in silico approach."Indian Journal of Biochemistry and Biophysics (IJBB)57.5 (2020): 578-583.
    [Google Scholar]
  72. NaidooC. KrugerC. A. AbrahamseH. Photodynamic therapy for metastatic melanoma treatment: A review.Technol Cancer Res Treat20181710.1177/1533033818791795
    [Google Scholar]
  73. TangH-C. ChenY-C. Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma.Int. J. Nanomedicine2015103131314625960652
    [Google Scholar]
  74. ZhouL. YangK. AndlT. WickettR.R. ZhangY. Perspective of targeting cancer-associated fibroblasts in Melanoma.J. Cancer20156871772610.7150/jca.1086526185533
    [Google Scholar]
  75. KingA.J. PatrickD.R. BatorskyR.S. HoM.L. DoH.T. ZhangS.Y. KumarR. RusnakD.W. TakleA.K. WilsonD.M. HuggerE. WangL. KarrethF. LougheedJ.C. LeeJ. ChauD. StoutT.J. MayE.W. RomingerC.M. SchaberM.D. LuoL. LakdawalaA.S. AdamsJ.L. ContractorR.G. SmalleyK.S.M. HerlynM. MorrisseyM.M. TuvesonD.A. HuangP.S. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885.Cancer Res.20066623111001110510.1158/0008‑5472.CAN‑06‑255417145850
    [Google Scholar]
  76. FitrianiI.N. AnsoryH.M. Molecular docking study of nutmeg (Myristica fragrans) constituents as anti-skin cancer agents.JKPK (Jurnal Kimia dan Pendidikan Kimia)202161142210.20961/jkpk.v6i1.47223
    [Google Scholar]
  77. KandasamyS. SahuS.K. KandasamyK. In silico studies on fungal metabolite against skin cancer protein (4,5-diarylisoxazole HSP90 chaperone).ISRN Dermatol.201220121510.5402/2012/62621422991673
    [Google Scholar]
  78. AsnawiA. AmanL.O. Molecular docking and molecular dynamic studies: screening phytochemicals of Acalypha indica against BRAF kinase receptors for potential use in melanocytic tumors.Rasayan J. Chem.20221521352136110.31788/RJC.2022.1526769
    [Google Scholar]
  79. VijayakumarS. MenakhaM. Tasiamide-B a new cyanobacterial compound for treating skin cancer.Biomed Prev Nutr20144310.1016/j.bionut.2013.10.001.
    [Google Scholar]
  80. BoatengS.T. RoyT. AgboM.E. Banang-MbeumiS. ChamcheuR.C.N. BramwellM. ChamcheuJ.C. Identification of potential inhibitors of cutaneous melanoma and non-melanoma skin cancer cells through in-vitro and in-silico screening of a small library of phenolic compounds.BioRxiv202210.1101/2022.02.28.482167
    [Google Scholar]
  81. BallaviM.S. Pramod KumarH.S. In-silico analysis to determine the efficient drug for malignant melanoma using molecular dynamics.Biomed. Pharmacol. J.20204629810
    [Google Scholar]
  82. SharmaS. KumarV. YaseenM. S AbouziedA. ArshadA. BhatM.A. NaglahA.M. PatelC.N. SivakumarP.K. SourirajanA. ShahzadA. DevK. Phytochemical analysis, in vitro biological activities, and computer-aided analysis of Potentilla nepalensis hook compounds as potential melanoma inhibitors based on molecular docking, MD simulations, and ADMET.Molecules20232813510810.3390/molecules2813510837446769
    [Google Scholar]
  83. BoutalakaM. El bahiS. AlaqarbehM. El AlaouyM.A. KoubiY. KhatabiK.E. MaghatH. BouachrineM. LakhlifiT. Computational investigation of imidazo[2,1-b]oxazole derivatives as potential mutant BRAF kinase inhibitors: 3D-QSAR, molecular docking, molecular dynamics simulation, and ADMETox studies.J. Biomol. Struct. Dyn.202442105268528710.1080/07391102.2023.223362937424193
    [Google Scholar]
  84. HuY. WuY. JiangC. WangZ. ShenC. ZhuZ. LiH. ZengQ. XueY. WangY. LiuL. YiY. ZhuH. LiuQ. Investigative on the molecular mechanism of licorice flavonoids anti-melanoma by network pharmacology, 3D/2D-QSAR, molecular docking, and molecular dynamics simulation.Front Chem.20221084397010.3389/fchem.2022.84397035308797
    [Google Scholar]
  85. DaoP. LiethaD. Etheve-QuelquejeuM. GarbayC. ChenH. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity.Bioorg. Med. Chem. Lett.20172781727173010.1016/j.bmcl.2017.02.07228284808
    [Google Scholar]
  86. HangN.T. MyT.T.K. Van AnhL.T. Van AnhP.T. AnhT.D.H. Van PhuongN. Identification of potential FAK inhibitors using mol2vec molecular descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation.Mol. Divers.202410.1007/s11030‑024‑10839‑3
    [Google Scholar]
  87. AroldS.T. How focal adhesion kinase achieves regulation by linking ligand binding, localization and action.Curr. Opin. Struct. Biol.201121680881310.1016/j.sbi.2011.09.00822030387
    [Google Scholar]
  88. OwensL.V. XuL. CravenR.J. DentG.A. WeinerT.M. KornbergL. LiuE.T. CanceW.G. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors.Cancer Res.19955513275227557796399
    [Google Scholar]
  89. ShirvaniP. FassihiA. In silico design of novel FAK inhibitors using integrated molecular docking, 3D-QSAR and molecular dynamics simulation studies.J. Biomol. Struct. Dyn.202111933475043
    [Google Scholar]
  90. LuX. ZhaoL. XueT. ZhangH. Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking.Med. Chem. Res.20142341976199710.1007/s00044‑013‑0768‑0
    [Google Scholar]
  91. GhoshS. SeungJ. Three-dimensional-QSAR and relative binding affinity estimation of focal adhesion kinase inhibitors.Molecules2023283146410.3390/molecules28031464.
    [Google Scholar]
  92. WangF. YangW. LiR. SuiZ. ChengG. ZhouB. Molecular description of pyrimidine-based inhibitors with activity against FAK combining 3D-QSAR analysis, molecular docking and molecular dynamics.Arab. J. Chem.202114610314410.1016/j.arabjc.2021.103144.
    [Google Scholar]
  93. AbbasS. R. BaigS. Treatment of skin cancer by medicinal plants.J Biotechnol Sci20201372131137
    [Google Scholar]
  94. ScottT.M. Morlett ParedesA. TaylorM.J. UmlaufA. Artiola I FortunyL. HeatonR.K. ChernerM. MarquineM.J. Rivera MindtM. Demographically-adjusted norms for the WAIS-R block design and arithmetic subtests: Results from the neuropsychological norms for the US-Mexico border region in Spanish (NP-NUMBRS) project.Clin Neuropsychol202135241943210.1080/13854046.2019.1707285.31928314
    [Google Scholar]
  95. CalimportS.R.G. BentleyB.L. Aging classified as a cause of disease in ICD-11.Rejuvenation Res201922428110.1089/rej.2019.2242.31319768
    [Google Scholar]
  96. ZhangS. ZhangY. Isoflurane reduces endotoxin-induced oxidative, inflammatory, and apoptotic responses in H9c2 cardiomyocytes.Eur Rev Med Pharmacol Sci201822123976398710.26355/eurrev_201806_15282.29949173
    [Google Scholar]
  97. WoodleyF.W. Moore-ClingenpeelM. MachadoR.S. NemastilC.J. JadcherlaS.R. Hayes DJr. KoppB.T. KaulA. Di LorenzoC. MousaH. Not all children with cystic fibrosis have abnormal esophageal neutralization during chemical clearance of acid reflux.Pediatr Gastroenterol Hepatol Nutr201720315315910.5223/pghn.2017.20.3.153.29026731
    [Google Scholar]
  98. AmorimF.G. CostaT.R. BaiwirD. De PauwE. QuintonL. SampaioS.V. Proteopeptidomic, functional and immunoreactivity characterization of Bothrops moojeni snake venom: Influence of snake gender on venom composition.Toxins (Basel)201810517710.3390/toxins10050177.29701671
    [Google Scholar]
  99. de AndradesD. GraebinN.G. AyubM.A.Z. Fernandez-LafuenteR. RodriguesR.C. Preparation of immobilized/stabilized biocatalysts of β-glucosidases from different sources: Importance of the support active groups and the immobilization protocol.Biotechnol Prog2019356e289010.1002/btpr.2890.31374157
    [Google Scholar]
  100. TumolaM.R. PanicoA. De DonnoA. MincaroneP. LeoC.G. GuarinoR. BagordoF. SerioF. IdoloA. GrassiT. SabinaS. The expression of microRNAs and exposure to environmental contaminants related to human health: A review.Int J Environ Health Res202232233235410.1080/09603123.2020.1757043.32393046
    [Google Scholar]
  101. Available from: https://pubchem.ncbi.nlm.nih.gov/
/content/journals/ctmc/10.2174/0115680266337405240926114604
Loading
/content/journals/ctmc/10.2174/0115680266337405240926114604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test