Skip to content
2000
image of Traditional Chinese Medicine for Liver Cancer Treatment: Network Pharmacology Research

Abstract

Background

As one of the common malignant tumors nowadays, liver cancer has more risk factors for its development and is characterized by a high recurrence rate, high mortality rate, and poor prognosis, which poses a great threat to people's health. The specific efficacy of traditional Chinese medicine is based on clinical practice, which is a high degree of generalization of the characteristics and scope of the clinical effects of prescription medicines and a special form of expression of the medical effects of the human body within the scope of traditional Chinese medicine. Because of its multi-ingredient, multi-target, and multi-pathway characteristics, it has a great advantage in the treatment of liver cancer. Still, at present, its specific molecular mechanism of action has not yet been clarified.

Aim

This study reviews the current status and characteristics of network pharmacology research in the treatment of liver cancer, aiming to provide new ideas and methods for traditional Chinese medicine treatment of the disease.

Methods

This study was searched on the Web of Science and PubMed using keywords, such as “traditional Chinese medicine”, “liver cancer,” and “network pharmacology.” The citation dates of the literature cited in this review are from 2000 to 2024.

Results

The discovery of the key molecular mechanisms of traditional Chinese medicine in the treatment of liver cancer through the network pharmacology approach and the in-depth study of the related signaling pathways are conducive to a more in-depth exploration of traditional Chinese medicine.

Conclusion

Network pharmacology research plays a key role in the treatment and prevention of liver cancer and deserves deeper exploration in the future.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266336478241118065659
2025-01-09
2025-04-05
Loading full text...

Full text loading...

References

  1. Starley B.Q. Calcagno C.J. Harrison S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology 2010 51 5 1820 1832 10.1002/hep.23594 20432259
    [Google Scholar]
  2. Center M.M. Jemal A. International trends in liver cancer incidence rates. Cancer Epidemiol. Biomarkers Prev. 2011 20 11 2362 2368 10.1158/1055‑9965.EPI‑11‑0643 21921256
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  4. Anwanwan D. Singh S.K. Singh S. Saikam V. Singh R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020 1873 1 188314 10.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  5. Akinyemiju T. Abera S. Ahmed M. Alam N. Alemayohu M.A. Allen C. Al-Raddadi R. Alvis-Guzman N. Amoako Y. Artaman A. Ayele T.A. Barac A. Bensenor I. Berhane A. Bhutta Z. Castillo-Rivas J. Chitheer A. Choi J.Y. Cowie B. Dandona L. Dandona R. Dey S. Dicker D. Phuc H. Ekwueme D.U. Zaki M.E.S. Fischer F. Fürst T. Hancock J. Hay S.I. Hotez P. Jee S.H. Kasaeian A. Khader Y. Khang Y.H. Kumar G.A. Kutz M. Larson H. Lopez A. Lunevicius R. Malekzadeh R. McAlinden C. Meier T. Mendoza W. Mokdad A. Moradi-Lakeh M. Nagel G. Nguyen Q. Nguyen G. Ogbo F. Patton G. Pereira D.M. Pourmalek F. Qorbani M. Radfar A. Roshandel G. Salomon J.A. Sanabria J. Sartorius B. Satpathy M. Sawhney M. Sepanlou S. Shackelford K. Shore H. Sun J. Mengistu D.T. Topór-Madry R. Tran B. Ukwaja K.N. Vlassov V. Vollset S.E. Vos T. Wakayo T. Weiderpass E. Werdecker A. Yonemoto N. Younis M. Yu C. Zaidi Z. Zhu L. Murray C.J.L. Naghavi M. Fitzmaurice C. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level. JAMA Oncol. 2017 3 12 1683 1691 10.1001/jamaoncol.2017.3055 28983565
    [Google Scholar]
  6. Kanwal F. Kramer J. Asch S.M. Chayanupatkul M. Cao Y. El-Serag H.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 2017 153 4 996 1005.e1 10.1053/j.gastro.2017.06.012 28642197
    [Google Scholar]
  7. Llovet J.M. Zucman-Rossi J. Pikarsky E. Sangro B. Schwartz M. Sherman M. Gores G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2016 2 1 16018 10.1038/nrdp.2016.18 27158749
    [Google Scholar]
  8. Cao W. Chen H.D. Yu Y.W. Li N. Chen W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.) 2021 134 7 783 791 10.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  9. Villanueva A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019 380 15 1450 1462 10.1056/NEJMra1713263 30970190
    [Google Scholar]
  10. El-Khoueiry A.B. Sangro B. Yau T. Crocenzi T.S. Kudo M. Hsu C. Kim T.Y. Choo S.P. Trojan J. Welling T.H. Meyer T. Kang Y.K. Yeo W. Chopra A. Anderson J. dela Cruz C. Lang L. Neely J. Tang H. Dastani H.B. Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017 389 10088 2492 2502 10.1016/S0140‑6736(17)31046‑2 28434648
    [Google Scholar]
  11. Zhang R. Zhu X. Bai H. Ning K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol. 2019 10 123 10.3389/fphar.2019.00123 30846939
    [Google Scholar]
  12. Li S. Zhang B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013 11 2 110 120 10.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  13. Li S. Fan T.P. Jia W. Lu A. Zhang W. Network pharmacology in traditional chinese medicine. Evid. Based Complement. Alternat. Med. 2014 2014 1 138460 10.1155/2014/138460 24707305
    [Google Scholar]
  14. Hopkins A.L. Network pharmacology. Nat. Biotechnol. 2007 25 10 1110 1111 10.1038/nbt1007‑1110 17921993
    [Google Scholar]
  15. Zheng S. Xue C. Li S. Zao X. Li X. Liu Q. Cao X. Wang W. Qi W. Zhang P. Ye Y. Chinese medicine in the treatment of non-alcoholic fatty liver disease based on network pharmacology: A review. Front. Pharmacol. 2024 15 1381712 10.3389/fphar.2024.1381712 38694920
    [Google Scholar]
  16. Hao D.C. Xiao P.G. Network pharmacology: a Rosetta Stone for traditional Chinese medicine. Drug Dev. Res. 2014 75 5 299 312 10.1002/ddr.21214 25160070
    [Google Scholar]
  17. Zheng S. Liang Y. Xue T. Wang W. Li S. Zhang P. Li X. Cao X. Liu Q. Qi W. Ye Y. Zao X. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front. Pharmacol. 2024 15 1412997 10.3389/fphar.2024.1412997 39086391
    [Google Scholar]
  18. Zhou Z. Chen B. Chen S. Lin M. Chen Y. Jin S. Chen W. Zhang Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med. 2020 2020 1 1646905 10.1155/2020/1646905 32148533
    [Google Scholar]
  19. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  20. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  21. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T.I. Nudel R. Lieder I. Mazor Y. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 54 2016 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  22. Gong L. Whirl-Carrillo M. Klein T.E. PharmGKB, an integrated resource of pharmacogenomic knowledge. Curr. Protoc. 2021 1 8 e226 10.1002/cpz1.226 34387941
    [Google Scholar]
  23. Zhou Y. Zhang Y. Lian X. Li F. Wang C. Zhu F. Qiu Y. Chen Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022 50 D1 D1398 D1407 10.1093/nar/gkab953 34718717
    [Google Scholar]
  24. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  25. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. Ji Z.L. Zhou H. Wang J.F. Han L.Y. Zheng C.J. Chen Y.Z. Traditional Chinese medicine information database. J. Ethnopharmacol. 2006 103 3 501 10.1016/j.jep.2005.11.003 16376038
    [Google Scholar]
  27. Wang X. Shen Y. Wang S. Li S. Zhang W. Liu X. Lai L. Pei J. Li H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356 W360 10.1093/nar/gkx374 28472422
    [Google Scholar]
  28. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  29. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  30. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  31. Dennis G. Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 P3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  32. Zhao T. Tang H. Xie L. Zheng Y. Ma Z. Sun Q. Li X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019 71 9 1353 1369 10.1111/jphp.13129 31236960
    [Google Scholar]
  33. Wang Q. Liang Y. Peng C. Jiang P. Network pharmacology‐based study on the mechanism of Scutellariae Radix for hepatocellular carcinoma treatment. Evid. Based Complement. Alternat. Med. 2020 2020 1 8897918 10.1155/2020/8897918 33163086
    [Google Scholar]
  34. Ma C. Xu T. Sun X. Zhang S. Liu S. Fan S. Lei C. Tang F. Zhai C. Li C. Luo J. Wang Q. Wei W. Wang X. Cheng F. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of baicalein in hepatocellular carcinoma. Evid. Based Complement. Alternat. Med. 2019 2019 1 15 10.1155/2019/7518374 30891079
    [Google Scholar]
  35. Gong B. Kao Y. Zhang C. Sun F. Zhao H. Systematic investigation of Scutellariae barbatae herba for treating hepatocellular carcinoma based on network pharmacology. Evid. Based Complement. Alternat. Med. 2018 2018 1 4365739 10.1155/2018/4365739 30584453
    [Google Scholar]
  36. Huang L. Xu H. Wu T. Li G. Hedyotis diffusa Willd. Suppresses Hepatocellular Carcinoma via Downregulating AKT/mTOR Pathways. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/5210152 34527062
    [Google Scholar]
  37. Wu H. Zhang L. Wang C. Li F. Qi L. Xiao L. Zhang M. Zhang H. Zhang G. Qin Y. Network Pharmacology Analysis and Experimental Verification on Antiangiogenesis Mechanism of Hedyotis diffusa Willd in Liver Cancer. Evid. Based Complement. Alternat. Med. 2023 2023 1 1416841 10.1155/2023/1416841 36647454
    [Google Scholar]
  38. Li Y. He X.L. Zhou L.P. Huang X.Z. Li S. Guan S. Li J. Zhang L. Asiatic acid alleviates liver fibrosis via multiple signaling pathways based on integrated network pharmacology and lipidomics. Eur. J. Pharmacol. 2022 931 175193 10.1016/j.ejphar.2022.175193 35963324
    [Google Scholar]
  39. Yang A.Y. Liu H.L. Yang Y.F. Study on the mechanism of action of Scutellaria barbata on hepatocellular carcinoma based on network pharmacology and bioinformatics. Front. Pharmacol. 2023 13 1072547 10.3389/fphar.2022.1072547 36699068
    [Google Scholar]
  40. Huang J. Zhang J. Sun C. Yang R. Sheng M. Hu J. Kai G. Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. J. Ethnopharmacol. 318 Pt B 2024 10.1016/j.jep.2023.117022
    [Google Scholar]
  41. Jia Y. Yao D. Bi H. Duan J. Liang W. Jing Z. Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. Phytomedicine 2024 128 155521 10.1016/j.phymed.2024.155521 38489891
    [Google Scholar]
  42. Wang X. Yang Y. Liu X. Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. Adv. Pharmacol. 2020 87 43 70 10.1016/bs.apha.2019.10.001 32089238
    [Google Scholar]
  43. Ma L. Jiang H. Xu X. Zhang C. Niu Y. Wang Z. Tao Y. Li Y. Cai F. Zhang X. Wang X. Yu Y. Tanshinone IIA mediates SMAD7-YAP interaction to inhibit liver cancer growth by inactivating the transforming growth factor beta signaling pathway. Aging (Albany NY) 2019 11 21 9719 9737 10.18632/aging.102420 31711043
    [Google Scholar]
  44. Luo Y. Song L. Wang X. Huang Y. Liu Y. Wang Q. Hong M. Yuan Z. Uncovering the Mechanisms of Cryptotanshinone as a Therapeutic Agent Against Hepatocellular Carcinoma. Front. Pharmacol. 2020 11 1264 10.3389/fphar.2020.01264 32903546
    [Google Scholar]
  45. Huang X. Rehman H.M. Szöllősi A.G. Zhou S. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma. Genes (Basel) 2022 13 4 653 10.3390/genes13040653 35456457
    [Google Scholar]
  46. Chen Y. Li Q. Ren S. Chen T. Zhai B. Cheng J. Shi X. Song L. Fan Y. Guo D. Investigation and experimental validation of curcumin-related mechanisms against hepatocellular carcinoma based on network pharmacology. J. Zhejiang Univ. Sci. B 2022 23 8 682 698 10.1631/jzus.B2200038 35953761
    [Google Scholar]
  47. Zhao Y. Tao J. Chen Z. Li S. Liu Z. Lin L. Zhai L. Functional drug–target–disease network analysis of gene–phenotype connectivity for curcumin in hepatocellular carcinoma. PeerJ 2021 9 e12339 10.7717/peerj.12339 34754622
    [Google Scholar]
  48. Jin Q. Jiao W. Lian Y. Chitrakar B. Sang Y. Wang X. Study on antihepatocellular carcinoma effect of 6-shogaol and curcumin through network-based pharmacological and cellular assay. Front. Pharmacol. 2024 15 1367417 10.3389/fphar.2024.1367417 39224778
    [Google Scholar]
  49. Wang S. Wu W. Liu Y. Xing E. Jiao J. Li L. Li J. Wang D. Curcumin Induces Apoptosis by Suppressing XRCC4 Expression in Hepatocellular Carcinoma. Nutr. Cancer 2023 75 10 1958 1967 10.1080/01635581.2023.2274132 37899756
    [Google Scholar]
  50. Zhang J. Liu Y. Wang X. Wang Z. Xing E. Li J. Wang D. Curcumin inhibits proliferation of hepatocellular carcinoma cells by blocking PTPN1 and PTPN11 expression. Oncol. Lett. 2023 26 1 307 10.3892/ol.2023.13893 37332329
    [Google Scholar]
  51. Guo L. Li H. Fan T. Ma Y. Wang L. Synergistic efficacy of curcumin and anti-programmed cell death-1 in hepatocellular carcinoma. Life Sci. 2021 279 119359 10.1016/j.lfs.2021.119359 33753114
    [Google Scholar]
  52. Li H. Qin Y. Huang Y. Wang J. Ren B. SPAG5, the upstream protein of Wnt and the target of curcumin, inhibits hepatocellular carcinoma. Oncol. Rep. 2023 50 3 172 10.3892/or.2023.8609 37539742
    [Google Scholar]
  53. Su J. Liu X. Zhao X. Ma H. Jiang Y. Wang X. Wang P. Zhao M. Hu X. Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling. Recent Patents Anticancer Drug Discov. 2024 10 2174 38243928
    [Google Scholar]
  54. Ipar V.S. Dsouza A. Devarajan P.V. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019 44 4 459 480 10.1007/s13318‑019‑00545‑z 30771095
    [Google Scholar]
  55. Wen M. Chen Q. Chen W. Yang J. Zhou X. Zhang C. Wu A. Lai J. Chen J. Mei Q. Yang S. Lan C. Wu J. Huang F. Wang L. A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications. Front. Pharmacol. 2022 13 965390 10.3389/fphar.2022.965390 36160419
    [Google Scholar]
  56. Xiong Y. Yang Y. Xiong W. Yao Y. Wu H. Zhang M. Network pharmacology‐based research on the active component and mechanism of the antihepatoma effect of Rubia cordifolia L. J. Cell. Biochem. 2019 120 8 12461 12472 10.1002/jcb.28513 30816612
    [Google Scholar]
  57. Roy A. Plumbagin: A Potential Anti-cancer Compound. Mini Rev. Med. Chem. 2021 21 6 731 737 10.2174/18755607MTEx2NTM02 33200707
    [Google Scholar]
  58. Zhou R. Wu K. Su M. Li R. Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Environ. Toxicol. Pharmacol. 2019 70 103200 10.1016/j.etap.2019.103200 31158732
    [Google Scholar]
  59. Ganesan N. Baskaran R. Velmurugan B.K. Thanh N.C. Antrodia cinnamomea —An updated minireview of its bioactive components and biological activity. J. Food Biochem. 2019 43 8 e12936 10.1111/jfbc.12936 31368557
    [Google Scholar]
  60. Zhang Y. Lv P. Ma J. Chen N. Guo H. Chen Y. Gan X. Wang R. Liu X. Fan S. Cong B. Kang W. Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm. Sin. B 2022 12 2 890 906 10.1016/j.apsb.2021.07.010 35256953
    [Google Scholar]
  61. Luo C. Ai J. Ren E. Li J. Feng C. Li X. Luo X. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus : Focus on its anti‑cancer activity and bioavailability (Review). Exp. Ther. Med. 2021 22 5 1327 10.3892/etm.2021.10762 34630681
    [Google Scholar]
  62. Chen P.Y. Han L.T. Study on the molecular mechanism of anti-liver cancer effect of Evodiae fructus by network pharmacology and QSAR model. Front Chem. 2023 10 1060500 10.3389/fchem.2022.1060500 36700075
    [Google Scholar]
  63. Fu J. Wang Z. Huang L. Zheng S. Wang D. Chen S. Zhang H. Yang S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 2014 28 9 1275 1283 10.1002/ptr.5188 25087616
    [Google Scholar]
  64. Liu Z. Ma H. Lai Z. Revealing the potential mechanism of Astragalus membranaceus improving prognosis of hepatocellular carcinoma by combining transcriptomics and network pharmacology. BMC Complementary Medicine and Therapies 2021 21 1 263 10.1186/s12906‑021‑03425‑9 34663301
    [Google Scholar]
  65. Mancuso C. Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 2017 107 Part A 362 372 10.1016/j.fct.2017.07.019
    [Google Scholar]
  66. Chen C. Lv Q. Li Y. Jin Y.H. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells. Molecules 2021 26 13 3926 10.3390/molecules26133926 34199025
    [Google Scholar]
  67. Yu B. Wang M. Xu H. Gao R. Zhu Y. Ning H. Dai X. Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis. BioMed Res. Int. 2022 2022 1 15 10.1155/2022/5975223 35872841
    [Google Scholar]
  68. Zhou R. Wang X.W. Sun Q. Ye Z.J. Liu J. Zhou D.H. Tang Y. Anticancer Effects of Emodin on HepG2 Cell: Evidence from Bioinformatic Analysis. BioMed Res. Int. 2019 2019 1 14 10.1155/2019/3065818 31236404
    [Google Scholar]
  69. Li X. He Y. Zeng P. Liu Y. Zhang M. Hao C. Wang H. Lv Z. Zhang L. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J. Cell. Mol. Med. 2019 23 1 4 20 10.1111/jcmm.13564 30444050
    [Google Scholar]
  70. Qin L. Huang D. Huang J. Qin F. Huang H. Integrated Analysis and Finding Reveal Anti–Liver Cancer Targets and Mechanisms of Pachyman (Poria cocos Polysaccharides). Front. Pharmacol. 2021 12 742349 10.3389/fphar.2021.742349 34603055
    [Google Scholar]
  71. Jiang J. Yang Z. Hou G. Yao X. Jiang J. The potential mechanism of Chebulae Fructus in the treatment of hepatocellular carcinoma on the basis of network pharmacology. Ann. Hepatol. 2022 27 4 100701 10.1016/j.aohep.2022.100701 35351639
    [Google Scholar]
  72. Li R. Song Y. Ji Z. Li L. Zhou L. Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectal cancer: Network and experimental analyses. Biofactors 2020 46 1 158 167 10.1002/biof.1583 31647596
    [Google Scholar]
  73. Zhao F. Qin J. Liang Y. Zhou R. Exploring anti-liver cancer targets and mechanisms of oxyresveratrol: in silico and verified findings. Bioengineered 2021 12 2 9939 9948 10.1080/21655979.2021.1985328 34592904
    [Google Scholar]
  74. Ji J. Zhang Z. Peng Q. Hao L. Guo Y. Xue Y. Liu Y. Li C. Shi X. The effects of qinghao-kushen and its active compounds on the biological characteristics of liver cancer cells. Evid. Based Complement. Alternat. Med. 2022 2022 1 19 10.1155/2022/8763510 35722140
    [Google Scholar]
  75. Qing L. Pan B. He Y. Liu Y. Zhao M. Niu B. Gao X. Exploring the mechanisms underlying the therapeutic effect of the Radix Bupleuri-Rhizoma Cyperi herb pair on hepatocellular carcinoma using multilevel data integration and molecular docking. Aging (Albany NY) 2022 14 22 9103 9127 10.18632/aging.204388 36403263
    [Google Scholar]
  76. Yu S. Gao W. Zeng P. Chen C. Zhang Z. Liu Z. Liu J. Exploring the effect of Gupi Xiaoji Prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Biomed. Pharmacother. 2021 139 111612 10.1016/j.biopha.2021.111612 33915505
    [Google Scholar]
  77. Wu R. Li X.Y. Wang W.H. Cai F.F. Chen X.L. Yang M.D. Pan Q.S. Chen Q.L. Zhou R.Y. Su S.B. Network Pharmacology-Based Study on the Mechanism of Bushen-Jianpi Decoction in Liver Cancer Treatment. Evid. Based Complement. Alternat. Med. 2019 2019 1 13 10.1155/2019/3242989 31015849
    [Google Scholar]
  78. Wu Z. Kang J. Tan W. Wei C. He L. Jiang X. Peng L. In silico and in vitro studies on the mechanisms of chinese medicine formula (Yiqi Jianpi Jiedu Formula) in the treatment of hepatocellular carcinoma. Comput. Math. Methods Med. 2022 2022 1 30 10.1155/2022/8669993 36345477
    [Google Scholar]
  79. Yu Q. Chen Z. Liu M. Meng Y. Li X. Li B. Du J. Exploring the potential targets of Sanshimao formula for hepatocellular carcinoma treatment by a method of network pharmacology combined with molecular biology. J. Ethnopharmacol. 2022 297 115531 10.1016/j.jep.2022.115531 35840058
    [Google Scholar]
  80. Chen C. Liang T. Wu Q. Zhou Z. Zhang M. Feng D. Tao J. Si T. Cai M. Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma. Comput. Math. Methods Med. 2022 2022 1 15 10.1155/2022/2940654 36578460
    [Google Scholar]
  81. Liu L.H. Wang T. Zhou G. Experience of Professor WEI Zhong-min in Treating Internal Diseases by Application of Xuanfuhua Decoction. Zhongguo Zhongyiyao Xinxi Zazhi 2017 24 101 103
    [Google Scholar]
  82. Xiong L. Laboratory study on antiliver fibrosis and antisinusoid capillarization of Xuanfuhua decoction. Chinese Journal of Traditional Medical Science and Technology. 1999 6 20 21
    [Google Scholar]
  83. Luo W.Z. Dang Z.Q. Wu X.X. Shang Y.W. Meng D.H. Chen Y.L. Zhang Q.S. Transcriptomic and network pharmacology approaches revealed possible mechanisms underlying the 5-fluorouracil (5-FU)-sensitizing effect of Xuan-Fu-Hua decoction treatment on liver cancer cells. Transl. Cancer Res. 2022 11 7 2398 2407 10.21037/tcr‑22‑1814 35966306
    [Google Scholar]
  84. Sun J. Han T. Yang T. Chen Y. Huang J. Interpreting the Molecular Mechanisms of Yinchenhao Decoction on Hepatocellular Carcinoma through Absorbed Components Based on Network Pharmacology. BioMed Res. Int. 2021 2021 1 22 10.1155/2021/6616908 34104649
    [Google Scholar]
  85. Zheng X. Zhang M. Wang J. Study of qualitative and quantitative methods for Xihuang pills. Yaowu Fenxi Zazhi 2011 ••• 1410 1413
    [Google Scholar]
  86. Li X. Su L. Jiang Y. Gao W. Xu C. Zeng C. Song J. Xu Y. Weng W. Liang W. The Antitumor Effect of Xihuang Pill on Treg Cells Decreased in Tumor Microenvironment of 4T1 Breast Tumor‐Bearing Mice by PI3K/AKT~AP‐1 Signaling Pathway. Evid. Based Complement. Alternat. Med. 2018 2018 1 6714829 10.1155/2018/6714829 29849718
    [Google Scholar]
  87. Zhao X. Hao J. Chen S. Network Pharmacology‐Based Strategy for Predicting Therapy Targets of Traditional Chinese Medicine Xihuang Pill on Liver Cancer. Evid. Based Complement. Alternat. Med. 2020 2020 1 6076572 10.1155/2020/6076572 32256653
    [Google Scholar]
  88. Wu R. Zhou T. Xiong J. Zhang Z. Tian S. Wang Y. Chen J. Tian X. Quercetin, the Ingredient of Xihuang Pills, Inhibits Hepatocellular Carcinoma by Regulating Autophagy and Macrophage Polarization. Frontiers in Bioscience-Landmark 2022 27 12 323 10.31083/j.fbl2712323 36624942
    [Google Scholar]
  89. Chen T.T. Du S.L. Wang S.J. Wu L. Yin L. Dahuang Zhechong pills inhibit liver cancer growth in a mouse model by reversing Treg/Th1 balance. Chin. J. Nat. Med. 2022 20 2 102 110 10.1016/S1875‑5364(22)60160‑2 35279237
    [Google Scholar]
  90. Cao X. Liang Y. Liu R. Zao X. Zhang J. Chen G. Liu R. Chen H. He Y. Zhang J. Ye Y. Uncovering the Pharmacological Mechanisms of Gexia-Zhuyu Formula (GXZY) in Treating Liver Cirrhosis by an Integrative Pharmacology Strategy. Front. Pharmacol. 2022 13 793888 10.3389/fphar.2022.793888 35330838
    [Google Scholar]
  91. Huang J. Guo W. Cheung F. Tan H.Y. Wang N. Feng Y. Integrating Network Pharmacology and Experimental Models to Investigate the Efficacy of Coptidis and Scutellaria Containing Huanglian Jiedu Decoction on Hepatocellular Carcinoma. Am. J. Chin. Med. 2020 48 1 161 182 10.1142/S0192415X20500093 31964157
    [Google Scholar]
  92. Chen H. Yao X. Li T. Lam C.W.K. Zhang H. Wang J. Zhang W. Leung E.L.H. Wu Q. Compound Kushen injection plus platinum-based chemotherapy for stage IIIB/IV non-small cell lung cancer. Medicine (Baltimore) 2019 98 52 e18552 10.1097/MD.0000000000018552 31876753
    [Google Scholar]
  93. Yanju B. Yang L. Hua B. Hou W. Shi Z. Li W. Li C. Chen C. Liu R. Qin Y. Lv W. A systematic review and meta-analysis on the use of traditional Chinese medicine compound kushen injection for bone cancer pain. Support. Care Cancer 2014 22 3 825 836 10.1007/s00520‑013‑2063‑5 24276956
    [Google Scholar]
  94. Yang Y. Sun M. Yao W. Wang F. Li X. Wang W. Li J. Gao Z. Qiu L. You R. Yang C. Ba Q. Wang H. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J. Immunother. Cancer 2020 8 1 e000317 10.1136/jitc‑2019‑000317 32179631
    [Google Scholar]
  95. Lu S. Meng Z. Tan Y. Wu C. Huang Z. Huang J. Fu C. Stalin A. Guo S. Liu X. You L. Li X. Zhang J. Zhou W. Zhang X. Wang M. Wu J. An advanced network pharmacology study to explore the novel molecular mechanism of Compound Kushen Injection for treating hepatocellular carcinoma by bioinformatics and experimental verification. BMC Complementary Medicine and Therapies 2022 22 1 54 10.1186/s12906‑022‑03530‑3 35236335
    [Google Scholar]
  96. Wei J. Ma L. Liu W. Wang Y. Shen C. Zhao X. Zhao C. Identification of the molecular targets and mechanisms of compound mylabris capsules for hepatocellular carcinoma treatment through network pharmacology and bioinformatics analysis. J. Ethnopharmacol. 2021 276 114174 10.1016/j.jep.2021.114174 33932512
    [Google Scholar]
  97. Cao X. Chen H. Li Z. Li X. Yang X. Jin Q. Liang Y. Zhang J. Zhou M. Zhang N. Chen G. Du H. Zao X. Ye Y. Network pharmacology and in vitro experiments-based strategy to investigate the mechanisms of KangXianYiAi formula for hepatitis B virus-related hepatocellular carcinoma. Front. Pharmacol. 2022 13 985084 10.3389/fphar.2022.985084 36133813
    [Google Scholar]
  98. Wu J. Zhang D. Ni M. Xue J. Wang K. Duan X. Liu S. Effectiveness of Huachansu injection combined with chemotherapy for treatment of gastric cancer in China: a systematic review and Meta-analysis. J. Tradit. Chin. Med. 2020 40 5 749 757 33000575
    [Google Scholar]
  99. Huang C. Cheng Y. Li W. Huang Y. Luo H. Zhong C. Liu F. Examining the Mechanisms of Huachansu Injection on Liver Cancer through Integrated Bioinformatics Analysis. Recent Patents Anticancer Drug Discov. 2023 18 3 408 425 10.2174/1574892817666220511162046 35546757
    [Google Scholar]
  100. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: a narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 35610020
    [Google Scholar]
  101. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266336478241118065659
Loading
/content/journals/ctmc/10.2174/0115680266336478241118065659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test