Skip to content
2000
image of Design and Synthesis of 1-(4-Bromo-2-(Pyrrolidine-1-Yl) Benzyl) Piperidine-Based Derivatives as Anti-Tubulin Agents

Abstract

Background

Piperidines are among the essential synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. The synthesis of newer derivatives by incorporating different amines paves the way for the introduction of novel drug combinations for current cancer treatments.

Method

The new combinations of 1-(4-bromo-2-(pyrrolidine-1-yl) benzyl) piperidine derivatives were synthesized by adding various amino groups. All the synthesized derivatives were characterized using NMR and LC-MS. The anti-cancer activity of all the synthesized derivatives was studied on three different cell lines, A549 (lung cancer), HCT-116 (colon cancer), and MCF-7(breast cancer), using an MTT assay. The most potent compounds, 7h and 7k were further evaluated for cell cycle and tubulin polymerization inhibitory activity. Further, analysis for the same properties was performed using molecular docking using MM/GBSA and validated by RMSD.

Results

All the synthesized derivatives showed selective cytotoxic potential against different cancer cell lines. Most of the derivatives displayed comparable anticancer potential in comparison to 5-FU. The most potent derivative, , further arrests the cancer cells in the G2/M phase and prevents tubulin polymerization. The same was further confirmed using molecular docking on the colchicine binding site.

Conclusion

The derivative that arrests the cancer cells in the G2/M phase of the cell cycle and induces depolymerization can be developed as a good lead for further development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266336578241114072129
2025-01-02
2025-02-06
Loading full text...

Full text loading...

References

  1. Chaaban S. Brouhard G.J. A microtubule bestiary: structural diversity in tubulin polymers. Mol. Biol. Cell 2017 28 22 2924 2931 10.1091/mbc.e16‑05‑0271 29084910
    [Google Scholar]
  2. Gudimchuk N.B. McIntosh J.R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol. 2021 22 12 777 795 10.1038/s41580‑021‑00399‑x 34408299
    [Google Scholar]
  3. Downing K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol. 2000 16 1 89 111 10.1146/annurev.cellbio.16.1.89 11031231
    [Google Scholar]
  4. Zhu T. Wang S.H. Li D. Wang S.Y. Liu X. Song J. Wang Y.T. Zhang S.Y. Progress of tubulin polymerization activity detection methods. Bioorg. Med. Chem. Lett. 2021 37 127698 10.1016/j.bmcl.2020.127698 33468346
    [Google Scholar]
  5. McIntosh J.R. Volkov V. Ataullakhanov F.I. Grishchuk E.L. Tubulin depolymerization may be an ancient biological motor. J. Cell Sci. 2010 123 20 3425 3434 10.1242/jcs.067611 20930138
    [Google Scholar]
  6. Brouhard G.J. Rice L.M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 2014 207 3 323 334 10.1083/jcb.201407095 25385183
    [Google Scholar]
  7. Braguer D. Carré M. Esteve M-A. Microtubules in apoptosis induction: are they necessary? Curr. Cancer Drug Targ. 2007 7 8 713 729 10.2174/156800907783220480 18220532
    [Google Scholar]
  8. Čermák V. Dostál V. Jelínek M. Libusová L. Kovář J. Rösel D. Brábek J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol. 2020 99 4 151075 10.1016/j.ejcb.2020.151075 32414588
    [Google Scholar]
  9. Fanale D. Bronte G. Passiglia F. Calò V. Castiglia M. Di Piazza F. Barraco N. Cangemi A. Catarella M.T. Insalaco L. Listì A. Maragliano R. Massihnia D. Perez A. Toia F. Cicero G. Bazan V. Cangemi A. Catarella M.T. Insalaco L. Listì A. Maragliano R. Massihnia D. Perez A. Toia F. Cicero G. Bazan V. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal. Cell. Pathol. (Amst.) 2015 2015 1 1 19 10.1155/2015/690916 26484003
    [Google Scholar]
  10. Wordeman L. Vicente J.J. Microtubule targeting agents in disease: classic drugs, novel roles. Cancers (Basel) 2021 13 22 5650 10.3390/cancers13225650 34830812
    [Google Scholar]
  11. Hawash M. Recent advances of tubulin inhibitors targeting the colchicine binding site for cancer therapy. Biomolecules 2022 12 12 1843 10.3390/biom12121843 36551271
    [Google Scholar]
  12. Aylett C.H.S. Löwe J. Amos L.A. New insights into the mechanisms of cytomotive actin and tubulin filaments. Int. Rev. Cell Mol. Biol. 2011 292 1 71 10.1016/B978‑0‑12‑386033‑0.00001‑3 22078958
    [Google Scholar]
  13. Duan Y. Liu W. Tian L. Mao Y. Song C. Targeting tubulin-colchicine site for cancer therapy: inhibitors, antibody-drug conjugates and degradation agents. Curr. Top. Med. Chem. 2019 19 15 1289 1304 10.2174/1568026619666190618130008 31210108
    [Google Scholar]
  14. Skoufias D.A. Wilson L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 1992 31 3 738 746 10.1021/bi00118a015 1731931
    [Google Scholar]
  15. McLoughlin E.C. O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals (Basel) 2020 13 1 8 10.3390/ph13010008 31947889
    [Google Scholar]
  16. Stengel C. Newman S.P. Leese M.P. Potter B.V.L. Reed M.J. Purohit A. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents. Br. J. Cancer 2010 102 2 316 324 10.1038/sj.bjc.6605489 20029418
    [Google Scholar]
  17. Wu X. Wang Q. Li W. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anticancer. Agents Med. Chem. 2016 16 10 1325 1338 10.2174/1871520616666160219161921 26899186
    [Google Scholar]
  18. Ray K. Bhattacharyya B. Biswas B.B. Role of B-ring of colchicine in its binding to tubulin. J. Biol. Chem. 1981 256 12 6241 6244 10.1016/S0021‑9258(19)69153‑2 7240202
    [Google Scholar]
  19. Sun K. Sun Z. Zhao F. Shan G. Meng Q. Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med. Chem. 2021 13 9 839 858 10.4155/fmc‑2020‑0376 33821673
    [Google Scholar]
  20. Dwivedi A.R. Rawat S.S. Kumar V. Kumar N. Anand P. Yadav R.P. Baranwal S. Prasad A. Kumar V. Chemistry M. Synthesis and screening of novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as antiproliferative and tubulin polymerization inhibitors. Bioorg. Med. Chem. 2022 72 116976 10.1016/j.bmc.2022.116976 36067627
    [Google Scholar]
  21. Prasad A. Kumar V. Dwivedi A.R. Rawat S.S. Kumar V. Kumar N. Kumar V. Yadav R.P. Baranwal S. Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity. Curr. Cancer Drug Targets 2023 23 4 278 292 10.2174/1568009623666221028121906 36306454
    [Google Scholar]
  22. Frolov N.A. Vereshchagin A.N. Piperidine derivatives: recent advances in synthesis and pharmacological applications. Int. J. Mol. Sci. 2023 24 3 2937 10.3390/ijms24032937 36769260
    [Google Scholar]
  23. Sun W. Liao A. Lei L. Tang X. Wang Y. Wu J. Research progress on piperidine-containing compounds as agrochemicals. Chin. Chem. Lett. 2024 ••• 109855
    [Google Scholar]
  24. Kurbat N.M. Praliev K.D. Salita T.A. Yu V.K. Verina E.L. Neuropharmacological activity of piperidine derivatives (a review). Pharm. Chem. J. 1991 25 7 450 462 10.1007/BF00771998
    [Google Scholar]
  25. Abdelshaheed M.M. Fawzy I.M. El-Subbagh H.I. Youssef K.M. Piperidine nucleus in the field of drug discovery. Future J. Pharm. Sci. 2021 7 1 188 10.1186/s43094‑021‑00335‑y
    [Google Scholar]
  26. Jayan J. Chandran N. Thekkantavida A.C. Abdelgawad M.A. Ghoneim M.M. Shaker M.E. Uniyal P. Benny F. Zachariah S.M. Kumar S. Kim H. Mathew B. Piperidine: A Versatile Heterocyclic Ring for Developing Monoamine Oxidase Inhibitors. ACS Omega 2023 8 41 37731 37751 10.1021/acsomega.3c05883 37867639
    [Google Scholar]
  27. Goel P. Alam O. Naim M.J. Nawaz F. Iqbal M. Alam M.I. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem. 2018 157 480 502 10.1016/j.ejmech.2018.08.017 30114660
    [Google Scholar]
  28. Lei Y. Li B. Liao X. Xing X. Feng P. Zhao B. Xu S. Isolation and total synthesis of dysidone A: a new piperidone alkaloid from the marine sponge Dysidea sp. RSC Advances 2023 13 42 29316 29319 10.1039/D3RA06115A 37809021
    [Google Scholar]
  29. D’hooghe M. Ha H-J. Macha L. Deployment of aziridines for the synthesis of alkaloids and their derivatives. Synthesis 2019 51 7 1491 1515 10.1055/s‑0037‑1611715
    [Google Scholar]
  30. Mitra S. Anand U. Jha N.K. Shekhawat M.S. Saha S.C. Nongdam P. Rengasamy K.R.R. Proćków J. Dey A. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives. Front. Pharmacol. 2022 12 772418 10.3389/fphar.2021.772418 35069196
    [Google Scholar]
  31. Azam S. Park J.Y. Kim I.S. Choi D.K. Piperine and its metabolite’s pharmacology in neurodegenerative and neurological diseases. Biomedicines 2022 10 1 154 10.3390/biomedicines10010154 35052833
    [Google Scholar]
  32. Sharma R. Soman S.S. Design and synthesis of sulfonamide derivatives of pyrrolidine and piperidine as anti-diabetic agents. Eur. J. Med. Chem. 2015 90 342 350 10.1016/j.ejmech.2014.11.041 25437620
    [Google Scholar]
  33. Weis R. Schweiger K. Faist J. Rajkovic E. Kungl A.J. Fabian W.M.F. Schunack W. Seebacher W. Antimycobacterial and H1-antihistaminic activity of 2-substituted piperidine derivatives. Bioorg. Med. Chem. 2008 16 24 10326 10331 10.1016/j.bmc.2008.10.042 18977145
    [Google Scholar]
  34. Buran K. Reis R. Sipahi H. Önen Bayram F.E. Piperazine and piperidine‐substituted 7‐hydroxy coumarins for the development of anti‐inflammatory agents. Arch. Pharm. (Weinheim) 2021 354 7 2000354 10.1002/ardp.202000354 33749005
    [Google Scholar]
  35. Janani S. Rajagopal H. Sakthivel S. Kadaikunnan S. Abbas G. Muthu S. Comparison of experimental and theoretical spectral groups, electronic properties, topological, and molecular docking investigations of 1-N-Cbz-piperidine-4-carboxylic acid- Potential Cancer drug. J. Mol. Struct. 2023 1289 135832 10.1016/j.molstruc.2023.135832
    [Google Scholar]
  36. Bray F. Laversanne M. Weiderpass E. Soerjomataram I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021 127 16 3029 3030 10.1002/cncr.33587 34086348
    [Google Scholar]
  37. Quijia C.R. Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother. Res. 2022 36 1 147 163 10.1002/ptr.7291 34559416
    [Google Scholar]
  38. Manayi A. Nabavi S.M. Setzer W.N. Jafari S. Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr. Med. Chem. 2019 25 37 4918 4928 10.2174/0929867324666170523120656 28545378
    [Google Scholar]
  39. Tripathi A.K. Ray A.K. Mishra S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. Beni. Suef Univ. J. Basic Appl. Sci. 2022 11 1 16 10.1186/s43088‑022‑00196‑1 35127957
    [Google Scholar]
  40. Chopra B. Dhingra A.K. Kapoor R.P. Prasad D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J. 2016 3 1 75 96 10.2174/1874842201603010075
    [Google Scholar]
  41. Chinta G. Syed B. S.; Coumar, M. S.; Periyasamy, L. Piperine: A comprehensive review of pre-clinical and clinical investigations. Curr. Bioact. Compd. 2015 11 3 156 169 10.2174/1573407211666150915214425
    [Google Scholar]
  42. Umadevi P. Deepti K. Venugopal D.V.R. Synthesis, anticancer and antibacterial activities of piperine analogs. Med. Chem. Res. 2013 22 11 5466 5471 10.1007/s00044‑013‑0541‑4
    [Google Scholar]
  43. Li S. Lei Y. Jia Y. Li N. Wink M. Ma Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 2011 19 1 83 87 10.1016/j.phymed.2011.06.031 21802927
    [Google Scholar]
  44. Zadorozhna M. Tataranni T. Mangieri D. Piperine: role in prevention and progression of cancer. Mol. Biol. Rep. 2019 46 5 5617 5629 10.1007/s11033‑019‑04927‑z 31273611
    [Google Scholar]
  45. Mishra P.S. Kaushik N. Mishra R. Koul S. Sagar S. Natural Alkaloids and Mechanisms for Anti-cancer Action: A Review. Curr. Bioact. Compd. 2024 20 8 e230124226013 10.2174/0115734072276134231130170407
    [Google Scholar]
  46. Dragull K. Yoshida W.Y. Tang C.S. Piperidine alkaloids from Piper methysticum. Phytochemistry 2003 63 2 193 198 10.1016/S0031‑9422(03)00111‑0 12711141
    [Google Scholar]
  47. Bhat A.A. Singh I. Tandon N. Tandon R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur. J. Med. Chem. 2023 246 114954 10.1016/j.ejmech.2022.114954 36481599
    [Google Scholar]
  48. Alrooqi M. Khan S. Alhumaydhi F.A. Asiri S.A. Alshamrani M. Mashraqi M.M. Alzamami A. Alshahrani A.M. Aldahish A.A. A therapeutic journey of pyridine-based heterocyclic compounds as potent anticancer agents: a review (from 2017 to 2021). Anticancer. Agents Med. Chem. 2022 22 15 2775 2787 10.2174/1871520622666220324102849 35331100
    [Google Scholar]
  49. Yuan Y.P. Wang S.B. Gong G.H. Quan Z.S. Synthesis and Studies on Anticonvulsant and Antibacterial Activities of 1- Alkyl-4-(4H-1,2,4-triazol-4-yl)piperidine Derivatives. Lett. Drug Des. Discov. 2014 11 9 1070 1078 10.2174/1570180811666140623204022
    [Google Scholar]
  50. Lim J.S. Lee D.Y. Lim J.H. Oh W.K. Park J.T. Park S.C. Cho K.A. Piperine: an anticancer and senostatic drug. Front. Biosci. (Landmark Ed.) 2022 27 4 137 10.31083/j.fbl2704137 35468696
    [Google Scholar]
  51. Wojtowicz K. Sterzyńska K. Świerczewska M. Nowicki M. Zabel M. Januchowski R. Piperine targets different drug resistance mechanisms in human ovarian cancer cell lines leading to increased sensitivity to cytotoxic drugs. Int. J. Mol. Sci. 2021 22 8 4243 10.3390/ijms22084243 33921897
    [Google Scholar]
  52. Bezerra D.P. Castro F.O. Alves A.P.N.N. Pessoa C. Moraes M.O. Silveira E.R. Lima M.A.S. Elmiro F.J.M. Costa-Lotufo L.V. In vivo growth-inhibition of Sarcoma 180 by piplartine and piperine, two alkaloid amides from Piper. Braz. J. Med. Biol. Res. 2006 39 6 801 807 10.1590/S0100‑879X2006000600014 16751987
    [Google Scholar]
  53. Ferreira R.C. Batista T.M. Duarte S.S. Silva D.K.F. Lisboa T.M.H. Cavalcanti R.F.P. Leite F.C. Mangueira V.M. Sousa T.K.G. Abrantes R.A. Trindade E.O. Athayde-Filho P.F. Brandão M.C.R. Medeiros K.C.P. Farias D.F. Sobral M.V. A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomed. Pharmacother. 2020 128 110247 10.1016/j.biopha.2020.110247 32450524
    [Google Scholar]
  54. Kirsch M. Rach J. Handke W. Seltsam A. Pepelanova I. Strauß S. Vogt P. Scheper T. Lavrentieva A. Comparative analysis of mesenchymal stem cell cultivation in fetal calf serum, human serum, and platelet lysate in 2D and 3D systems. Front. Bioeng. Biotechnol. 2021 8 598389 10.3389/fbioe.2020.598389 33520956
    [Google Scholar]
  55. Gillet J.P. Varma S. Gottesman M.M. The clinical relevance of cancer cell lines. J. Natl. Cancer Inst. 2013 105 7 452 458 10.1093/jnci/djt007 23434901
    [Google Scholar]
  56. Emami L. Khabnadideh S. Faghih Z. Farahvasi F. Zonobi F. Gheshlaghi S.Z. Daili S. Ebrahimi A. Faghih Z. Synthesis, biological evaluation, and computational studies of some novel quinazoline derivatives as anticancer agents. BMC Chem. 2022 16 1 100 10.1186/s13065‑022‑00893‑z 36419100
    [Google Scholar]
  57. Pozarowski P. Darzynkiewicz Z. Activation C.V. Protocols R. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 2004 281 301 312 10.1385/1‑59259‑811‑0:301 15220539
    [Google Scholar]
  58. Kumar B. Sharma P. Gupta V.P. Khullar M. Singh S. Dogra N. Kumar V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem. 2018 78 130 140 10.1016/j.bioorg.2018.02.027 29554587
    [Google Scholar]
  59. Guguloth R. Gubbiyappa S.K. Synthesis, Docking and Biological Evaluation of New Series of Pyrrolidine Derivatives as Potent Antibacterial Agents. Asian J. Chem. 2024 36 2 489 497 10.14233/ajchem.2024.31036
    [Google Scholar]
  60. Dwivedi A.R. Kumar V. Prashar V. Verma A. Kumar N. Parkash J. Kumar V. Morpholine substituted quinazoline derivatives as anticancer agents against MCF-7, A549 and SHSY-5Y cancer cell lines and mechanistic studies. RSC Med. Chem. 2022 13 5 599 609 10.1039/D2MD00023G 35694693
    [Google Scholar]
  61. Plumb J.A. Cell sensitivity assays: the MTT assay. Methods Mol. Med. 2004 88 165 169 14634227
    [Google Scholar]
  62. Kourounakis A.P. Xanthopoulos D. Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 2020 40 2 709 752 10.1002/med.21634 31512284
    [Google Scholar]
  63. Kumar A. Sharma P.R. Mondhe D.M. Potential anticancer role of colchicine-based derivatives. Anticancer Drugs 2017 28 3 250 262 10.1097/CAD.0000000000000464 28030380
    [Google Scholar]
  64. Shuai W. Li X. Li W. Xu F. Lu L. Yao H. Yang L. Zhu H. Xu S. Zhu Z. Xu J. Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors. Eur. J. Med. Chem. 2020 197 112308 10.1016/j.ejmech.2020.112308 32339853
    [Google Scholar]
  65. Varetti G. Guida C. Santaguida S. Chiroli E. Musacchio A. Homeostatic control of mitotic arrest. Mol. Cell 2011 44 5 710 720 10.1016/j.molcel.2011.11.014 22152475
    [Google Scholar]
  66. Kumar A. Singh B. Sharma P.R. Bharate S.B. Saxena A.K. Mondhe D.M. A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT‐116 colon cancer cells. Cell Biochem. Funct. 2016 34 2 69 81 10.1002/cbf.3166 26919061
    [Google Scholar]
  67. Cui Y. Zhang J. Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr. Med. Chem. 2024 31 14 1874 1895 10.2174/0929867330666230622142505 37349994
    [Google Scholar]
  68. Donthiboina K. Anchi P. Gurram S. Sai Mani G. Lakshmi Uppu J. Godugu C. Shankaraiah N. Kamal A. Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem. 2020 103 104191 10.1016/j.bioorg.2020.104191 32891862
    [Google Scholar]
  69. Sahayarayan J.J. Rajan K.S. Vidhyavathi R. Nachiappan M. Prabhu D. Alfarraj S. Arokiyaraj S. Daniel A.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J. Biol. Sci. 2021 28 1 400 407 10.1016/j.sjbs.2020.10.023 33424323
    [Google Scholar]
  70. Wang E. Sun H. Wang J. Wang Z. Liu H. Zhang J.Z.H. Hou T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  71. Li W. Sun H. Xu S. Zhu Z. Xu J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem. 2017 9 15 1765 1794 10.4155/fmc‑2017‑0100 28929799
    [Google Scholar]
  72. Şahin İ. Çeşme M. Özgeriş F.B. Tümer F. Triazole based novel molecules as potential therapeutic agents: Synthesis, characterization, biological evaluation, in-silico ADME profiling and molecular docking studies. Chem. Biol. Interact. 2023 370 110312 10.1016/j.cbi.2022.110312 36535312
    [Google Scholar]
  73. Malik R. Mehta P. Srivastava S. Choudhary B.S. Sharma M. Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N -pyridyl and pyrimidine benzamides as potent antiepileptic agents. J. Recept. Signal Transduct. Res. 2017 37 3 259 266 10.1080/10799893.2016.1217883 27607834
    [Google Scholar]
  74. Arnott J.A. Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012 7 10 863 875 10.1517/17460441.2012.714363 22992175
    [Google Scholar]
  75. Kokitkar P.B. Plocharczyk E. Chen C.C. Modeling drug molecule solubility to identify optimal solvent systems for crystallization. Org. Process Res. Dev. 2008 12 2 249 256 10.1021/op700130z
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266336578241114072129
Loading
/content/journals/ctmc/10.2174/0115680266336578241114072129
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: anti-tubulin ; anti-cancer activity ; cell cycle ; molecular docking ; Piperidine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test