Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer is a multifaceted disease with high mortality rates, and current treatments face challenges such as chemoresistance and tumor adaptation. Since Virchow reported the first case of cancer-related chronic inflammation, numerous clinical and epidemiological studies have indicated that around 15-20% of malignant tumors are caused by inflammation. Cyclooxygenase-2 (COX-2), which is the key enzyme in inflammation, has been implicated in tumorigenesis through various mechanisms including promoting angiogenesis, inhibiting apoptosis, and enhancing the invasiveness of cancer cells. Moreover, COX inhibitors have demonstrated a substantial reduction in death rates associated with esophageal and colon cancer. In this context, targeting COX-2 is an effective strategy for cancer prevention and treatment.

This review focuses on the analysis of studies conducted between 2014 and 2024, which evaluate the structure-activity relationship of molecules intended to exhibit cytotoxic activity through COX inhibition. The studies followed both classical and non-classical COX-2 selective drug design strategies. While some focused on the classical approach, utilizing diaryl heterocyclic structures, others explored non-classical designs with a cyclic central scaffold and a linear core. Additionally, several manuscripts employed well-known COX inhibitors including licofelone, indomethacin, naproxen, tolfenamate, celecoxib, flumizole, and ketoprofen, as starting points for further derivatization and optimization. Cytotoxic activity was evaluated using various cell lines including MCF-7, HCT-116, and A549, through assays such as MTT, CellTiter, and MTS. Additionally, studies examined the relationship between COX-2 inhibition and key cancer pathways including apoptosis and the involvement of enzymes like HDAC, EGFR, and topoisomerase.

The majority of studies reported promising cytotoxic activity in COX-2 selective inhibitors. Compounds synthesized with diphenyl heterocyclic scaffolds exhibited enhanced COX-2 selectivity and anticancer efficacy. In particular, derivatives in studies , , and demonstrated significant activity comparable to standard drugs like celecoxib and doxorubicin. However, only a few studies indicated a weak correlation between COX-2 inhibition and cytotoxicity suggesting the need for further investigation into other cancer-related mechanisms.

This review highlights the potential of COX-2 selective inhibitors in anticancer drug development. The findings support the development of selective COX-2 inhibitors with diverse chemical structures as a promising strategy for cancer therapy.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266333495241011063253
2025-04-01
2025-06-19
Loading full text...

Full text loading...

References

  1. ChhikaraB.S. ParangK. Global Cancer Statistics 2022: The trends projection analysis.Chem. Biol. Lett.202310116
    [Google Scholar]
  2. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  3. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.04129071215
    [Google Scholar]
  4. AbedizadehR. MajidiF. KhorasaniH.R. AbediH. SabourD. Colorectal cancer: A comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments.Cancer Metastasis Rev.202443272975310.1007/s10555‑023‑10158‑338112903
    [Google Scholar]
  5. MohamedM.S. BishrM.K. AlmutairiF.M. AliA.G. Inhibitors of apoptosis: Clinical implications in cancer.Apoptosis201722121487150910.1007/s10495‑017‑1429‑429067538
    [Google Scholar]
  6. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.01532067993
    [Google Scholar]
  7. AshrafizadehM. DaiJ. TorabianP. NabaviN. ArefA.R. AljabaliA.A.A. TambuwalaM. ZhuM. Circular RNAs in EMT-driven metastasis regulation: Modulation of cancer cell plasticity, tumorigenesis and therapy resistance.Cell. Mol. Life Sci.202481121410.1007/s00018‑024‑05236‑w38733529
    [Google Scholar]
  8. PęczekP. GajdaM. RutkowskiK. FudalejM. DeptałaA. Badowska-KozakiewiczA.M. Cancer-associated inflammation: Pathophysiology and clinical significance.J. Cancer Res. Clin. Oncol.202314962657267210.1007/s00432‑022‑04399‑y36260158
    [Google Scholar]
  9. LiuX. YinL. ShenS. HouY. Inflammation and cancer: Paradoxical roles in tumorigenesis and implications in immunotherapies.Genes Dis.202310115116410.1016/j.gendis.2021.09.00637013041
    [Google Scholar]
  10. AhmedE.A. MohamedM.F.A. OmranO.A. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: Synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents.RSC Advances20221239252042521610.1039/D2RA04498F36199335
    [Google Scholar]
  11. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  12. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  13. DemirA.B. Tumor promoting inflammation.Curr. Mol. Biol. Rep.202393213210.1007/s40610‑023‑00153‑6
    [Google Scholar]
  14. KhusnurrokhmanG. WatiF.F. Tumor-promoting inflammation in lung cancer: A literature review.Ann. Med. Surg. (Lond.)20227910402210.1016/j.amsu.2022.10402235860063
    [Google Scholar]
  15. KornilukA. KoperO. KemonaH. Dymicka-PiekarskaV. From inflammation to cancer.Ir. J. Med. Sci.1865762201710.1007/s11845‑016‑1464‑0
    [Google Scholar]
  16. LiS.M. TsaiS.E. ChiangC.Y. ChungC.Y. ChuangT.J. TsengC.C. JiangW.P. HuangG.J. LinC.Y. YangY.C. FuhM.T. WongF.F. New methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: Design, synthesis, biological evaluation, and docking study.Bioorg. Chem.202010410433310.1016/j.bioorg.2020.10433333142408
    [Google Scholar]
  17. ChanB.D. WongW.Y. LeeM.M.L. ChoW.C.S. YeeB.K. KwanY.W. TaiW.C.S. Exosomes in inflammation and inflammatory disease.Proteomics2019198180014910.1002/pmic.20180014930758141
    [Google Scholar]
  18. DiakosC.I. CharlesK.A. McMillanD.C. ClarkeS.J. Cancer-related inflammation and treatment effectiveness.Lancet Oncol.20141511e493e50310.1016/S1470‑2045(14)70263‑325281468
    [Google Scholar]
  19. ColottaF. AllavenaP. SicaA. GarlandaC. MantovaniA. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability.Carcinogenesis20093071073108110.1093/carcin/bgp12719468060
    [Google Scholar]
  20. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  21. BerasainC. CastilloJ. PerugorriaM.J. LatasaM.U. PrietoJ. AvilaM.A. Inflammation and liver cancer: New molecular links.Ann. N. Y. Acad. Sci.20091155120622110.1111/j.1749‑6632.2009.03704.x19250206
    [Google Scholar]
  22. GrivennikovS.I. KarinM. Inflammation and oncogenesis: A vicious connection.Curr. Opin. Genet. Dev.2010201657110.1016/j.gde.2009.11.00420036794
    [Google Scholar]
  23. RaniP. PalD. HegdeR.R. HashimS.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers.J. Chemother.201628425526510.1179/1973947815Y.000000006026198312
    [Google Scholar]
  24. LuX.Y. WangZ.C. RenS.Z. ShenF.Q. ManR.J. ZhuH.L. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis.Bioorg. Med. Chem. Lett.201626153491349810.1016/j.bmcl.2016.06.03727349331
    [Google Scholar]
  25. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  26. HouJ. KarinM. SunB. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age?Nat. Rev. Clin. Oncol.202118526127910.1038/s41571‑020‑00459‑933469195
    [Google Scholar]
  27. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  28. BalkwillF. MantovaniA. Inflammation and cancer: Back to Virchow?Lancet2001357925553954510.1016/S0140‑6736(00)04046‑011229684
    [Google Scholar]
  29. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.02520303878
    [Google Scholar]
  30. ZangJ. ZhangB. WangY. WangX. GouS. Design, synthesis and biological evaluation of antitumor platinum(II) agents conjugated with non-steroidal anti-inflammatory drug species.Bioorg. Chem.202212010563310.1016/j.bioorg.2022.10563335091288
    [Google Scholar]
  31. AbdellatifK.R.A. AbdelallE.K.A. ElshemyH.A.H. PhiloppesJ.N. HassaneinE.H.M. KahkN.M. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study.Bioorg. Chem.202212010562710.1016/j.bioorg.2022.10562735065465
    [Google Scholar]
  32. ZelenayS. van der VeenA.G. BöttcherJ.P. SnelgroveK.J. RogersN. ActonS.E. ChakravartyP. GirottiM.R. MaraisR. QuezadaS.A. SahaiE. Reis e SousaC. Cyclooxygenase-dependent tumor growth through evasion of immunity.Cell201516261257127010.1016/j.cell.2015.08.01526343581
    [Google Scholar]
  33. GretenF.R. GrivennikovS.I. Inflammation and cancer: Triggers, mechanisms, and consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  34. ZappavignaS. CossuA.M. GrimaldiA. BocchettiM. FerraroG.A. NicolettiG.F. FilosaR. CaragliaM. Anti-inflammatory drugs as anticancer agents.Int. J. Mol. Sci.2020217260510.3390/ijms2107260532283655
    [Google Scholar]
  35. CruszS.M. BalkwillF.R. Inflammation and cancer: Advances and new agents.Nat. Rev. Clin. Oncol.2015121058459610.1038/nrclinonc.2015.10526122183
    [Google Scholar]
  36. JuZ. LiM. XuJ. HowellD.C. LiZ. ChenF.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years.Acta Pharm. Sin. B20221262790280710.1016/j.apsb.2022.01.00235755295
    [Google Scholar]
  37. ElzahharP.A. Abd El WahabS.M. ElagawanyM. DaabeesH. BelalA.S.F. EL-YazbiA.F. EidA.H. AlaaeddineR. HegazyR.R. AllamR.M. HelmyM.W. Bahaa Elgendy AngeliA. El-HawashS.A. SupuranC.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases.Eur. J. Med. Chem.202020011243910.1016/j.ejmech.2020.11243932485532
    [Google Scholar]
  38. TsengT.S. ChuangS.M. HsiaoN.W. ChenY.W. LeeY.C. LinC.C. HuangC. TsaiK.C. Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations.Mol. Biosyst.20161282541255110.1039/C6MB00229C27265567
    [Google Scholar]
  39. ChanT.A. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention.Lancet Oncol.20023316617410.1016/S1470‑2045(02)00680‑011902503
    [Google Scholar]
  40. XinM. WuH. DuY. LiuS. ZhaoF. MouX. Synthesis and biological evaluation of resveratrol amide derivatives as selective COX-2 inhibitors.Chem. Biol. Interact.202338011052210.1016/j.cbi.2023.11052237179037
    [Google Scholar]
  41. MeenakshiM. AntojeniferP. KarthikeyanM. PrahalathanC. SrinivasanK. Synthesis and biological evaluation of new 1, 4‐benzothiazine derivatives as potential COX‐2 inhibitors.J. Heterocycl. Chem.202259235135810.1002/jhet.4389
    [Google Scholar]
  42. IsmaelA.S. AminN.H. ElsaadiM.T. AliM.R.A. Abdel-RahmanH.M. Design, synthesis and biological evaluation of new imidazo[1,2-a]pyridine derivatives as selective COX-2 inhibitors.J. Mol. Struct.2022125013165210.1016/j.molstruc.2021.131652
    [Google Scholar]
  43. SrourA.M. FahmyH.H. KhaterM.A. ZarieE.S. MohamedS.S. AbdelhameedM.F. Synthesis, anti-inflammatory properties, molecular modelling and potential COX-2, TNF-α, PGE2 and IL1β inhibitors of pyrazole-based scaffolds.J. Mol. Struct.2022126613349910.1016/j.molstruc.2022.133499
    [Google Scholar]
  44. NeaguM. ConstantinC. PopescuI.D. ZipetoD. TzanakakisG. NikitovicD. FengaC. StratakisC.A. SpandidosD.A. TsatsakisA.M. Inflammation and metabolism in cancer cell—mitochondria key player.Front. Oncol.2019934810.3389/fonc.2019.0034831139559
    [Google Scholar]
  45. CoşkunG.P. DjikicT. HayalT.B. TürkelN. YelekçiK. ŞahinF. KüçükgüzelŞ.G. Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors.Molecules2018238196910.3390/molecules2308196930082676
    [Google Scholar]
  46. KunduJ. SurhY. Inflammation: Gearing the journey to cancer.Mutat. Res. Rev. Mutat. Res.20086591-2153010.1016/j.mrrev.2008.03.00218485806
    [Google Scholar]
  47. BondarT. MedzhitovR. The origins of tumor-promoting inflammation.Cancer Cell201324214314410.1016/j.ccr.2013.07.01623948294
    [Google Scholar]
  48. MarjanovićM. ZorcB. PejnovićL. ZovkoM. KraljM. Fenoprofen and ketoprofen amides as potential antitumor agents.Chem. Biol. Drug Des.200769322222610.1111/j.1747‑0285.2007.00494.x17441909
    [Google Scholar]
  49. MorréD.J. MorreD.M. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS).Mol. Cell. Biochem.20062831-215916710.1007/s11010‑006‑2568‑z16444599
    [Google Scholar]
  50. BertrandJ. LiagreB. GhezaliL. BeneytoutJ.L. LegerD.Y. Cyclooxygenase-2 positively regulates Akt signalling and enhances survival of erythroleukemia cells exposed to anticancer agents.Apoptosis201318783685010.1007/s10495‑013‑0825‑723435965
    [Google Scholar]
  51. PatelM.I. SubbaramaiahK. DuB. ChangM. YangP. NewmanR.A. Cordon-CardoC. ThalerH.T. DannenbergA.J. Celecoxib inhibits prostate cancer growth: Evidence of a cyclooxygenase-2-independent mechanism.Clin. Cancer Res.20051151999200710.1158/1078‑0432.CCR‑04‑187715756026
    [Google Scholar]
  52. CherukuriD.P. NelsonM.A. Could the combination of celecoxib and 4HPR be an effective lung cancer treatment?Cancer Biol. Ther.20054889990010.4161/cbt.4.8.213216222124
    [Google Scholar]
  53. KhanM.N.A. LeeY.S. Cyclooxygenase inhibitors: Scope of their use and development in cancer chemotherapy.Med. Res. Rev.201131216120110.1002/med.2018219967720
    [Google Scholar]
  54. UmarA. VinerJ. AndersonW. HawkE. Development of COX inhibitors in cancer prevention and therapy.Am. J. Clin. Oncol.2003264S48S5710.1097/00000421‑200308002‑0000312902856
    [Google Scholar]
  55. MéricJ.B. RotteyS. OlaussenK. SoriaJ.C. KhayatD. RixeO. SpanoJ.P. Cyclooxygenase-2 as a target for anticancer drug development.Crit. Rev. Oncol. Hematol.2006591516410.1016/j.critrevonc.2006.01.00316531064
    [Google Scholar]
  56. AbdellatifK.R.A. FadalyW.A.A. MostafaY.A. ZaherD.M. OmarH.A. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities.Bioorg. Chem.20199110313210.1016/j.bioorg.2019.10313231374529
    [Google Scholar]
  57. LiuD-B. LongG-X. MeiQ. WangJ-F. HuG-Y. GanL. LiW-W. SunW. LiuS-F. JiangJ-Z. HuG-Q. Anticancer effects of celecoxib through inhibiton of STAT3 phosphorylation and AKT phosphorylation in nasopharyngeal carcinoma cell lines.Pharmazie201469535836124855827
    [Google Scholar]
  58. GalisteoA. JannusF. García-GarcíaA. AhegetH. RojasS. LupiañezJ.A. Rodríguez-DiéguezA. Reyes-ZuritaF.J. Quílez del MoralJ.F. Diclofenac N-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect.Int. J. Mol. Sci.20212210506710.3390/ijms2210506734064702
    [Google Scholar]
  59. KolawoleO.R. KashfiK. NSAIDs and cancer resolution: New paradigms beyond cyclooxygenase.Int. J. Mol. Sci.2022233143210.3390/ijms2303143235163356
    [Google Scholar]
  60. WangD. DuBoisR.N. The role of COX-2 in intestinal inflammation and colorectal cancer.Oncogene201029678178810.1038/onc.2009.42119946329
    [Google Scholar]
  61. ZarghiA. ArfaeiS. Selective COX-2 inhibitors: A review of their structure-activity relationships.Iran. J. Pharm. Res.201110465568324250402
    [Google Scholar]
  62. GüngörT. OzleyenA. YılmazY.B. SiyahP. AyM. DurdağıS. TumerT.B. New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects.Eur. J. Med. Chem.202122111356610.1016/j.ejmech.2021.11356634077833
    [Google Scholar]
  63. SohailR. MathewM. PatelK.K. ReddyS.A. HaiderZ. NariaM. HabibA. AbdinZ.U. Razzaq ChaudhryW. AkbarA. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review.Cureus2023154e3708010.7759/cureus.3708037153279
    [Google Scholar]
  64. BosquesiP.L. MeloT.R.F. VizioliE.O. SantosJ.L. ChungM.C. Anti-inflammatory drug design using a molecular hybridization approach.Pharmaceuticals (Basel)20114111450147410.3390/ph411145027721332
    [Google Scholar]
  65. ZhengD. LiwinskiT. ElinavE. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms.Cell Discov.2020613610.1038/s41421‑020‑0167‑x32550001
    [Google Scholar]
  66. Mahboubi RabbaniS.M.I. ZarghiA. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018).Expert Opin. Ther. Pat.201929640742710.1080/13543776.2019.162388031132889
    [Google Scholar]
  67. ObengS. HiranitaT. LeónF. McMahonL.R. McCurdyC.R. Novel approaches, drug candidates, and targets in pain drug discovery.J. Med. Chem.202164106523654810.1021/acs.jmedchem.1c0002833956427
    [Google Scholar]
  68. ChenW. ZhongY. FengN. GuoZ. WangS. XingD. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases.Mol. Med.202127112310.1186/s10020‑021‑00358‑434592918
    [Google Scholar]
  69. ManiewskaJ. JeżewskaD. Non-steroidal anti-inflammatory drugs in colorectal cancer chemoprevention.Cancers (Basel)202113459410.3390/cancers1304059433546238
    [Google Scholar]
  70. SheblF.M. HsingA.W. ParkY. HollenbeckA.R. ChuL.W. MeyerT.E. KoshiolJ. Non-steroidal anti-inflammatory drugs use is associated with reduced risk of inflammation-associated cancers: NIH-AARP study.PLoS One2014912e11463310.1371/journal.pone.011463325551641
    [Google Scholar]
  71. ZhaS. YegnasubramanianV. NelsonW.G. IsaacsW.B. De MarzoA.M. Cyclooxygenases in cancer: Progress and perspective.Cancer Lett.2004215112010.1016/j.canlet.2004.06.01415374627
    [Google Scholar]
  72. LiM. WuX. XuX.C. Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochromeC-dependent pathway in esophageal cancer cells.Int. J. Cancer200193221822310.1002/ijc.132211410869
    [Google Scholar]
  73. BelaynehY.M. AmareG.G. MeharieB.G. Updates on the molecular mechanisms of aspirin in the prevention of colorectal cancer: Review.J. Oncol. Pharm. Pract.202127495496110.1177/107815522098484633427041
    [Google Scholar]
  74. XuX.C. COX-2 inhibitors in cancer treatment and prevention, a recent development.Anticancer Drugs200213212713710.1097/00001813‑200202000‑0000311901304
    [Google Scholar]
  75. KazberukA. ZarebaI. PalkaJ. SurazynskiA. A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: The implication of proline oxidase and peroxisome proliferator-activated receptor.Pharmacol. Rep.20207251152116010.1007/s43440‑020‑00140‑z32710395
    [Google Scholar]
  76. HiľovskáL. JendželovskýR. FedoročkoP. Potency of non-steroidal anti-inflammatory drugs in chemotherapy.Mol. Clin. Oncol.20153131210.3892/mco.2014.44625469262
    [Google Scholar]
  77. OshimaM. DinchukJ.E. KargmanS.L. OshimaH. HancockB. KwongE. TrzaskosJ.M. EvansJ.F. TaketoM.M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2).Cell199687580380910.1016/S0092‑8674(00)81988‑18945508
    [Google Scholar]
  78. TotzkeG. Schulze-OsthoffK. JänickeR.U. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition.Oncogene200322398021803010.1038/sj.onc.120683712970750
    [Google Scholar]
  79. KernM.A. HauggA.M. KochA.F. SchillingT. BreuhahnK. WalczakH. FleischerB. TrautweinC. MichalskiC. Schulze-BergkamenH. FriessH. StremmelW. KrammerP.H. SchirmacherP. MüllerM. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma.Cancer Res.200666147059706610.1158/0008‑5472.CAN‑06‑032516849551
    [Google Scholar]
  80. TanwarL. PiplaniH. SanyalS. Anti-proliferative and apoptotic effects of etoricoxib, a selective COX-2 inhibitor, on 1,2-dimethylhydrazine dihydrochloride-induced colon carcinogenesis.Asian Pac. J. Cancer Prev.20101151329133321198287
    [Google Scholar]
  81. Dennis BilavendranJ. ManikandanA. ThangarasuP. SivakumarK. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments.Bioorg. Chem.20209410348410.1016/j.bioorg.2019.10348431796215
    [Google Scholar]
  82. KaduševičiusE. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy.Int. J. Mol. Sci.20212212663710.3390/ijms2212663734205719
    [Google Scholar]
  83. ThunM.J. HenleyS.J. PatronoC. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues.J. Natl. Cancer Inst.200294425226610.1093/jnci/94.4.25211854387
    [Google Scholar]
  84. LiS. JiangM. WangL. YuS. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement.Biomed. Pharmacother.202012911038910.1016/j.biopha.2020.11038932540642
    [Google Scholar]
  85. TrifanO.C. DurhamW.F. SalazarV.S. HortonJ. LevineB.D. ZweifelB.S. DavisT.W. MasferrerJ.L. Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11.Cancer Res.200262205778578412384538
    [Google Scholar]
  86. LiJ. HuX. ZhangH. PengY. LiS. XiongY. JiangW. WangZ. N -2-(phenylamino) benzamide derivatives as dual inhibitors of COX-2 and topo I deter gastrointestinal cancers via targeting inflammation and tumor progression.J. Med. Chem.20226515104811050510.1021/acs.jmedchem.2c0063535868003
    [Google Scholar]
  87. AbdelazeemA.H. GoudaA.M. OmarH.A. TolbaM.F. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents.Bioorg. Chem.20145713214110.1016/j.bioorg.2014.10.00125462989
    [Google Scholar]
  88. Ramos-InzaS. RuberteA.C. SanmartínC. SharmaA.K. PlanoD. NSAIDs: Old acquaintance in the pipeline for cancer treatment and prevention─structural modulation, mechanisms of action, and bright future.J. Med. Chem.20216422163801642110.1021/acs.jmedchem.1c0146034784195
    [Google Scholar]
  89. WangZ. FanZ. JiangH. QuJ. Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal transition in human lung cancer cells via activating MEK-ERK signaling.Carcinogenesis201334363864610.1093/carcin/bgs36723172668
    [Google Scholar]
  90. WeberA. CasiniA. HeineA. KuhnD. SupuranC.T. ScozzafavaA. KlebeG. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition.J. Med. Chem.200447355055710.1021/jm030912m14736236
    [Google Scholar]
  91. NocentiniA. SupuranC.T. Chapter 17 - Carbonic anhydrase inhibitors for the treatment of neuropathic pain and arthritis.Carbonic AnhydrasesAcademic Press201936738610.1016/B978‑0‑12‑816476‑1.00017‑4
    [Google Scholar]
  92. QiuH.Y. WangP.F. LiZ. MaJ.T. WangX.M. YangY.H. ZhuH.L. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition.Pharmacol. Res.2016104869610.1016/j.phrs.2015.12.02526723906
    [Google Scholar]
  93. LuX.Y. WangZ.C. WeiT. YanX.Q. WangP.F. ZhuH.L. Design, synthesis and evaluation of benzenesulfonamide-substituted 1,5-diarylpyrazoles containing phenylacetohydrazide derivatives as COX-1/COX-2 agents against solid tumors.RSC Advances2016627229172293510.1039/C6RA02168A
    [Google Scholar]
  94. RajiI. YaduduF. JaneiraE. FathiS. SzymczakL. KornackiJ.R. KomatsuK. LiJ.D. MrksichM. OyelereA.K. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase.Bioorg. Med. Chem.20172531202121810.1016/j.bmc.2016.12.03228057407
    [Google Scholar]
  95. Guerra FauraG. WuB. OyelereA.K. FranceS. Synthetic methodology-enabled discovery of a tunable indole template for COX-1 inhibition and anti-cancer activity.Bioorg. Med. Chem.20225711663310.1016/j.bmc.2022.11663335134642
    [Google Scholar]
  96. VahedpourT. KaurJ. HemmatiS. Hamzeh-MivehroudM. AlizadehA.A. WuestF. DastmalchiS. Synthesis and biological evaluation of 1,3,5‐trisubstituted 2‐pyrazolines as novel cyclooxygenase‐2 inhibitors with antiproliferative activity.Chem. Biodivers.2021183e200083210.1002/cbdv.20200083233620122
    [Google Scholar]
  97. GoudaA.M. AbdelazeemA.H. OmarH.A. AbdallaA.N. AbourehabM.A.S. AliH.I. Pyrrolizines: Design, synthesis, anticancer evaluation and investigation of the potential mechanism of action.Bioorg. Med. Chem.201725205637565110.1016/j.bmc.2017.08.03928916158
    [Google Scholar]
  98. GoudaA.M. AbdelazeemA.H. AbdallaA.N. AhmedM. Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities.Acta Pharm.201868325127310.2478/acph‑2018‑002631259695
    [Google Scholar]
  99. ShawkyA.M. AbourehabM.A.S. AbdallaA.N. GoudaA.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency.Eur. J. Med. Chem.202018511178010.1016/j.ejmech.2019.11178031655429
    [Google Scholar]
  100. LamieP.F. PhiloppesJ.N. RárováL. Design, synthesis, and biological evaluation of novel 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4 H )‐imidazolone derivatives as cytotoxic agents and COX‐2/LOX inhibitors.Arch. Pharm. (Weinheim)20183513-4170031110.1002/ardp.20170031129400411
    [Google Scholar]
  101. El-HusseinyW.M. El-SayedM.A.A. Abdel-AzizN.I. El-AzabA.S. AsiriY.A. Abdel-AzizA.A.M. Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking.Eur. J. Med. Chem.201815813414310.1016/j.ejmech.2018.09.00730216848
    [Google Scholar]
  102. El-SayedN.A. NourM.S. SalemM.A. ArafaR.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies.Eur. J. Med. Chem.201918311169310.1016/j.ejmech.2019.11169331539778
    [Google Scholar]
  103. AkhtarW. NainwalL.M. KhanM.F. VermaG. ChashooG. BakhtA. IqbalM. AkhtarM. ShaquiquzzamanM. AlamM.M. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents.J. Fluor. Chem.202023610957910.1016/j.jfluchem.2020.109579
    [Google Scholar]
  104. AkhtarW. NainwalL.M. KaushikS.K. AkhtarM. ShaquiquzzamanM. AlmalkiF. SaifullahK. MarellaA. AlamM.M. Methylene‐bearing sulfur‐containing cyanopyrimidine derivatives for treatment of cancer: Part‐II.Arch. Pharm. (Weinheim)20203535e190033310.1002/ardp.20190033332115728
    [Google Scholar]
  105. AL-GhulikahH.A. El-SebaeyS.A. BassA.K.A El-ZoghbiM.S. New pyrimidine-5-carbonitriles as COX-2 inhibitors: Design, synthesis, anticancer screening, molecular docking, and in silico ADME profile studies.Molecules20222721748510.3390/molecules27217485
    [Google Scholar]
  106. ŞenkardeşS. HanM.İ. KulabaşN. AbbakM. ÇevikÖ. Küçükgüzelİ. KüçükgüzelŞ.G. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors.Mol. Divers.202024367368910.1007/s11030‑019‑09974‑z31302853
    [Google Scholar]
  107. HawashM. JaradatN. HameediS. MousaA. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents.BMC Chem.20201415410.1186/s13065‑020‑00706‑132944715
    [Google Scholar]
  108. LiJ. HuX. LuoT. LuY. FengY. ZhangH. LiuD. FanX. WangY. JiangL. WangY. HaoX. ShiT. WangZ. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation.Eur. J. Med. Chem.202122611381710.1016/j.ejmech.2021.11381734537445
    [Google Scholar]
  109. SakrA. RezqS. IbrahimS.M. SolimanE. BarakaM.M. RomeroD.G. KothayerH. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: Anti-inflammatory, analgesic and anticancer activities.J. Enzyme Inhib. Med. Chem.20213611810182810.1080/14756366.2021.195691234338135
    [Google Scholar]
  110. MusaA. MostafaE.M. BukhariS.N.A. AlotaibiN.H. El-GhorabA.H. FaroukA. NaylA.A. GhoneimM.M. AbdelgawadM.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones.Molecules2022274115810.3390/molecules2704115835208952
    [Google Scholar]
  111. El-BarghouthiM.I. HasanA.S. Al-AwaidaW. Al-AmeerH.J. KaurJ. HayashibaraK.J. FlemingJ. WakninJ. HayashibaraS. SlewaM. HamzehS.M. BodoorK. McLoudJ.D. WuestF. Jawabrah Al HouraniB. Novel therapeutic heterocycles as selective cyclooxygenase-2 inhibitors and anti-cancer agents: Synthesis, in vitro bioassay screenings, and molecular docking studies.J. Mol. Struct.2022126313314110.1016/j.molstruc.2022.133141
    [Google Scholar]
  112. HassanA.Y. Abou-AmraE.S. El-SebaeyS.A. Design and synthesis of new series of chiral pyrimidine and purine analogs as COX-2 inhibitors: Anticancer screening, molecular modeling, and in silico studies.J. Mol. Struct.2023127813493010.1016/j.molstruc.2023.134930
    [Google Scholar]
  113. ZhuM. WangX. ZhouY. LiM. WangY. WangY. LiT. SongS.Y. ZhangB. HezamK. ZhangJ. Breast tumor‐targeted drug delivery via polymer nanocarriers: Endogenous and exogenous strategies.J. Appl. Polym. Sci.202314031e5422710.1002/app.54227
    [Google Scholar]
  114. DaiJ. AshrafizadehM. ArefA.R. SethiG. ErtasY.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy.Drug Discov. Today202429710398110.1016/j.drudis.2024.10398138614161
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266333495241011063253
Loading
/content/journals/ctmc/10.2174/0115680266333495241011063253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test