Skip to content
2000
image of Computational Studies in Dermo-cosmetics: In silico Discovery of Therapeutic Agents Targeting a Variety of Proteins for Skin Diseases

Abstract

Healthy skin is essential for balanced health. Currently, skin diseases are considered a major global health issue, impacting individuals of all ages. Skin conditions can vary broadly, ranging from common issues like acne and eczema to more serious diseases such as psoriasis, melanoma, and other types of skin cancer. In recent years, computational methods have appeared as powerful tools for explaining the lurking mechanisms of skin diseases and the advancement of the discovery regarding updated therapeutics. This review spotlights the notable researches that have been performed in using computational approaches such as virtual screening, molecular modelling, and molecular dynamics simulations to discover potential treatments for dermatological conditions such as eczema, psoriasis, acne vulgaris, skin cancer, and tyrosinase-related disorders. Moreover, using methods, researchers have explored the molecular interactions between cosmetic actives and skin targets, providing insights into the binding affinities, stability, and efficacy of these compounds. This computational exploration allows the identification of potential off-target effects and toxicity profiles, ensuring that only the most promising candidates proceed to clinical testing. In addition, the use of molecular dynamics simulations helps to understand conformational changes and interaction dynamics over time, further refining the selection of effective cosmetic actives. Overall, the integration of computational chemistry into dermo-cosmetic research has immense potential to accelerate the discovery and development of innovative treatments to improve skin health and address dermatological concerns.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337405240926114604
2024-10-09
2025-01-18
Loading full text...

Full text loading...

References

  1. Semlin L. Schäfer-Korting M. Borelli C. Korting H.C. In vitro models for human skin disease. Drug Discov. Today 2011 16 3-4 132 139 10.1016/j.drudis.2010.12.001 21146629
    [Google Scholar]
  2. Nour H. Daoui O. Abchir O. ElKhattabi S. Belaidi S. Chtita S. Combined computational approaches for developing new anti-Alzheimer drug candidates: 3D-QSAR, molecular docking and molecular dynamics studies of liquiritigenin derivatives. Heliyon 2022 8 12 e11991 10.1016/j.heliyon.2022.e11991 36544815
    [Google Scholar]
  3. Abchir O. Daoui O. Belaidi S. Ouassaf M. Qais F.A. ElKhattabi S. Belaaouad S. Chtita S. Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. J. Mol. Model. 2022 28 4 106 10.1007/s00894‑022‑05097‑9 35352175
    [Google Scholar]
  4. Daoui O. Nour H. Abchir O. Elkhattabi S. Bakhouch M. Chtita S. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2023 41 16 7768 7785 10.1080/07391102.2022.2124456 36120976
    [Google Scholar]
  5. Yamari I. Abchir O. Mali S.N. Errougui A. Talbi M. Kouali M.E. Chtita S. The anti-SARS-CoV-2 activity of novel 9, 10-dihydrophenanthrene derivatives: An insight into molecular docking, ADMET analysis, and molecular dynamics simulation. Sci. Am. 2023 21 e01754 10.1016/j.sciaf.2023.e01754 37332393
    [Google Scholar]
  6. Daoui O. Elkhattabi S. Chtita S. Design and prediction of ADME/Tox properties of novel magnolol derivatives as anticancer agents for NSCLC using 3D-QSAR, molecular docking, MOLCAD and MM-GBSA studies. Lett. Drug Des. Discov. 2023 20 5 545 569 10.2174/1570180819666220510141710
    [Google Scholar]
  7. Abchir O. Yamari I. Nour H. Daoui O. Elkhattabi S. Errougui A. Chtita S. Structure‐based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates α‐amylase inhibitors. ChemistrySelect 2023 8 26 e202301092 10.1002/slct.202301092
    [Google Scholar]
  8. Belhassan A. Chtita S. Zaki H. Alaqarbeh M. Alsakhen N. Almohtaseb F. Lakhlifi T. Bouachrine M. In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. J. Mol. Struct. 2022 1258 132652 10.1016/j.molstruc.2022.132652 35194243
    [Google Scholar]
  9. Yamari I. Abchir O. Siddique F. Zaki H. Errougui A. Talbi M. Bouachrine M. ElKouali M. Chtita S. The anticoagulant potential of Lippia Alba extract in inhibiting SARS-CoV-2 Mpro: Density functional calculation, molecular docking analysis, and molecular dynamics simulations. Sci. Am. 2024 23 e01986 10.1016/j.sciaf.2023.e01986.
    [Google Scholar]
  10. Ouassaf M. Belaidi S. Chtita S. Lanez T. Abul Qais F. Md Amiruddin H. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn. 2022 40 21 11264 11273 10.1080/07391102.2021.1957712 34315340
    [Google Scholar]
  11. Zhao Z. Liu G. Meng Y. Tian J. Chen X. Shen M. Li Y. Li B. Gao C. Wu S. Li C. He X. Jiang R. Qian M. Zheng X. Synthesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues. Bioorg. Chem. 2019 93 103316 10.1016/j.bioorg.2019.103316 31585271
    [Google Scholar]
  12. Vanjare B.D. Mahajan P.G. Dige N.C. Raza H. Hassan M. Han Y. Kim S.J. Seo S.Y. Lee K.H. Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: Synthesis, kinetic mechanism, cytotoxicity and computational studies. Mol. Divers. 2020 33 1016 32399854
    [Google Scholar]
  13. Roulier B. Pérès B. Haudecoeur R. Advances in the design of genuine human tyrosinase inhibitors for targeting melanogenesis and related pigmentations. J. Med. Chem. 2020 63 22 13428 13443 10.1021/acs.jmedchem.0c00994 32787103
    [Google Scholar]
  14. Abbas Q. Ashraf Z. Hassan M. Nadeem H. Latif M. Afzal S. Seo S.Y. Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies. Drug Des. Devel. Ther. 2017 11 2029 2046 10.2147/DDDT.S137550 28740364
    [Google Scholar]
  15. Bang E. Noh S.G. Ha S. Jung H.J. Kim D.H. Lee A.K. Hyun M.K. Kang D. Lee S. Park C. Moon H.R. Chung H.Y. Evaluation of the novel synthetic tyrosinase inhibitor (z)-3-(3-bromo-4-hydroxybenzylidene) thiochroman-4-one (MHY1498) in vitro and in silico. Molecules 2018 23 12 3307 10.3390/molecules23123307 30551624
    [Google Scholar]
  16. Dige N.C. Mahajan P.G. Raza H. Hassan M. Vanjare B.D. Hong H. Hwan Lee K. latip J. Seo S.Y. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies. Bioorg. Chem. 2019 92 103201 10.1016/j.bioorg.2019.103201 31445195
    [Google Scholar]
  17. Zolghadri S. Bahrami A. Hassan Khan M.T. Munoz-Munoz J. Garcia-Molina F. Garcia-Canovas F. Saboury A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019 34 1 279 309 10.1080/14756366.2018.1545767 30734608
    [Google Scholar]
  18. Mosquita K.C. Igreja A.C.S.M. Costa I.M.C. Atopic dermatitis and vitamin D: Facts and controversies. An Bras Dermatol 2013 88 6 945 53 10.1590/abd1806‑4841.20132660.
    [Google Scholar]
  19. Deckers I.A.G. McLean S. Linssen S. Mommers M. van Schayck C.P. Sheikh A. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: A systematic review of epidemiological studies. PLoS One 2012 7 7 e39803 10.1371/journal.pone.0039803 22808063
    [Google Scholar]
  20. Yousefi M. Barikbin B. Kamalinejad M. Abolhasani E. Ebadi A. Younespour S. Manouchehrian M. Hejazi S. Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema. J. Eur. Acad. Dermatol. Venereol. 2013 27 12 1498 1504 10.1111/jdv.12033 23198836
    [Google Scholar]
  21. Stern T. Bayerl C. Black cumin oil ointment, a new option for topical treatment of atopic eczema? - A prospective, double-blind, single-center, placebo-controlled study. Curr Derm. 2002 28 3 74 79 10.1055/s‑2002‑25234
    [Google Scholar]
  22. Brandt E. B. Gibson A. M. Bass S. Rydyznski C. Khurana Hershey G. K. Exacerbation of allergen-induced eczema in TLR4- and TRIF-deficient mice. J Immunol 2013 191 7 3519 25 10.4049/jimmunol.1300789.
    [Google Scholar]
  23. Dréno B. Pécastaings S. Corvec S. Veraldi S. Khammari A. Roques C. Cutibacterium acnes ( Propionibacterium acnes ) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018 32 S2 5 14 10.1111/jdv.15043 29894579
    [Google Scholar]
  24. Antiga E. Verdelli A. Bonciani D. Bonciolini V. Caproni M. Fabbri P. Acne: A new model of immune-mediated chronic inflammatory skin disease. G. Ital. Dermatol. Venereol. 2015 150 2 247 254 25876146
    [Google Scholar]
  25. Sinha P. Srivastava S. Mishra N. Yadav N.P. New perspectives on antiacne plant drugs: Contribution to modern therapeutics. BioMed Res. Int. 2014 2014 1 19 10.1155/2014/301304 25147793
    [Google Scholar]
  26. Azimi H. Fallah-Tafti M. Khakshur A.A. Abdollahi M. A review of phytotherapy of acne vulgaris: Perspective of new pharmacological treatments. Fitoterapia 2012 83 8 1306 1317 10.1016/j.fitote.2012.03.026 22521501
    [Google Scholar]
  27. Vowels B.R. Yang S. Leyden J.J. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne. Infect. Immun. 1995 63 8 3158 3165 10.1128/iai.63.8.3158‑3165.1995 7542639
    [Google Scholar]
  28. Graham G.M. Farrar M.D. Cruse-Sawyer J.E. Holland K.T. Ingham E. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br. J. Dermatol. 2004 150 3 421 428 10.1046/j.1365‑2133.2004.05762.x 15030323
    [Google Scholar]
  29. Cong T.X. Hao D. Wen X. Li X.H. He G. Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 2019 311 5 337 349 10.1007/s00403‑019‑01908‑x 30859308
    [Google Scholar]
  30. Durrant J.D. McCammon J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011 9 1 71 10.1186/1741‑7007‑9‑71 22035460
    [Google Scholar]
  31. Hourfane S. Mechqoq H. Errajouani F. Rocha J. El Aouad N. In vitro and in silico evaluations of Boswellia carterii resin dermocosmetic activities. Cosmetics 2022 9 6 131 10.3390/cosmetics9060131
    [Google Scholar]
  32. Ismaya W.T. Rozeboom H.J. Weijn A. Mes J.J. Fusetti F. Wichers H.J. Dijkstra B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011 50 24 5477 5486 10.1021/bi200395t 21598903
    [Google Scholar]
  33. Kim Y.J. Uyama H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 2005 62 15 1707 1723 10.1007/s00018‑005‑5054‑y 15968468
    [Google Scholar]
  34. Vanjare B.D. Choi N.G. Mahajan P.G. Raza H. Hassan M. Han Y. Yu S.M. Kim S.J. Seo S.Y. Lee K.H. Novel 1,3,4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro , and in-silico studies. Bioorg. Med. Chem. 2021 41 116222 10.1016/j.bmc.2021.116222 34058664
    [Google Scholar]
  35. Jiao R. Yang Z. Wang Y. Zhou J. Zeng Y. Liu Z. The effectiveness and safety of acupuncture for patients with atopic eczema: A systematic review and meta-analysis. Acupunct. Med. 2020 38 1 3 14 10.1177/0964528419871058 31495184
    [Google Scholar]
  36. Karakaya G. Türe A. Ercan A. Öncül S. Aytemir M.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg. Chem. 2019 88 102950 10.1016/j.bioorg.2019.102950 31075740
    [Google Scholar]
  37. Zhang L. Zhao X. Tao G.J. Chen J. Zheng Z.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem. 2017 223 40 48 10.1016/j.foodchem.2016.12.017 28069121
    [Google Scholar]
  38. Khan M.T.H. Choudhary M.I. Khan K.M. Rani M. Atta-ur-Rahman Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg. Med. Chem. 2005 13 10 3385 3395 10.1016/j.bmc.2005.03.012 15934142
    [Google Scholar]
  39. Xue C.B. Zhang L. Luo W.C. Xie X.Y. Jiang L. Xiao T. 3D-QSAR and molecular docking studies of benzaldehyde thiosemicarbazone, benzaldehyde, benzoic acid, and their derivatives as phenoloxidase inhibitors. Bioorg. Med. Chem. 2019 11 9 2465 30 17258462
    [Google Scholar]
  40. Şöhretoğlu D. Sari S. Barut B. Özel A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorg. Chem. 2018 81 168 174 10.1016/j.bioorg.2018.08.020 30130649
    [Google Scholar]
  41. Wu C. Li W. B. Liu Y. Yan X. N. Exploring the mechanism of action of San Huang lotion for the topical treatment of eczema based on network pharmacology and molecular docking techniques. TMR Pharm Res 2022 2 2 9 10.53388/PR202202009.
    [Google Scholar]
  42. Ma T. Chai Y. Li S. Sun X. Wang Y. Xu R. Chen J. Zhou M. Zhou M. Li B. Xu W. Li X. Efficacy and safety of Qinzhuliangxue decoction for treating atopic eczema: A randomized controlled trial. Ann. Palliat. Med. 2020 9 3 870 882 10.21037/apm.2020.04.17 32389012
    [Google Scholar]
  43. Hosseinpoor H. Iraji A. Edraki N. Pirhadi S. Attarroshan M. Khoshneviszadeh M. Khoshneviszadeh M. A series of benzylidenes linked to hydrazine-1-carbothioamide as tyrosinase inhibitors: Synthesis, biological evaluation and structure-activity relationship. Chem Biodivers 2020 17 8 e2000285 10.1002/cbdv.202000285.
    [Google Scholar]
  44. Earlia N. Muslem Suhendra R. Amin M. Prakoeswa C.R.S. Khairan Idroes R. GC/MS analysis of fatty acids on Pliek U oil and its pharmacological study by molecular docking to filaggrin as a drug candidate in atopic dermatitis treatment. ScientificWorldJournal 2019 2019 1 7 10.1155/2019/8605743
    [Google Scholar]
  45. Zheng Y. Lai W. Progress in the pathogenesis of eczema. Ital. J. Dermatol. Venereol. 2013 39 2 113 115
    [Google Scholar]
  46. Mlcek J. Jurikova T. Skrovankova S. Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016 21 5 623 10.3390/molecules21050623 27187333
    [Google Scholar]
  47. Shen R.M. Li G.Q. Zhong L.B. Anti-inflammatory effect of luteolin in acute gouty arthritis model rats. Hainan Yixueyuan Xuebao 2019 25 17 1300 1303
    [Google Scholar]
  48. Wang J. Li K. Li Y. Wang Y. Mediating macrophage immunity with wogonin in mice with vascular inflammation. Mol. Med. Rep. 2017 16 6 8434 8440 10.3892/mmr.2017.7611 28983597
    [Google Scholar]
  49. Sun Y. Gao L. Hou W. Wu J. β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells. BioMed Res. Int. 2020 2020 1 10 10.1155/2020/7532306
    [Google Scholar]
  50. Khan M.T. Choudhary M.I. Ather A. Rahman A.U. Modelling of the mushroom tyrosinase and its molecular dynamic (MD) simulations experiments in room and elevated temperatures and the docking interactions with nucleotides. Minerva Biotecnol. 2006 18 171 179
    [Google Scholar]
  51. Wang W. Wang Y. Zou J. Jia Y. Wang Y. Li J. Wang C. Sun J. Guo D. Wang F. Wu Z. Yang M. Wu L. Zhang X. Shi Y. The mechanism action of German chamomile (Matricaria recutita L.) in the treatment of eczema: Based on dose-effect weight coefficient network pharmacology. Front. Pharmacol. 2021 12 706836 10.3389/fphar.2021.706836 34658853
    [Google Scholar]
  52. Degliesposti G. Portioli C. Parenti M.D. Rastelli G. BEAR, a novel virtual screening methodology for drug discovery. SLAS Discov. 2011 16 1 129 133 10.1177/1087057110388276 21084717
    [Google Scholar]
  53. Liu P.F. Hsieh Y.D. Lin Y.C. Two A. Shu C.W. Huang C.M. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris. Curr. Drug Metab. 2015 16 4 245 254 10.2174/1389200216666150812124801 26264195
    [Google Scholar]
  54. Kildaci I. Budama-Kilinc Y. Kecel-Gunduz S. Altuntas E. Linseed oil nanoemulsions for treatment of atopic dermatitis disease: Formulation, characterization, in vitro and in silico evaluations. J. Drug Deliv. Sci. Technol. 2021 64 102652 10.1016/j.jddst.2021.102652
    [Google Scholar]
  55. Hu X. Ivashkiv L.B. Cross-regulation of signaling pathways by interferon-γ: Implications for immune responses and autoimmune diseases. Immunity 2009 31 4 539 550 10.1016/j.immuni.2009.09.002 19833085
    [Google Scholar]
  56. Kim J. Ochoa M.T. Krutzik S.R. Takeuchi O. Uematsu S. Legaspi A.J. Brightbill H.D. Holland D. Cunliffe W.J. Akira S. Sieling P.A. Godowski P.J. Modlin R.L. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 2002 169 3 1535 1541 10.4049/jimmunol.169.3.1535 12133981
    [Google Scholar]
  57. Aslam I. Fleischer A. Feldman S. Emerging drugs for the treatment of acne. Expert Opin. Emerg. Drugs 2015 20 1 91 101 10.1517/14728214.2015.990373 25474485
    [Google Scholar]
  58. Kola-Mustapha A.T. De novo design of pimarane diterpenoid compounds as potential alternatives to sarecycline for acne vulgaris treatment. Pharmacia 2023 70 4 1167 1176 10.3897/pharmacia.70.e113065
    [Google Scholar]
  59. Mayslich C. Grange P.A. Dupin N. Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors. Microorganisms 2021 9 2 303 10.3390/microorganisms9020303 33540667
    [Google Scholar]
  60. Darusman F. Fakih T.M. Comprehensive in silico analysis of christinin molecular behavior from Ziziphus spina-Christi leaves on Propionibacterium acnes. Pharm Sci Res 2021 8 1 55 64
    [Google Scholar]
  61. Ghosh S. Sinha M. Bhattacharyya A. Sadhasivam S. Megha J. Reddy S. Saini S. Singh H. Kumar D. Kaur S.P. Mishra M. Usharani D. Ghosh S. Sengupta S. A rationally designed multifunctional antibiotic for the treatment of drug-resistant acne. J. Invest. Dermatol. 2018 138 6 1400 1408 10.1016/j.jid.2017.11.041 29409921
    [Google Scholar]
  62. Parenti M.D. Rastelli G. Advances and applications of binding affinity prediction methods in drug discovery. Biotechnol. Adv. 2011 77 1 22 50 21856406
    [Google Scholar]
  63. Tuffery P. Derreumaux P. Flexibility and binding affinity in protein–ligand, protein–protein and multi-component protein interactions: limitations of current computational approaches. J. R. Soc. Interface 2012 9 66 20 33 10.1098/rsif.2011.0584 21993006
    [Google Scholar]
  64. Cheon D. Lee W.C. Lee Y. Lee J.Y. Kim Y. Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase. Biochem. Biophys. Res. Commun. 2019 509 1 322 328 10.1016/j.bbrc.2018.12.134 30587339
    [Google Scholar]
  65. Krueger R.C. The inhibition of tyrosinase. Arch. Biochem. Biophys. 1955 57 1 52 60 10.1016/0003‑9861(55)90175‑2 13239183
    [Google Scholar]
  66. Marnett L.J. Hurd H.K. Hollstein M.C. Levin D.E. Esterbauer H. Ames B.N. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat. Res. 1985 148 1-2 25 34 10.1016/0027‑5107(85)90204‑0 3881660
    [Google Scholar]
  67. Schvartsman G. Taranto P. Glitza I.C. Agarwala S.S. Atkins M.B. Buzaid A.C. Management of metastatic cutaneous melanoma: updates in clinical practice. Ther. Adv. Med. Oncol. 2019 11 10.1177/1758835919851663 31205512
    [Google Scholar]
  68. Bellan D.L. Biscaia S.M.P. Rossi G.R. Cristal A.M. Gonçalves J.P. Oliveira C.C. Simas F.F. Sabry D.A. Rocha H.A.O. Franco C.R.C. Chammas R. Gillies R.J. Trindade E.S. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features. Carbohydr. Polym. 2020 250 116869 10.1016/j.carbpol.2020.116869 33049818
    [Google Scholar]
  69. Souto E.B. Sampaio A.C. Campos J.R. Martins-Gomes C. Aires A. Silva A.M. Polyphenols for skin cancer: Chemical properties, structure-related mechanisms of action and new delivery systems. Studies in Natural Products Chemistry. Attaur R. Amsterdam, The Netherlands Elsevier 2019 63 21 42 10.1016/B978‑0‑12‑817901‑7.00002‑2.
    [Google Scholar]
  70. Imran M. Rauf A. Abu-Izneid T. Nadeem M. Shariati M.A. Khan I.A. Imran A. Orhan I.E. Rizwan M. Atif M. Gondal T.A. Mubarak M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019 112 108612 10.1016/j.biopha.2019.108612 30798142
    [Google Scholar]
  71. Liu H. He Z. Simon H.U. Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin. Cancer Biol. 2013 23 5 352 360 10.1016/j.semcancer.2013.06.008 23831275
    [Google Scholar]
  72. Naidoo C. Kruger C. A. Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: A review. Technol Cancer Res Treat 2018 17 10.1177/1533033818791795
    [Google Scholar]
  73. Tang H-C. Chen Y-C. Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma. Int. J. Nanomedicine 2015 10 3131 3146 25960652
    [Google Scholar]
  74. Zhou L. Yang K. Andl T. Wickett R.R. Zhang Y. Perspective of targeting cancer-associated fibroblasts in Melanoma. J. Cancer 2015 6 8 717 726 10.7150/jca.10865 26185533
    [Google Scholar]
  75. King A.J. Patrick D.R. Batorsky R.S. Ho M.L. Do H.T. Zhang S.Y. Kumar R. Rusnak D.W. Takle A.K. Wilson D.M. Hugger E. Wang L. Karreth F. Lougheed J.C. Lee J. Chau D. Stout T.J. May E.W. Rominger C.M. Schaber M.D. Luo L. Lakdawala A.S. Adams J.L. Contractor R.G. Smalley K.S.M. Herlyn M. Morrissey M.M. Tuveson D.A. Huang P.S. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 2006 66 23 11100 11105 10.1158/0008‑5472.CAN‑06‑2554 17145850
    [Google Scholar]
  76. Fitriani I.N. Ansory H.M. Molecular docking study of nutmeg (Myristica fragrans) constituents as anti-skin cancer agents. JKPK (Jurnal Kimia dan Pendidikan Kimia) 2021 6 1 14 22 10.20961/jkpk.v6i1.47223
    [Google Scholar]
  77. Kandasamy S. Sahu S.K. Kandasamy K. In silico studies on fungal metabolite against skin cancer protein (4,5-diarylisoxazole HSP90 chaperone). ISRN Dermatol. 2012 2012 1 5 10.5402/2012/626214 22991673
    [Google Scholar]
  78. Asnawi A. Aman L.O. Molecular docking and molecular dynamic studies: screening phytochemicals of Acalypha indica against BRAF kinase receptors for potential use in melanocytic tumors. Rasayan J. Chem. 2022 15 2 1352 1361 10.31788/RJC.2022.1526769
    [Google Scholar]
  79. Vijayakumar S. Menakha M. Tasiamide-B a new cyanobacterial compound for treating skin cancer. Biomed Prev Nutr 2014 4 3 10.1016/j.bionut.2013.10.001.
    [Google Scholar]
  80. Boateng S.T. Roy T. Agbo M.E. Banang-Mbeumi S. Chamcheu R.C.N. Bramwell M. Chamcheu J.C. Identification of potential inhibitors of cutaneous melanoma and non-melanoma skin cancer cells through in-vitro and in-silico screening of a small library of phenolic compounds. BioRxiv 2022 10.1101/2022.02.28.482167
    [Google Scholar]
  81. Ballavi M.S. Pramod Kumar H.S. In-silico analysis to determine the efficient drug for malignant melanoma using molecular dynamics. Biomed. Pharmacol. J. 2020 46 2 98 10
    [Google Scholar]
  82. Sharma S. Kumar V. Yaseen M. S Abouzied A. Arshad A. Bhat M.A. Naglah A.M. Patel C.N. Sivakumar P.K. Sourirajan A. Shahzad A. Dev K. Phytochemical analysis, in vitro biological activities, and computer-aided analysis of Potentilla nepalensis hook compounds as potential melanoma inhibitors based on molecular docking, MD simulations, and ADMET. Molecules 2023 28 13 5108 10.3390/molecules28135108 37446769
    [Google Scholar]
  83. Boutalaka M. El bahi S. Alaqarbeh M. El Alaouy M.A. Koubi Y. Khatabi K.E. Maghat H. Bouachrine M. Lakhlifi T. Computational investigation of imidazo[2,1-b]oxazole derivatives as potential mutant BRAF kinase inhibitors: 3D-QSAR, molecular docking, molecular dynamics simulation, and ADMETox studies. J. Biomol. Struct. Dyn. 2024 42 10 5268 5287 10.1080/07391102.2023.2233629 37424193
    [Google Scholar]
  84. Hu Y. Wu Y. Jiang C. Wang Z. Shen C. Zhu Z. Li H. Zeng Q. Xue Y. Wang Y. Liu L. Yi Y. Zhu H. Liu Q. Investigative on the molecular mechanism of licorice flavonoids anti-melanoma by network pharmacology, 3D/2D-QSAR, molecular docking, and molecular dynamics simulation. Front Chem. 2022 10 843970 10.3389/fchem.2022.843970 35308797
    [Google Scholar]
  85. Dao P. Lietha D. Etheve-Quelquejeu M. Garbay C. Chen H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg. Med. Chem. Lett. 2017 27 8 1727 1730 10.1016/j.bmcl.2017.02.072 28284808
    [Google Scholar]
  86. Hang N.T. My T.T.K. Van Anh L.T. Van Anh P.T. Anh T.D.H. Van Phuong N. Identification of potential FAK inhibitors using mol2vec molecular descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation. Mol. Divers. 2024 10.1007/s11030‑024‑10839‑3
    [Google Scholar]
  87. Arold S.T. How focal adhesion kinase achieves regulation by linking ligand binding, localization and action. Curr. Opin. Struct. Biol. 2011 21 6 808 813 10.1016/j.sbi.2011.09.008 22030387
    [Google Scholar]
  88. Owens L.V. Xu L. Craven R.J. Dent G.A. Weiner T.M. Kornberg L. Liu E.T. Cance W.G. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995 55 13 2752 2755 7796399
    [Google Scholar]
  89. Shirvani P. Fassihi A. In silico design of novel FAK inhibitors using integrated molecular docking, 3D-QSAR and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 2021 1 19 33475043
    [Google Scholar]
  90. Lu X. Zhao L. Xue T. Zhang H. Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking. Med. Chem. Res. 2014 23 4 1976 1997 10.1007/s00044‑013‑0768‑0
    [Google Scholar]
  91. Ghosh S. Seung J. Three-dimensional-QSAR and relative binding affinity estimation of focal adhesion kinase inhibitors. Molecules 2023 28 3 1464 10.3390/molecules28031464.
    [Google Scholar]
  92. Wang F. Yang W. Li R. Sui Z. Cheng G. Zhou B. Molecular description of pyrimidine-based inhibitors with activity against FAK combining 3D-QSAR analysis, molecular docking and molecular dynamics. Arab. J. Chem. 2021 14 6 103144 10.1016/j.arabjc.2021.103144.
    [Google Scholar]
  93. Abbas S. R. Baig S. Treatment of skin cancer by medicinal plants. J Biotechnol Sci 2020 137 2 131 137
    [Google Scholar]
  94. Scott T.M. Morlett Paredes A. Taylor M.J. Umlauf A. Artiola I Fortuny L. Heaton R.K. Cherner M. Marquine M.J. Rivera Mindt M. Demographically-adjusted norms for the WAIS-R block design and arithmetic subtests: Results from the neuropsychological norms for the US-Mexico border region in Spanish (NP-NUMBRS) project. Clin Neuropsychol 2021 35 2 419 432 10.1080/13854046.2019.1707285. 31928314
    [Google Scholar]
  95. Calimport S.R.G. Bentley B.L. Aging classified as a cause of disease in ICD-11. Rejuvenation Res 2019 22 4 281 10.1089/rej.2019.2242. 31319768
    [Google Scholar]
  96. Zhang S. Zhang Y. Isoflurane reduces endotoxin-induced oxidative, inflammatory, and apoptotic responses in H9c2 cardiomyocytes. Eur Rev Med Pharmacol Sci 2018 22 12 3976 3987 10.26355/eurrev_201806_15282. 29949173
    [Google Scholar]
  97. Woodley F.W. Moore-Clingenpeel M. Machado R.S. Nemastil C.J. Jadcherla S.R. Hayes D Jr. Kopp B.T. Kaul A. Di Lorenzo C. Mousa H. Not all children with cystic fibrosis have abnormal esophageal neutralization during chemical clearance of acid reflux. Pediatr Gastroenterol Hepatol Nutr 2017 20 3 153 159 10.5223/pghn.2017.20.3.153. 29026731
    [Google Scholar]
  98. Amorim F.G. Costa T.R. Baiwir D. De Pauw E. Quinton L. Sampaio S.V. Proteopeptidomic, functional and immunoreactivity characterization of Bothrops moojeni snake venom: Influence of snake gender on venom composition. Toxins (Basel) 2018 10 5 177 10.3390/toxins10050177. 29701671
    [Google Scholar]
  99. de Andrades D. Graebin N.G. Ayub M.A.Z. Fernandez-Lafuente R. Rodrigues R.C. Preparation of immobilized/stabilized biocatalysts of β-glucosidases from different sources: Importance of the support active groups and the immobilization protocol. Biotechnol Prog 2019 35 6 e2890 10.1002/btpr.2890. 31374157
    [Google Scholar]
  100. Tumola M.R. Panico A. De Donno A. Mincarone P. Leo C.G. Guarino R. Bagordo F. Serio F. Idolo A. Grassi T. Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int J Environ Health Res 2022 32 2 332 354 10.1080/09603123.2020.1757043. 32393046
    [Google Scholar]
  101. Available from: https://pubchem.ncbi.nlm.nih.gov/
/content/journals/ctmc/10.2174/0115680266337405240926114604
Loading
/content/journals/ctmc/10.2174/0115680266337405240926114604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test