Skip to content
2000
image of Osseointegration Process Improving via Functionalization of Titanium Dioxide Nanotubes: A Bibliometric Analysis and Systematic Review

Abstract

Introduction/Objectives

Failures of osseointegrated implants pose a significant challenge in the medical field, often attributed to prolonged osseointegration periods and bacterial infections. Functionalization of Titanium Dioxide Nanotubes (TNTs) has emerged as a promising strategy to improve osseointegration and mitigate infections. This study aims to conduct a bibliometric analysis and systematic review to identify trends, gaps, and advancements in research on the functionalization of TNTs for osseointegration improvement.

Methods

Articles were retrieved from the Web of Science database using the keywords “osseointegration,” “titanium dioxide nanotubes,” and “functionalization.” The inclusion criteria were studies published between 2014 and 2023, written in English, and focusing on the use of TNTs in implant surface modifications. A total of 126 articles were included after screening. Data extraction and analysis were performed using VOS Viewer, Microsoft Excel, and GraphPad Prism.

Results

The review revealed a growing number of publications on TNT functionalization, with China, the United States, and Brazil leading in contributions. Key findings include the effectiveness of TNTs loaded with bioactive agents (., silver, strontium, hydroxyapatite) in promoting osseointegration and antibacterial activity. Collaborative networks among institutions and authors were mapped, highlighting the Sao Paulo State University and Yong Huang as the most prolific contributors.

Conclusion

The findings underscore the potential of TNT functionalization to enhance implant performance. However, a gap remains in translating preclinical findings into clinical trials. Future research should focus on clinical validation to bridge this gap and translate laboratory advancements into therapeutic solutions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334190241213101547
2025-01-21
2025-04-13
Loading full text...

Full text loading...

References

  1. Oliveira W.F. Silva G.M.M. Cabral Filho P.E. Fontes A. Oliveira M.D.L. Andrade C.A.S. Silva M.V. Coelho L.C.B.B. Machado G. Correia M.T.S. Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation. Mater. Sci. Eng. C 2018 90 664 672 10.1016/j.msec.2018.04.089 29853137
    [Google Scholar]
  2. Mu C. Hu Y. Huang L. Shen X. Li M. Li L. Gu H. Yu Y. Xia Z. Cai K. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater. Sci. Eng. C 2018 82 345 353 10.1016/j.msec.2017.08.056 29025668
    [Google Scholar]
  3. Negrescu A.M. Mitran V. Draghicescu W. Popescu S. Pirvu C. Ionascu I. Soare T. Uzun S. Croitoru S.M. Cimpean A. TiO2 nanotubes functionalized with icariin for an attenuated in vitro immune response and improved in vivo Osseointegration. J. Funct. Biomater. 2022 13 2 43 10.3390/jfb13020043 35466225
    [Google Scholar]
  4. dos Anjos K.F.L. da Silva C.D.C. de Souza M.A.A. de Mattos A.B. Coelho L.C.B.B. Machado G. de Melo J.V. de Figueiredo R.C.B.Q. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells. Biomolecules 2021 11 12 1748 10.3390/biom11121748 34944393
    [Google Scholar]
  5. Wang Y. Tang S. Ding N. Zhang Z. Biological properties of hydroxyapatite coatings on titanium dioxide nanotube surfaces using negative pressure method. J. Biomed. Mater. Res. B Appl. Biomater. 2023 111 7 1365 1373 10.1002/jbm.b.35240 36826780
    [Google Scholar]
  6. Qiaoxia L. Yujie Z. Meng Y. Yizhu C. Yan W. Yinchun H. Xiaojie L. Weiyi C. Di H. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes. Colloids Surf. B Biointerfaces 2020 196 111304 10.1016/j.colsurfb.2020.111304 32777663
    [Google Scholar]
  7. Yu Y. Tao B. Sun J. Liu L. Zheng H. Fabrication of chitosan-graft-polyaniline-based multilayers on Ti substrates for enhancing antibacterial property and improving osteogenic activity. Mater. Lett. 2020 268 127420 10.1016/j.matlet.2020.127420
    [Google Scholar]
  8. Wang B. Wu Z. Lan J. Li Y. Xie L. Huang X. Zhang A. Qiao H. Chang X. Lin H. Zhang H. Li T. Huang Y. Surface modification of titanium implants by silk fibroin/Ag co-functionalized strontium titanate nanotubes for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Surf. Coat. Tech. 2021 405 126700 10.1016/j.surfcoat.2020.126700
    [Google Scholar]
  9. Zhang X. Huang Y. Wang B. Chang X. Yang H. Lan J. Wang S. Qiao H. Lin H. Han S. Guo Y. Zhang X. A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceram. Int. 2020 46 10 14796 14807 10.1016/j.ceramint.2020.03.004
    [Google Scholar]
  10. Yang Y. Liu L. Luo H. Zhang D. Lei S. Zhou K. Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration. ACS Biomater. Sci. Eng. 2019 5 10 5368 5383 10.1021/acsbiomaterials.9b00938 33464078
    [Google Scholar]
  11. Sowmiya M. Senthilkumar K. Adsorption of proline, hydroxyproline and glycine on anatase (001) surface: a first-principle study. Theor. Chem. Acc. 2016 135 1 12 10.1007/s00214‑015‑1783‑7
    [Google Scholar]
  12. Xu A. Dong C. Wei X. Zhang Y. Li X. The effect of surface electronic structure on the bioactivity of neutral dopant Si, Ge, and Sn on TiO2 (110): A DFT Study. Physica status solidi 2018 255 1700185
    [Google Scholar]
  13. Agrelli A. Vasconcelos N.F. Silva R.C.S. Mendes-Marques C.L. Arruda I.R.S. Oliveira P.S.S. Santos L.R.L. Andrade A.N. Moura R.R. Bernardo-Menezes L.C. Silva N.P. Machado G. Peptides for Coating TiO2 Implants: An in silico approach. Int. J. Mol. Sci. 2022 23 22 14048 10.3390/ijms232214048 36430525
    [Google Scholar]
  14. Tarjányi T. Bogár F. Minarovits J. Gajdács M. Tóth Z. Interaction of KRSR Peptide with Titanium Dioxide Anatase (100) Surface: A Molecular Dynamics Simulation Study. Int. J. Mol. Sci. 2021 22 24 13251 10.3390/ijms222413251 34948048
    [Google Scholar]
  15. Huang M.S. Chen L.K. Ou K.L. Cheng H.Y. Wang C.S. Rapid Osseointegration of Titanium Implant With Innovative Nanoporous Surface Modification. Implant Dent. 2015 Publish Ahead of Print 4 441 447 10.1097/ID.0000000000000258 25946663
    [Google Scholar]
  16. Wang B. Bian A. Jia F. Lan J. Yang H. Yan K. Xie L. Qiao H. Chang X. Lin H. Zhang H. Huang Y. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration. Biomaterials Advances 2022 133 112650 10.1016/j.msec.2022.112650 35034822
    [Google Scholar]
  17. Wang B. Lan J. Qiao H. Xie L. Yang H. Lin H. Li X. Huang Y. Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf. B Biointerfaces 2023 224 113188 10.1016/j.colsurfb.2023.113188 36773409
    [Google Scholar]
  18. Zhang K. Zhu Y. Liu X. Cui Z. XianjinYang Yeung K.W.K. Pan H. Wu S. Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity. Mater. Des. 2017 130 403 412 10.1016/j.matdes.2017.05.085
    [Google Scholar]
  19. Qiao H. Zou Q. Yuan C. Zhang X. Han S. Wang Z. Bu X. Tang H. Huang Y. Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation. Ceram. Int. 2018 44 14 16632 16646 10.1016/j.ceramint.2018.06.090
    [Google Scholar]
  20. Chen Y. Gao A. Bai L. Wang Y. Wang X. Zhang X. Huang X. Hang R. Tang B. Chu P.K. Antibacterial, osteogenic, and angiogenic activities of SrTiO 3 nanotubes embedded with Ag 2 O nanoparticles. Mater. Sci. Eng. C 2017 75 1049 1058 10.1016/j.msec.2017.03.014 28415389
    [Google Scholar]
  21. van Hengel I.A.J. Putra N.E. Tierolf M.W.A.M. Minneboo M. Fluit A.C. Fratila-Apachitei L.E. Apachitei I. Zadpoor A.A. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomater. 2020 107 325 337 10.1016/j.actbio.2020.02.044 32145392
    [Google Scholar]
  22. He X. Zhang X. Bai L. Hang R. Huang X. Qin L. Yao X. Tang B. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO 2 coatings. Biomed. Mater. 2016 11 4 045008 10.1088/1748‑6041/11/4/045008 27508428
    [Google Scholar]
  23. Qiao H. Zhang C. Dang X. Yang H. Wang Y. Chen Y. Ma L. Han S. Lin H. Zhang X. Lan J. Huang Y. Gallium loading into a polydopamine-functionalised SrTiO3 nanotube with combined osteoinductive and antimicrobial activities. Ceram. Int. 2019 45 17 22183 22195 10.1016/j.ceramint.2019.07.240
    [Google Scholar]
  24. Shen Y. Wang K. Wu W. Feng W. Chen J. Gao Q. A strontium/vancomycin composite coating on titanium implants for preventing bacterial infection and improving osseointegration. Mater. Des. 2023 231 112032 10.1016/j.matdes.2023.112032
    [Google Scholar]
  25. van Hengel I.A.J. Laçin M. Minneboo M. Fratila-Apachitei L.E. Apachitei I. Zadpoor A.A. The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants. Mater. Sci. Eng. C 2021 124 112074 10.1016/j.msec.2021.112074 33947566
    [Google Scholar]
  26. Wen J. Li J. Pan H. Zhang W. Zeng D. Xu L. Wu Q. Zhang X. Liu X. Jiang X. Strontium delivery on topographical titanium to enhance bioactivity and osseointegration in osteoporotic rats. J. Mater. Chem. B Mater. Biol. Med. 2015 3 24 4790 4804 10.1039/C5TB00128E 32262668
    [Google Scholar]
  27. Visentin F. El Habra N. Fabrizio M. Brianese N. Gerbasi R. Nodari L. Zin V. Galenda A. TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants. Surf. Coat. Tech. 2019 378 125049 10.1016/j.surfcoat.2019.125049
    [Google Scholar]
  28. Fomin A. Dorozhkin S. Fomina M. Koshuro V. Rodionov I. Zakharevich A. Petrova N. Skaptsov A. Composition, structure and mechanical properties of the titanium surface after induction heat treatment followed by modification with hydroxyapatite nanoparticles. Ceram. Int. 2016 42 9 10838 10846 10.1016/j.ceramint.2016.03.213
    [Google Scholar]
  29. Lo Y.S. Chang C.C. Lin P.C. Lin S.P. Wang C.L. Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V through a rapid hydrothermal synthesis. Appl. Surf. Sci. 2021 556 149672 10.1016/j.apsusc.2021.149672
    [Google Scholar]
  30. Jasinski J.J. Investigation of Bio-Functional Properties of Titanium Substrates after Hybrid Oxidation. Arch. Metall. Mater. 2020 65 141 149
    [Google Scholar]
  31. He G. Guo B. Wang H. Liang C. Ye L. Lin Y. Cai X. Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro‐hydroxyapatite/titanium oxide coating on titanium surface by sol–gel method. Cell Prolif. 2014 47 3 258 266 10.1111/cpr.12105 24738936
    [Google Scholar]
  32. Watcharajittanont N. Tabrizian M. Putson C. Pripatnanont P. Meesane J. Osseointegrated membranes based on electro-spun TiO2/hydroxyapatite/polyurethane for oral maxillofacial surgery. Mater. Sci. Eng. C 2020 108 110479 10.1016/j.msec.2019.110479 31923963
    [Google Scholar]
  33. Zhang X. Yu Y. Jiang D. Jiao Y. Wu Y. Peng Z. Zhou J. Wu J. Dong Z. Synthesis and characterization of a bi-functional hydroxyapatite/Cu-doped TiO2 composite coating. Ceram. Int. 2019 45 6 6693 6701 10.1016/j.ceramint.2018.12.158
    [Google Scholar]
  34. Yang W. Xi X. Si Y. Huang S. Wang J. Cai K. Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts. Acta Biomater. 2014 10 10 4525 4536 10.1016/j.actbio.2014.05.033 24905934
    [Google Scholar]
  35. Pawlik A. Jarosz M. Socha R.P. Sulka G.D. The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO2. Molecules 2021 26 6 1723 10.3390/molecules26061723 33808785
    [Google Scholar]
  36. Lee H. Lee M.K. Han G. Kim H.E. Song J. Na Y. Yoon C.B. Oh S. Jang T.S. Jung H-D. Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’. Biodes. Manuf. 2022 5 3 451 464 10.1007/s42242‑022‑00190‑7
    [Google Scholar]
  37. Draghi L. Preda V. Moscatelli M. Santin M. Chiesa R. Gentamicin-Loaded TiO2 Nanotubes as Improved Antimicrobial Surfaces for Orthopedic Implants. Front. Mater. 2020 7 233 10.3389/fmats.2020.00233
    [Google Scholar]
  38. Ma A. Shang H. Song Y. Chen B. You Y. Han W. Zhang X. Zhang W. Li Y. Li C. Icariin-functionalized coating on TiO2 nanotubes surface to improve osteoblast activity in vitro and osteogenesis ability in vivo. Coatings 2019 9 5 327 10.3390/coatings9050327
    [Google Scholar]
  39. Ma A. You Y. Chen B. Wang W. Liu J. Qi H. Liang Y. Li Y. Li C. Icariin/Aspirin Composite Coating on TiO2 Nanotubes Surface Induce Immunomodulatory Effect of Macrophage and Improve Osteoblast Activity. Coatings 2020 10 4 427 10.3390/coatings10040427
    [Google Scholar]
  40. Lai M. Jin Z. Yang X. Wang H. Xu K. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption. Appl. Surf. Sci. 2017 396 1741 1751 10.1016/j.apsusc.2016.11.228
    [Google Scholar]
  41. Petrović Ž. Šarić A. Despotović I. Katić J. Peter R. Petravić M. Petković M. A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant. Materials (Basel) 2020 13 14 3220 10.3390/ma13143220 32698367
    [Google Scholar]
  42. Capellato P. Camargo S.E.A. Silva G. Sachs D. Vilela F.B. Zavaglia C.A.C. Popat K.C. Claro A.P.R.A. Coated Surface on Ti-30Ta Alloy for Biomedical Application: Mechanical and in-vitro Characterization. Mater. Res. 2020 23 6 e20200305 10.1590/1980‑5373‑mr‑2020‑0305
    [Google Scholar]
  43. Sudhisha V. Rajendran N. ZnP-PEDOT: A potential hybrid coating on titania nanotubes For orthopaedic applications. Surf. Interfaces 2023 39 102898 10.1016/j.surfin.2023.102898
    [Google Scholar]
  44. Tang Q. Zhang X. Shen K. Zhu Z. Hou Y. Lai M. Dual-functionalized titanium for enhancing osteogenic and antibacterial properties. Colloid Interface Sci. Commun. 2021 44 100481 10.1016/j.colcom.2021.100481
    [Google Scholar]
  45. Yuan Z. Huang S. Lan S. Xiong H. Tao B. Ding Y. Liu Y. Liu P. Cai K. Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo. J. Mater. Chem. B Mater. Biol. Med. 2018 6 48 8090 8104 10.1039/C8TB01918E 32254929
    [Google Scholar]
  46. Ma Q. Jiang N. Liang S. Chen F. Fang L. Wang X. Wang J. Chen L. Functionalization of a clustered TiO2 nanotubular surface with platelet derived growth factor-BB covalent modification enhances osteogenic differentiation of bone marrow mesenchymal stem cells. Biomaterials 2020 230 119650 10.1016/j.biomaterials.2019.119650 31806404
    [Google Scholar]
  47. Wigmosta T.B. Popat K.C. Kipper M.J. Bone morphogenetic protein‐2 delivery from polyelectrolyte multilayers enhances osteogenic activity on nanostructured titania. J. Biomed. Mater. Res. A 2021 109 7 1173 1182 10.1002/jbm.a.37109 32985077
    [Google Scholar]
  48. Li Y. Song Y. Ma A. Li C. Surface immobilization of TiO2 nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration. Biomed Res Int 2019 2019
    [Google Scholar]
  49. Huang Y. Li J. Ma G. Liu Z. Li Y. Mao Y. Bone Morphogenetic Protein-2 Immobilized on Titanium Oxide Nanotubes Promotes Rat Bone Marrow Stromal Cells. J. Biomater. Tissue Eng. 2018 8 9 1342 1347 10.1166/jbt.2018.1867
    [Google Scholar]
  50. Zhang X. Zhang Z. Shen G. Zhao J. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition. Int. J. Nanomedicine 2016 11 429 439 26869786
    [Google Scholar]
  51. Ma Y. Zhang Z. Liu Y. Li H. Wang N. Liu W. Li W. Jin L. Wang J. Chen S. Nanotubes Functionalized with BMP2 Knuckle Peptide Improve the Osseointegration of Titanium Implants in Rabbits. J. Biomed. Nanotechnol. 2015 11 2 236 244 10.1166/jbn.2015.2006 26349299
    [Google Scholar]
  52. Wei F. Li M. Crawford R. Zhou Y. Xiao Y. Exosome-integrated titanium oxide nanotubes for targeted bone regeneration. Acta Biomater. 2019 86 480 492 10.1016/j.actbio.2019.01.006 30630122
    [Google Scholar]
  53. Gao H. Li B. Zhao L. Jin Y. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int. J. Nanomedicine 2015 10 4009 4027 26150714
    [Google Scholar]
  54. Wang Y. Jiang Z. Yu K. Feng Y. Xi Y. Lai K. Huang T. Wang H. Yang G. Improved osseointegrating functionality of cell sheets on anatase TiO 2 nanoparticle surfaces. RSC Advances 2017 7 57 35845 35853 10.1039/C7RA05134D
    [Google Scholar]
  55. Jia X. Wang L. Chen Y. Ning X. Zhang Z. Xin H. Lv Q. Hou Y. Liu F. Kong L. TiO 2 nanotubes induce early mitochondrial fission in BMMSCs and promote osseointegration. Biomed. Mater. 2023 18 2 025008 10.1088/1748‑605X/acb7bc
    [Google Scholar]
  56. Gitelman Povimonsky A. Rapaport H. Peptide coating applied on the spot improves osseointegration of titanium implants. J. Mater. Chem. B Mater. Biol. Med. 2017 5 11 2096 2105 10.1039/C6TB03093A 32263683
    [Google Scholar]
  57. Micksch T. Herrmann E. Scharnweber D. Schwenzer B. A modular peptide-based immobilization system for ZrO 2, TiZr and TiO 2 surfaces. Acta Biomater. 2015 12 290 297 10.1016/j.actbio.2014.10.020 25449919
    [Google Scholar]
  58. Sun J. Huang Y. Zhao H. Niu J. Ling X. Zhu C. Wang L. Yang H. Yang Z. Pan G. Shi Q. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact. Mater. 2022 9 1 14 10.1016/j.bioactmat.2021.10.003 34820551
    [Google Scholar]
  59. Lai M. Jin Z. Su Z. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Mater. Sci. Eng. C 2017 73 490 497 10.1016/j.msec.2016.12.083 28183637
    [Google Scholar]
  60. Pan G. Sun S. Zhang W. Zhao R. Cui W. He F. Huang L. Lee S.H. Shea K.J. Shi Q. Yang H. Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. J. Am. Chem. Soc. 2016 138 45 15078 15086 10.1021/jacs.6b09770 27778505
    [Google Scholar]
  61. Păun A.G. Popescu S. Ungureanu C. Trusca R. Pirvu C. Reduced TiO 2 Nanotubes/Silk Fibroin/ZnO as a Promising Hybrid Antibacterial Coating. ChemPlusChem 2024 89 3 e202300450 10.1002/cplu.202300450 37888941
    [Google Scholar]
  62. Bronze-Uhle E.S. Dias L.F.G. Trino L.D. Matos A.A. de Oliveira R.C. Lisboa-Filho P.N. Physicochemical characterization of albumin immobilized on different TiO2 surfaces for use in implant materials. Colloids Surf. A Physicochem. Eng. Asp. 2019 564 39 50 10.1016/j.colsurfa.2018.12.028
    [Google Scholar]
  63. Albano C.S. Gomes A.M. da Silva Feltran G. da Costa Fernandes C.J. Trino L.D. Zambuzzi W.F. Lisboa-Filho P.N. Bisphosphonate-Based Surface Biofunctionalization Improves Titanium Biocompatibility. J. Mater. Sci. Mater. Med. 2020 31 1 14
    [Google Scholar]
  64. Barberi J. Ferraris S. Giovannozzi A.M. Mandrile L. Piatti E. Rossi A.M. Spriano S. Advanced characterization of albumin adsorption on a chemically treated surface for osseointegration: An innovative experimental approach. Mater. Des. 2022 218 110712 10.1016/j.matdes.2022.110712
    [Google Scholar]
  65. Zhang G. Zhang X. Yang Y. Chi R. Shi J. Hang R. Huang X. Yao X. Chu P.K. Zhang X. Dual light-induced in situ antibacterial activities of biocompatibleTiO 2 /MoS 2 /PDA/RGD nanorod arrays on titanium. Biomater. Sci. 2020 8 1 391 404 10.1039/C9BM01507H 31728464
    [Google Scholar]
  66. Liu C. Sun M. Wang Y. Zhu T. Ye G. You D. Dong L. Zhao W. Cheng K. Weng W. Zhang Y.S. Yu M. Wang H. Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS Appl. Mater. Interfaces 2020 12 28 31793 31803 10.1021/acsami.0c07761 32485098
    [Google Scholar]
  67. Qiao Z. Ding J. Wu C. Zhou T. Wu K. Zhang Y. Xiao Z. Wei D. Sun J. Fan H. One‐Pot Synthesis of Bi 2 S 3 /TiO 2 /rGO Heterostructure with Red Light‐Driven Photovoltaic Effect for Remote Electrotherapy‐Assisted Wound Repair. Small 2023 19 7 2206231 10.1002/smll.202206231
    [Google Scholar]
  68. Tang Y. Wang K. Wu B. Yao K. Feng S. Zhou X. Xiang L. Photoelectrons Sequentially Regulate Antibacterial Activity and Osseointegration of Titanium Implants. Adv. Mater. 2024 36 2 2307756 10.1002/adma.202307756 37974525
    [Google Scholar]
  69. Ogawa T. Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implants 2014 29 1 e95 e102 10.11607/jomi.te47 24451893
    [Google Scholar]
  70. Wang T. Bai J. Lu M. Huang C. Geng D. Chen G. Wang L. Qi J. Cui W. Deng L. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nat. Commun. 2022 13 1 160 10.1038/s41467‑021‑27816‑1 35013289
    [Google Scholar]
  71. Martinelli S. Pavarini M. Moscatelli M. Steeves A.J. Chiesa R. Variola F. Enhanced Embedding of Cations into Titanium Surfaces by AC Plasma Electrolytic Oxidation for Osteointegrated Implants. Adv. Eng. Mater. 2023 25 19 2300642 10.1002/adem.202300642
    [Google Scholar]
  72. Zhang Y. Cui S. Cao S. Yang L. Qin G. Zhang E. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surf. Coat. Tech. 2022 433 128116 10.1016/j.surfcoat.2022.128116
    [Google Scholar]
  73. Alves S.A. Rossi A.L. Ribeiro A.R. Werckmann J. Celis J.P. Rocha L.A. Shokuhfar T. A first insight on the bio-functionalization mechanisms of TiO2 nanotubes with calcium, phosphorous and zinc by reverse polarization anodization. Surf. Coat. Tech. 2017 324 153 166 10.1016/j.surfcoat.2017.05.073
    [Google Scholar]
  74. Alves S.A. Rossi A.L. Ribeiro A.R. Toptan F. Pinto A.M. Shokuhfar T. Celis J.P. Rocha L.A. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J. Mech. Behav. Biomed. Mater. 2018 80 143 154 10.1016/j.jmbbm.2018.01.038 29414470
    [Google Scholar]
  75. Alves S.A. Rossi A.L. Ribeiro A.R. Toptan F. Pinto A.M. Celis J.P. Shokuhfar T. Rocha L.A. Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear 2017 384-385 28 42 10.1016/j.wear.2017.05.005
    [Google Scholar]
  76. Alves S.A. Ribeiro A.R. Gemini-Piperni S. Silva R.C. Saraiva A.M. Leite P.E. Perez G. Oliveira S.M. Araujo J.R. Archanjo B.S. Rodrigues M.E. Henriques M. Celis J.P. Shokuhfar T. Borojevic R. Granjeiro J.M. Rocha L.A. TiO 2 nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Advances 2017 7 78 49720 49738 10.1039/C7RA08263K
    [Google Scholar]
  77. Cordeiro J.M. Nagay B.E. Dini C. Souza J.G.S. Rangel E.C. da Cruz N.C. Yang F. van den Beucken J.J.J.P. Barão V.A.R. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Biomaterials Advances 2022 134 112550 10.1016/j.msec.2021.112550 35523647
    [Google Scholar]
  78. Alves S.A. Patel S.B. Sukotjo C. Mathew M.T. Filho P.N. Celis J.P. Rocha L.A. Shokuhfar T. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface. Appl. Surf. Sci. 2017 399 682 701 10.1016/j.apsusc.2016.12.105
    [Google Scholar]
  79. Nagay B.E. Dini C. Cordeiro J.M. Ricomini-Filho A.P. de Avila E.D. Rangel E.C. da Cruz N.C. Barão V.A.R. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS Appl. Mater. Interfaces 2019 11 20 18186 18202 10.1021/acsami.9b03311 31038914
    [Google Scholar]
  80. Gulati K. Prideaux M. Kogawa M. Lima-Marques L. Atkins G.J. Findlay D.M. Losic D. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. J. Tissue Eng. Regen. Med. 2017 11 12 3313 3325 10.1002/term.2239 27925441
    [Google Scholar]
  81. Souza J.C.M. Sordi M.B. Kanazawa M. Ravindran S. Henriques B. Silva F.S. Aparicio C. Cooper L.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019 94 112 131 10.1016/j.actbio.2019.05.045 31128320
    [Google Scholar]
  82. Awad N.K. Edwards S.L. Morsi Y.S. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Mater. Sci. Eng. C 2017 76 1401 1412 10.1016/j.msec.2017.02.150 28482507
    [Google Scholar]
  83. Wang Q. Zhou P. Liu S. Attarilar S. Ma R.L.W. Zhong Y. Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. Nanomaterials (Basel) 2020 10 6 1244 10.3390/nano10061244 32604854
    [Google Scholar]
  84. Xue T. Attarilar S. Liu S. Liu J. Song X. Li L. Zhao B. Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front. Bioeng. Biotechnol. 2020 8 603072 10.3389/fbioe.2020.603072 33262980
    [Google Scholar]
  85. Sarraf M. Rezvani Ghomi E. Alipour S. Ramakrishna S. Liana Sukiman N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes. Manuf. 2022 5 2 371 395 10.1007/s42242‑021‑00170‑3 34721937
    [Google Scholar]
  86. Yeo I.S.L. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials (Basel) 2019 13 1 89 10.3390/ma13010089 31878016
    [Google Scholar]
  87. Oliveira W.F. Arruda I.R.S. Silva G.M.M. Machado G. Coelho L.C.B.B. Correia M.T.S. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater. Sci. Eng. C 2017 81 597 606 10.1016/j.msec.2017.08.017 28888015
    [Google Scholar]
  88. Gulati K. Maher S. Findlay D.M. Losic D. Titania nanotubes for orchestrating osteogenesis at the bone-implant interface. Nanomedicine (Lond.) 2016 11 14 1847 1864 10.2217/nnm‑2016‑0169 27389393
    [Google Scholar]
  89. Wang L. Jin M. Zheng Y.D. Guan Y.P. Lu X. Luo J.L. Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomedicine 2014 9 4421 4435 10.2147/IJN.S65866 25258532
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334190241213101547
Loading
/content/journals/ctmc/10.2174/0115680266334190241213101547
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Implants ; titanium ; surface modification ; antibacterial activity ; biocompatibility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test