Skip to content
2000
image of Synthetic Strategies for the Development of Ibuprofen Derivatives: A Classified Study

Abstract

Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs. The present review highlights the different modifications done to the carboxylic group in Ibuprofen, by various researchers such as estersgramma, amides, hydroxamic acids, and N-substituted hydrazides, along with the integration of heterocyclic moieties like triazoles, tetrazoles, and oxadiazoles. Additionally, Ibuprofen has been hybridized with other drugs and complexed with metals to enhance therapeutic effects. The different synthetic strategies that were employed were esterification, amidation, condensation, Schiff’s base formation, . These modifications have resulted in derivatives with antimicrobial, antifungal, anticancer, and other biological activities, aiming to reduce side effects while retaining or enhancing anti-inflammatory, analgesic, and antipyretic properties.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334717241127043711
2025-01-10
2025-07-08
Loading full text...

Full text loading...

References

  1. Singh G. Triadafilopoulos G. Epidemiology of NSAID induced gastrointestinal complications. J. Rheumatol. Suppl. 1999 56 18 24 10225536
    [Google Scholar]
  2. Mohamed S.K. Albayati M.R. Younes S. Functionalization of ibuprofen core structure compound: synthesis of new potential chemotherapeutic agents incorporating ibuprofen substructure. Chem. Sci. J. 2013 1 9
    [Google Scholar]
  3. Kantor T.G. Ibuprofen. Ann. Intern. Med. 1979 91 6 877 882 10.7326/0003‑4819‑91‑6‑877 391117
    [Google Scholar]
  4. Rainsford K.D. Discovery, mechanisms of action and safety of ibuprofen. Int. J. Clin. Pract. Suppl. 2003 135 135 3 8 12723739
    [Google Scholar]
  5. Aranda J.V. Thomas R. Systematic review: intravenous Ibuprofen in preterm newborns. Semin. Perinatol. 2006 30 3 114 120 10.1053/j.semperi.2006.04.003 16813969
    [Google Scholar]
  6. Injamul H. Arkendu C. Somenath B. Raj B. Sonia A. Koushik M. A Review on different types of the non-steroidal anti-inflammatory drugs (NSAIDs). Int. J. Advanced Multidisciplinary Res. 2016 3 9 41 51 10.22192/ijamr.2016.03.09.007
    [Google Scholar]
  7. Pedro-Hernández L. Martínez-Klimova E. Cortez-Maya S. Mendoza-Cardozo S. Ramírez-Ápan T. Martínez-García M. Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen. Nanomaterials (Basel) 2017 7 7 163 10.3390/nano7070163 28665319
    [Google Scholar]
  8. Bartzela T. Türp J.C. Motschall E. Maltha J.C. Medication effects on the rate of orthodontic tooth movement: A systematic literature review. Am. J. Orthod. Dentofacial Orthop. 2009 135 1 16 26 10.1016/j.ajodo.2008.08.016 19121496
    [Google Scholar]
  9. Bradley R.L. Ellis P.E. Thomas P. Bellis H. Ireland A.J. Sandy J.R. A randomized clinical trial comparing the efficacy of ibuprofen and paracetamol in the control of orthodontic pain. Am. J. Orthod. Dentofacial Orthop. 2007 132 4 511 517 10.1016/j.ajodo.2006.12.009 17920505
    [Google Scholar]
  10. Liu Z. Wang X. Zhang H. Zhang S. Li Y. Liu Y. Peng D. Synthesis and anti-inflammatory effects of a series of novel 9-O-substituted berberine derivatives. Med. Chem. Res. 2017 26 3 672 679 10.1007/s00044‑017‑1787‑z
    [Google Scholar]
  11. Guzman J.D. Evangelopoulos D. Gupta A. Birchall K. Mwaigwisya S. Saxty B. McHugh T.D. Gibbons S. Malkinson J. Bhakta S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open 2013 3 6 e002672 10.1136/bmjopen‑2013‑002672 23794563
    [Google Scholar]
  12. Zappavigna S. Cossu A.M. Grimaldi A. Bocchetti M. Ferraro G.A. Nicoletti G.F. Filosa R. Caraglia M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  13. Khwaja F. Allen J. Lynch J. Andrews P. Djakiew D. Ibuprofen inhibits survival of bladder cancer cells by induced expression of the p75NTR tumor suppressor protein. Cancer Res. 2004 64 17 6207 6213 10.1158/0008‑5472.CAN‑03‑3814 15342406
    [Google Scholar]
  14. Gouda A.M. Beshr E.A. Almalki F.A. Halawah H.H. Taj B.F. Alnafaei A.F. Alharazi R.S. Kazi W.M. AlMatrafi M.M. Arylpropionic acid-derived NSAIDs: New insights on derivatization, anticancer activity and potential mechanism of action. Bioorg. Chem. 2019 92 103224 10.1016/j.bioorg.2019.103224 31491568
    [Google Scholar]
  15. Gharib A. Noroozi Pesyan N. Vojdani Fard L. Roshani M. Synthesis of ibuprofen using silica-supported preyssler nanoparticles (H14[NaP5W30O110]/SiO2) as an eco-friendly, inexpensive, and efficient catalyst. Org. Chem. Int. 2014 2014 1 6 10.1155/2014/906801
    [Google Scholar]
  16. Evans A.M. Comparative pharmacology of S(+)-ibuprofen and (RS)-ibuprofen. Clin. Rheumatol. 2001 20 S1 Suppl. 1 9 14 10.1007/BF03342662 11771573
    [Google Scholar]
  17. Rainsford K.D. Ibuprofen: from invention to an OTC therapeutic mainstay. Int. J. Clin. Pract. 2013 67 178 9 20 10.1111/ijcp.12055 23163543
    [Google Scholar]
  18. Ha M.W. Paek S.M. Recent advances in the synthesis of ibuprofen and naproxen. Molecules 2021 26 16 4792 10.3390/molecules26164792 34443379
    [Google Scholar]
  19. Pandeya S.N. A Text book of medicinal chemistry (synthesis and biochemical approach). 3rd ed Varanasi S.G Publishers 2004 2 1104
    [Google Scholar]
  20. Dhikav V. Singh S. Newer non-steroidal anti-inflammatory drugs-a review of their therapeutic potential and adverse drug reactions. J. Indian Acad Clin Med. 2002 3 4 332 338
    [Google Scholar]
  21. Kantor T.G. Ibuprofen--past, present, and future. Am. J. Med. 1984 77 1 121 125 10.1016/S0002‑9343(84)80030‑3 6465159
    [Google Scholar]
  22. James M.W. Hawkey C.J. Assessment of non‐steroidal anti‐inflammatory drug (NSAID) damage in the human gastrointestinal tract. Br. J. Clin. Pharmacol. 2003 56 2 146 155 10.1046/j.1365‑2125.2003.01934.x 12895187
    [Google Scholar]
  23. Derle D.V. Gujar K.N. Sagar B.S.H. Adverse effects associated with the use of nonsteroidal antiinflammatory drugs: An overview. Indian J. Pharm. Sci. 2006 68 4 409 414 10.4103/0250‑474X.27809
    [Google Scholar]
  24. Murray M.D. Brater D.C. Tierney W.M. Hui S.L. McDonald C.J. Ibuprofen-associated renal impairment in a large general internal medicine practice. Am. J. Med. Sci. 1990 299 4 222 229 10.1097/00000441‑199004000‑00002 2321664
    [Google Scholar]
  25. Jones R. Rubin G. Berenbaum F. Scheiman J. Gastrointestinal and cardiovascular risks of nonsteroidal anti-inflammatory drugs. Am. J. Med. 2008 121 6 464 474 10.1016/j.amjmed.2008.01.045 18501223
    [Google Scholar]
  26. Meek I.L. Van de Laar M.A. E Vonkeman H. Harald E.V. Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks. Pharmaceuticals (Basel) 2010 3 7 2146 2162 10.3390/ph3072146 27713346
    [Google Scholar]
  27. Bittencourt J.A.H.M. Neto M.F.A. Lacerda P.S. Bittencourt R.C.V.S. Silva R.C. Lobato C.C. Silva L.B. Leite F.H.A. Zuliani J.P. Rosa J.M.C. Borges R.S. Santos C.B.R. In silico evaluation of ibuprofen and two benzoylpropionic acid derivatives with potential anti-inflammatory activity. Molecules 2019 24 8 1476 10.3390/molecules24081476 30991684
    [Google Scholar]
  28. Lippincott W. Wilkins P Foye’s Principles of medicinal chemistry 4th ed. Philadelphia: Lippincott Williams & Wilkins. 2008 771 773
    [Google Scholar]
  29. Bushra R. Aslam N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J. 2010 25 3 155 161 10.5001/omj.2010.49 22043330
    [Google Scholar]
  30. Bundgaard H. Nielsen N.M. Glycolamide esters as a novel biolabile prodrug type for non-steroidal anti-inflammatory carboxylic acid drugs. Int. J. Pharm. 1988 43 1-2 101 110 10.1016/0378‑5173(88)90064‑6
    [Google Scholar]
  31. Shanbhag V.R. Michael Crider A. Gokhale R. Harpalani A. Dick R.M. Ester and amide prodrugs of ibuprofen and naproxen: synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 1992 81 2 149 154 10.1002/jps.2600810210 1545354
    [Google Scholar]
  32. Lolli M.L. Cena C. Medana C. Lazzarato L. Morini G. Coruzzi G. Manarini S. Fruttero R. Gasco A. A new class of ibuprofen derivatives with reduced gastrotoxicity. J. Med. Chem. 2001 44 21 3463 3468 10.1021/jm0108799 11585451
    [Google Scholar]
  33. Williams J.L. Borgo S. Hasan I. Castillo E. Traganos F. Rigas B. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 2001 61 8 3285 3289 11309281
    [Google Scholar]
  34. Khan M.S.Y. Akhter M. Synthesis, pharmacological activity and hydrolytic behavior of glyceride prodrugs of ibuprofen. Eur. J. Med. Chem. 2005 40 4 371 376 10.1016/j.ejmech.2004.11.009 15804536
    [Google Scholar]
  35. Xie G. Sun Y. Nie T. Mackenzie G.G. Huang L. Kopelovich L. Komninou D. Rigas B. Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: efficacy, metabolism, and pharmacokinetics in mouse models. J. Pharmacol. Exp. Ther. 2011 337 3 876 886 10.1124/jpet.111.180224 21422165
    [Google Scholar]
  36. Gupta R. Singh M. Ajmal M. Singh V. Bisht A. Synthesis of 2- (4-sec-butyl-phenyl) -propionic acid- pyrrolidin-2-ylcarbamoyl methyl ester derivatives as anti-inflammatory potential. IJRPC 2011 1 3 342 346
    [Google Scholar]
  37. Huang Z. Velázquez C.A. Abdellatif K.R.A. Chowdhury M.A. Reisz J.A. DuMond J.F. King S.B. Knaus E.E. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies. J. Med. Chem. 2011 54 5 1356 1364 10.1021/jm101403g 21280601
    [Google Scholar]
  38. Hegazy G.H. Ali H.I. Design, synthesis, biological evaluation, and comparative Cox1 and Cox2 docking of p-substituted benzylidenamino phenyl esters of ibuprofenic and mefenamic acids. Bioorg. Med. Chem. 2012 20 3 1259 1270 10.1016/j.bmc.2011.12.030 22225915
    [Google Scholar]
  39. Perković I. Džolić Z.R. Zorc B. A convenient synthesis of new NSAID esters containing amino acid, urea and amide moieties. Acta Pharm. 2013 63 3 409 418 10.2478/acph‑2013‑0023 24152900
    [Google Scholar]
  40. Amir M. Akhter M.W. Alam O. Synthesis, characterization, and biological evaluation of furoxan coupled ibuprofen derivatives as anti-inflammatory agents. Monatsh. Chem. 2016 147 3 493 508 10.1007/s00706‑015‑1557‑x
    [Google Scholar]
  41. González-Trujano M.E. Uribe-Figueroa G. Hidalgo-Figueroa S. Martínez A.L. Déciga-Campos M. Navarrete-Vazquez G. Synthesis and antinociceptive evaluation of bioisosteres and hybrids of naproxen, ibuprofen and paracetamol. Biomed. Pharmacother. 2018 101 553 562 10.1016/j.biopha.2018.02.122 29514128
    [Google Scholar]
  42. Hassan G.S. Hegazy G.H. Ibrahim N.M. Fahim S.H. New ibuprofen derivatives as H2S and NO donors as safer anti-inflammatory agents. Future Med. Chem. 2019 11 23 3029 3045 10.4155/fmc‑2018‑0467 31680552
    [Google Scholar]
  43. Kłobucki M. Urbaniak A. Grudniewska A. Kocbach B. Maciejewska G. Kiełbowicz G. Ugorski M. Wawrzeńczyk C. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties. Sci. Rep. 2019 9 1 220 10.1038/s41598‑018‑36571‑1 30659229
    [Google Scholar]
  44. Gyöngyösi A. Verner V. Bereczki I. Kiss-Szikszai A. Zilinyi R. Tósaki Á. Bak I. Borbás A. Herczegh P. Lekli I. Basic pharmacological characterization of EV-34, a new H2S-releasing ibuprofen derivative. Molecules 2021 26 3 599 10.3390/molecules26030599 33498831
    [Google Scholar]
  45. Ghanim A.M. Girgis A.S. Kariuki B.M. Samir N. Said M.F. Abdelnaser A. Nasr S. Bekheit M.S. Abdelhameed M.F. Almalki A.J. Ibrahim T.S. Panda S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022 119 105557 10.1016/j.bioorg.2021.105557 34952242
    [Google Scholar]
  46. Teresa Cocco M. Congiu C. Onnis V. Morelli M. Cauli O. Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties. Eur. J. Med. Chem. 2003 38 5 513 518 10.1016/S0223‑5234(03)00074‑6 12767601
    [Google Scholar]
  47. Amir M. Kumar S. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of 3,5-dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3,5-disubstituted pyrazolines. Indian J. of Chem. Sect. B. Org. Med. Chem 2005 44 12 2532 2537
    [Google Scholar]
  48. Yadav M.R. Nimekar D.M. Ananthakrishnan A. Brahmkshatriya P.S. Shirude S.T. Giridhar R. Parmar A. Balaraman R. Synthesis of new chemical entities from paracetamol and NSAIDs with improved pharmacodynamic profile. Bioorg. Med. Chem. 2006 14 24 8701 8706 10.1016/j.bmc.2006.08.017 16962330
    [Google Scholar]
  49. Chatterjee N.R. Kulkarni A.A. Ghulekar S.P. Synthesis, pharmacological activity and hydrolytic behavior of ethylenediamine and benzathine conjugates of ibuprofen. Eur. J. Med. Chem. 2008 43 12 2819 2823 10.1016/j.ejmech.2007.10.028 18068271
    [Google Scholar]
  50. Siskou I.C. Rekka E.A. Kourounakis A.P. Chrysselis M.C. Tsiakitzis K. Kourounakis P.N. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties. Bioorg. Med. Chem. 2007 15 2 951 961 10.1016/j.bmc.2006.10.056 17126019
    [Google Scholar]
  51. Wittine K. Benci K. Rajić Z. Zorc B. Kralj M. Marjanović M. Pavelić K. De Clercq E. Andrei G. Snoeck R. Balzarini J. Mintas M. The novel phosphoramidate derivatives of NSAID 3-hydroxypropylamides: Synthesis, cytostatic and antiviral activity evaluations. Eur. J. Med. Chem. 2009 44 1 143 151 10.1016/j.ejmech.2008.03.037 18485540
    [Google Scholar]
  52. Mehta N. Aggarwal S. Thareja S. Malla P. Bhardwaj T.R. Kumar M. Synthesis, pharmacological and toxicological evaluation of amide derivatives of ibuprofen. Int. J. Chemtech Res. 2010 2 1 233 238
    [Google Scholar]
  53. Rasheed A. Kumar C.K.A. Mishra A. Synthesis, hydrolysis studies and phamacodynamic profiles of amide prodrugs of dexibuprofen with amino acids. J. Enzyme Inhib. Med. Chem. 2011 26 5 688 695 10.3109/14756366.2010.548327 21250819
    [Google Scholar]
  54. Sadek B.S. Hamruoni A.M. Adem A. Anti-inflammatory agents of the carbamoylmethyl ester class: synthesis, characterization, and pharmacological evaluation. J. Inflamm. Res. 2013 6 1 35 43 10.2147/JIR.S39743 23576876
    [Google Scholar]
  55. Abdulla I.Q. Synthesis and antimicrobial activity of Ibuprofen derivatives. Nat. Sci. (Irvine Calif.) 2014 6 2 47 53 10.4236/ns.2014.62008
    [Google Scholar]
  56. Cheng K.W. Nie T. Ouyang N. Alston N. Wong C.C. Mattheolabakis G. Papayannis I. Huang L. Rigas B. A novel ibuprofen derivative with anti-lung cancer properties: Synthesis, formulation, pharmacokinetic and efficacy studies. Int. J. Pharm. 2014 477 1-2 236 243 10.1016/j.ijpharm.2014.10.019 25311177
    [Google Scholar]
  57. Ibrahim T.M. Kreet M.H.Y. Synthesis of new biologically active 4-isobutylhydrotropoyl (Ibuprofen) derivatives. OCAIJ 2014 10 9 337 350
    [Google Scholar]
  58. Wang J. Dai D. Qiu Q. Deng X. Lin H. Qian H. Huang W. Evaluation of anti-inflammatory and analgesic effects of synthesized derivatives of ibuprofen. Chem. Biol. Drug Des. 2015 85 5 623 632 10.1111/cbdd.12316 24618048
    [Google Scholar]
  59. Mekhlafi S.A. Alkadi H. El-sayed M.K. Synthesis and anti-inflammatory activity of novel Ketoprofen and Ibuprofen derivatives. J. Chem. Pharm. Res. 2015 7 2 503 510
    [Google Scholar]
  60. Kiran S. Kamal S. Aslam N. Hussain A.I. Ghaffar A. Bibi I. Kamal A. Munir B. Sultan N. Synthesis of ibuprofen derivatives with improved antibacterial activity. Asian J. Chem. 2015 27 9 3259 3262 10.14233/ajchem.2015.18498
    [Google Scholar]
  61. Goyal A. Sahewal J. Jain N. Jain S. Synthesis and pharmacological evaluation of some. Pharm. Lett. 2016 8 1 275 280
    [Google Scholar]
  62. Yan L. Pan M. Fu M. Wang J. Huang W. Qian H. Design, synthesis and biological evaluation of novel analgesic agents targeting both cyclooxygenase and TRPV1. Bioorg. Med. Chem. 2016 24 4 849 857 10.1016/j.bmc.2016.01.009 26795113
    [Google Scholar]
  63. Ibrahim A. Sadik A. Doa A. Synthesis and anti-inflammatory activity of novel aspirin and ibuprofen amide derivatives. J. Chem. Pharm. Res. 2016 8 3 307 313
    [Google Scholar]
  64. Theodosis-Nobelos P. Kourti M. Gavalas A. Rekka E.A. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2016 26 3 910 913 10.1016/j.bmcl.2015.12.063 26750253
    [Google Scholar]
  65. Sakr A. Rezq S. Ibrahim S.M. Soliman E. Baraka M.M. Romero D.G. Kothayer H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities. J. Enzyme Inhib. Med. Chem. 2021 36 1 1810 1828 10.1080/14756366.2021.1956912 34338135
    [Google Scholar]
  66. Selim A. El-Hag F. Attia R. Shedid S. El-Gazzar M. Synthesis, characterization, docking studies and anti-inflammatory activity of new safe NSAIDs agent based on Ibuprofen phenylalanine derivatives. Egypt. J. Chem. 2022 65 8 163 176 10.21608/ejchem.2022.137847.6069
    [Google Scholar]
  67. Rajić Z. Perković I. Butula I. Zorc B. Hadjipavlou-Litina D. Pontiki E. Pepeljnjak S. Kosalec I. Synthesis and biological evaluation of O -methyl and O -ethyl NSAID hydroxamic acids. J. Enzyme Inhib. Med. Chem. 2009 24 5 1179 1187 10.1080/14756360902779128 19772490
    [Google Scholar]
  68. Pavelić S.K. Sedić M. Poznić M. Rajić Z. Zorc B. Pavelić K. Balzarini J. Mintas M. Evaluation of in vitro biological activity of O-alkylated hydroxamic derivatives of some nonsteroidal anti-inflammatory drugs. Anticancer Res. 2010 30 10 3987 3994 21036712
    [Google Scholar]
  69. Rajasekaran A. Sivakumar P. Jayakar B. Synthesis and evaluation of anti-inflammatory activity of Ibuprofen analogs. Indian J. Pharm. Sci. 1999 61 3 158 161
    [Google Scholar]
  70. Kansara S.G. Pandit R.D. Bhawe V.G. Synthesis of some new Ibuprofen derivatives containing chief heterocyclic moiety like s-Triazine and evaluated for their analgesic activity. Rasayan J. Chem. 2009 2 3 699 705
    [Google Scholar]
  71. Perković I. Butula I. Kralj M. Martin-Kleiner I. Balzarini J. Hadjipavlou-Litina D. Katsori A.M. Zorc B. Novel NSAID 1-acyl-4-cycloalkyl/arylsemicarbazides and 1-acyl-5-benzyloxy/hydroxy carbamoylcarbazides as potential anticancer agents and antioxidants. Eur. J. Med. Chem. 2012 51 227 238 10.1016/j.ejmech.2012.02.046 22405290
    [Google Scholar]
  72. Rakesh K.S. Jagadish S. Vinayaka A.C. Hemshekhar M. Paul M. Thushara R.M. Sundaram M.S. Swaroop T.R. Mohan C.D. Basappa Sadashiva M.P. Kemparaju K. Girish K.S. Rangappa K.S. A new ibuprofen derivative inhibits platelet aggregation and ROS mediated platelet apoptosis. PLoS One 2014 9 9 e107182 10.1371/journal.pone.0107182 25238069
    [Google Scholar]
  73. Seraj F. Kanwal K.K.M. Khan A. Ali M. Khalil R. Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives. Mol. Divers. 2020 1 14 31965436
    [Google Scholar]
  74. Uzgören Baran A. Comparative study of microwave-assisted and conventional synthesis of ibuprofen-based acyl hydrazone derivatives. Turk. J. Chem. 2013 37 927 935 10.3906/kim‑1302‑11
    [Google Scholar]
  75. Vasincu I. Apotrosoaei M. Panzariu A.T. Buron F. Routier S. Profire L. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid. Molecules 2014 19 9 15005 15025 10.3390/molecules190915005 25237755
    [Google Scholar]
  76. Gundogdu-Hizliates C. Alyuruk H. Gocmenturk M. Ergun Y. Cavas L. Synthesis of new ibuprofen derivatives with their in silico and in vitro cyclooxygenase-2 inhibitions. Bioorg. Chem. 2014 52 8 15 10.1016/j.bioorg.2013.10.002 24270352
    [Google Scholar]
  77. Gökoğlu E. Yılmaz E. Gökoğlu E. Baran A.U. Study of binding properties between two new ibuprofen and naproxen-based acyl hydrazone derivatives and trypsin. J. Fluoresc. 2016 26 1 113 119 10.1007/s10895‑015‑1690‑2 26482593
    [Google Scholar]
  78. Thejeel K.A. Synthesis and characterization of some new ibuprofen derivatives and study antibacterial activity. Int. J. Drug Delivery Technology 2020 10 3 454 458 10.25258/ijddt.10.3.26
    [Google Scholar]
  79. El-Nassan H.B. Halim P.A. El-Dash Y.S. Design and synthesis of novel ibuprofen derivatives as selective cox-2 inhibitors and potential anti-inflammatory agents: evaluation of PGE2, TNF-α, IL-6 and histopathological study. Med. Chem. 2022 18 4 427 443 10.2174/1573406417666210809162636 34370644
    [Google Scholar]
  80. Shah N.Z. Avula S.K. Karim N. Islam N.U. El-Saber Batiha G. Muhsinah A.B. Khan A. Al-Harrasi A. Bio-oriented synthesis of ibuprofen derivatives for enhancement efficacy in post-operative and chronic inflammatory pain models. RSC Advances 2023 13 18 12518 12528 10.1039/D3RA01385E 37091596
    [Google Scholar]
  81. Tozkoparan B. Gökhan N. Aktay G. Yeşilada E. Ertan M. 6-Benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-onessubstituted with ibuprofen: synthesis, characterizationand evaluation of anti-inflammatory activity. Eur. J. Med. Chem. 2000 35 7-8 743 750 10.1016/S0223‑5234(00)00157‑4 10960191
    [Google Scholar]
  82. Amir M. Kumar S. Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives. Acta Pharm. 2007 57 1 31 45 10.2478/v10007‑007‑0003‑y 19839405
    [Google Scholar]
  83. Amir M. Kumar H. Javed S.A. Condensed bridgehead nitrogen heterocyclic system: Synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid. Eur. J. Med. Chem. 2008 43 10 2056 2066 10.1016/j.ejmech.2007.09.025 18023930
    [Google Scholar]
  84. Sujith K.V. Rao J.N. Shetty P. Kalluraya B. Regioselective reaction: Synthesis and pharmacological study of Mannich bases containing ibuprofen moiety. Eur. J. Med. Chem. 2009 44 9 3697 3702 10.1016/j.ejmech.2009.03.044 19427713
    [Google Scholar]
  85. Ibrahim K.S. Jesima B. Synthesis and antimicrobial activity of some benzimidazole and 2-methylbenzimidazole derivatives. Int. J. Pharm. Sci. Res. 2011 2 2 298 302
    [Google Scholar]
  86. Sujith K.V. Kalluraya B. Adhikari A. Ravikumar J. Microwave mediated synthesis of non-carboxylic analogues of ibuprofen with improved pharmacological activity. Chin. Chem. Lett. 2011 22 5 508 510 10.1016/j.cclet.2010.12.013
    [Google Scholar]
  87. Uzgören-Baran A. Tel B.C. Sarıgöl D. Öztürk E.İ. Kazkayası İ. Okay G. Ertan M. Tozkoparan B. Thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one substituted with ibuprofen: Novel non-steroidal anti-inflammatory agents with favorable gastrointestinal tolerance. Eur. J. Med. Chem. 2012 57 398 406 10.1016/j.ejmech.2012.07.009 22840494
    [Google Scholar]
  88. Neeraja P. Srinivas S. Mukkanti K. Dubey P.K. Pal S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett. 2016 26 21 5212 5217 10.1016/j.bmcl.2016.09.059 27727124
    [Google Scholar]
  89. Mahdi M.F. Jihad M.I. Synthesis, characterization and anti-inflammatory activity assessment of new ibuprofen analogues containing imidazole-4- one derivatives. JGPT 2018 10 3 134
    [Google Scholar]
  90. Abd-Elhakam H. Nazmy M. El-Deeb T. Abd-Ellah H. Shoman M. Beshr E. Abdel-Aziz M. Synthesized oxime and ketone derivatives of ibuprofen have higher hepatic safety profile and hepatoprotective potential against acute CCl4 - induced hepatotoxicity in rats. J. Adv. Biomedi. Pharmac. Sci. 2019 2 4 185 190 10.21608/jabps.2019.15584.1053
    [Google Scholar]
  91. Mustafa Q. Alderawy L.A. Alrubaie Falah H.S. Basim J.H. Synthesis, characterization and pharmacological activity of ibuprofen acyl hydrazones and their conversion into 1,3,4-oxadiazoline derivatives. Int. J. Res. Pharma. Sci. 2019 10 4 3626 3635 10.26452/ijrps.v10i4.1744
    [Google Scholar]
  92. Rayam P. Polkam N. Kummari B. Banothu V. Gandamalla D. Yellu N.R. Anireddy J.S. Synthesis and biological evaluation of new ibuprofen-1,3,4-oxadiazole-1,2,3-triazole hybrids. J. Heterocycl. Chem. 2019 56 1 296 305 10.1002/jhet.3409
    [Google Scholar]
  93. Ali Alderawy M.Q. Raheem A.L.A. Sheri F.H. Synthesis, characterization of ibuprofen n-acyl-1,3,4 oxadiazole derivatives and anticancer activity against MCF-7 cell line. Systematic Reviews in Pharmacy. 2020 11 4 681 689
    [Google Scholar]
  94. Mahmood S. Khan S.G. Rasul A. Christensen J.B. Abourehab M.A.S. Ultrasound assisted synthesis and in silico modelling of 1,2,4-triazole coupled acetamide derivatives of 2-(4-isobutyl phenyl)propanoic acid as potential anticancer agents. Molecules 2022 27 22 7984 10.3390/molecules27227984 36432091
    [Google Scholar]
  95. Redasani V.K. Bari S.B. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol. Eur. J. Med. Chem. 2012 56 134 138 10.1016/j.ejmech.2012.08.030 22982120
    [Google Scholar]
  96. Al-azzawi A.M. Alwan S.M. Saud M.D. Shaker A.G. Dexamethasone / Ibuprofen prodrug synthesis and preliminary kinetic study. Nat. Prod. Chem. Res. 2013 1 2 2 7
    [Google Scholar]
  97. Wu X-Y. Li X-C. Mi J. You J. Hai L. Design, synthesis and preliminary biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen. Chin. Chem. Lett. 2013 24 2 117 119 10.1016/j.cclet.2013.01.022
    [Google Scholar]
  98. Xin G. Wang Y. Guo X. Huang B. Du D. He S. Zhang R. Xing Z. Zhao H. Chen Q. Huang W. He Y. Synthesis of diosgenin-ibuprofen derivatives and their activities against insulin-dependent diabetes mellitus. Chem. Pharm. Bull. 2013 61 5 532 538 10.1248/cpb.c12‑01024 23649196
    [Google Scholar]
  99. Kadhim M.J. Ghanim H.T. Synthesis and identification 1-3 diazepine from Ibuprofen. IJSTR 2014 3 10 213 217
    [Google Scholar]
  100. Zhao Y. Qu B. Wu X. Li X. Liu Q. Jin X. Guo L. Hai L. Wu Y. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with “lock-in” function. Eur. J. Med. Chem. 2014 82 314 323 10.1016/j.ejmech.2014.05.072 24927052
    [Google Scholar]
  101. Zacchigna M. Cateni F. Drioli S. Procida G. Altieri T. A new bi-functional derivative of polyethylene glycol as molecular carrier for eugenol and ibuprofen. JPDD 2015 2 2 1 8
    [Google Scholar]
  102. Datar P. Tejashree S. Design, synthesis and stability studies of mutual prodrugs of NSAID’s. ChemInform 2015 1 1 1 8
    [Google Scholar]
  103. Liu W. Li Y. Yue Y. Zhang K. Chen Q. Wang H. Lu Y. Huang M.T. Zheng X. Du Z. Synthesis and biological evaluation of curcumin derivatives containing NSAIDs for their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2015 25 15 3044 3051 10.1016/j.bmcl.2015.04.077 26048786
    [Google Scholar]
  104. Omar T.N.A. Mahdi M.F. Al-Mudhafar M.M.J. ZainabBassim Synthesize of new ibuprofen and naproxen sulphonamide conjugate with anti-inflammatory study and molecular docking study. Int. J. Pharmaceutical Quality Assurance 2018 9 2 102 108 10.25258/ijpqa.v9i2.13630
    [Google Scholar]
  105. Alwash A.H. Mahdi A.M. Al-karagully H.J. Synthesis, characterization, and antimicrobial evaluation of new n-phenylcinnamamide derivatives linked to aspirin and ibuprofen. Asian J. Pharm. Clin. Res. 2018 11 10 443 446 10.22159/ajpcr.2018.v11i10.26937
    [Google Scholar]
  106. Abu Ali H. Omar S.N. Darawsheh M.D. Fares H. Synthesis, characterization and antimicrobial activity of zinc(II) ibuprofen complexes with nitrogen-based ligands. J. Coord. Chem. 2016 69 6 1110 1122 10.1080/00958972.2016.1149819
    [Google Scholar]
  107. Curci A. Denora N. Iacobazzi R.M. Ditaranto N. Synthesis, characterization, and in vitro cytotoxicity of a Kiteplatin-Ibuprofen Pt(IV) prodrug. Inorganica Chim Acta. 2017 IV 1 29 10.1016/j.ica.2017.07.019
    [Google Scholar]
  108. Mumtaz A. Arshad J. Saeed A. Nawaz M.A.H. Iqbal J. Synthesis, characterization and urease inhibition studies of transition metal complexes of thioureas bearing ibuprofen moiety. J. Chil. Chem. Soc. 2018 63 2 3934 3940 10.4067/s0717‑97072018000203934
    [Google Scholar]
  109. Romero C.M.M. Pineda U.K. Pérez D.J. Obledo B.F. Flores P.A Gómez S. Z Organotin (IV) compounds derived from ibuprofen and cinnamic acids, an alternative into design of anti-inflammatory by the cyclooxygenases (COX-1 and COX-2) pathway. J. Organomet. Chem. 2018 862 Iv 58 70
    [Google Scholar]
  110. Mercy O.B. Ikechukwu P.E. Synthesis, characterization, antimalarial and antimicrobial activities of mixed ibuprofen-pyrimethamine m(ii) complexes. [M = Cd, Co, Zn, Mn]. J. Nat. Appl. Sci 2019 2 2 38 50
    [Google Scholar]
  111. Tabrizi L. Romanova J. Antiproliferative activity of gold(i) n-heterocyclic carbene and triphenylphosphine complexes with ibuprofen derivatives as effective enzyme inhibitors. Appl. Organomet. Chem. 2020 34 5 e5618 10.1002/aoc.5618
    [Google Scholar]
  112. Abbas A.M. Aboelmagd A. Kishk S.M. Nasrallah H.H. Boyd W.C. Kalil H. Orabi A.S. A novel ibuprofen derivative and its complexes: physicochemical characterization, dft modeling, docking, in vitro anti-inflammatory studies, and DNA interaction. Molecules 2022 27 21 7540 10.3390/molecules27217540 36364366
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334717241127043711
Loading
/content/journals/ctmc/10.2174/0115680266334717241127043711
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: inflammation ; Ibuprofen ; COX inhibitors ; analgesic ; gastric ulcers ; pain ; NSAIDs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test