Skip to content
2000
image of Exploring the Structure-Activity Relationship of COX Inhibitors with Anticancer Effects: A Comprehensive Review

Abstract

Cancer is a multifaceted disease with high mortality rates, and current treatments face challenges such as chemoresistance and tumor adaptation. Since Virchow reported the first case of cancer-related chronic inflammation, numerous clinical and epidemiological studies have indicated that around 15-20% of malignant tumors are caused by inflammation. Cyclooxygenase-2 (COX-2), which is the key enzyme in inflammation, has been implicated in tumorigenesis through various mechanisms, including promoting angiogenesis, inhibiting apoptosis, and enhancing the invasiveness of cancer cells. Moreover, COX inhibitors have demonstrated a substantial reduction in death rates associated with esophageal and colon cancer. In this context, targeting COX-2 is an effective strategy for cancer prevention and treatment.

This review focuses on the analysis of studies conducted between 2014 and 2024, which evaluate the structure-activity relationship of molecules intended to exhibit cytotoxic activity through COX inhibition. The studies followed both classical and non-classical COX-2 selective drug design strategies. While some focused on the classical approach, utilizing diaryl heterocyclic structures, others explored non-classical designs with a cyclic central scaffold and a linear core. Additionally, several manuscripts employed well-known COX inhibitors, including licofelone, indomethacin, naproxen, tolfenamate, celecoxib, flumizole, and ketoprofen, as starting points for further derivatization and optimization. Cytotoxic activity was evaluated using various cell lines, including MCF-7, HCT-116, and A549, through assays such as MTT, CellTiter, and MTS. Additionally, studies examined the relationship between COX-2 inhibition and key cancer pathways, including apoptosis and the involvement of enzymes like HDAC, EGFR, and topoisomerase.

The majority of studies reported promising cytotoxic activity in COX-2 selective inhibitors. Compounds synthesized with diphenyl heterocyclic scaffolds exhibited enhanced COX-2 selectivity and anticancer efficacy. In particular, derivatives in studies , , and demonstrated significant activity comparable to standard drugs like celecoxib and doxorubicin. However, only a few studies indicated a weak correlation between COX-2 inhibition and cytotoxicity, suggesting the need for further investigation into other cancer-related mechanisms.

This review highlights the potential of COX-2 selective inhibitors in anticancer drug development. The findings support the development of selective COX-2 inhibitors with diverse chemical structures as a promising strategy for cancer therapy.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266333495241011063253
2024-10-21
2024-11-21
Loading full text...

Full text loading...

References

  1. Chhikara B.S. Parang K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023 10 1 16
    [Google Scholar]
  2. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  3. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  4. Abedizadeh R. Majidi F. Khorasani H.R. Abedi H. Sabour D. Colorectal cancer: A comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev. 2024 43 2 729 753 10.1007/s10555‑023‑10158‑3 38112903
    [Google Scholar]
  5. Mohamed M.S. Bishr M.K. Almutairi F.M. Ali A.G. Inhibitors of apoptosis: Clinical implications in cancer. Apoptosis 2017 22 12 1487 1509 10.1007/s10495‑017‑1429‑4 29067538
    [Google Scholar]
  6. Su Y. Zhao B. Zhou L. Zhang Z. Shen Y. Lv H. AlQudsy L.H.H. Shang P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020 483 127 136 10.1016/j.canlet.2020.02.015 32067993
    [Google Scholar]
  7. Ashrafizadeh M. Dai J. Torabian P. Nabavi N. Aref A.R. Aljabali A.A.A. Tambuwala M. Zhu M. Circular RNAs in EMT-driven metastasis regulation: Modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell. Mol. Life Sci. 2024 81 1 214 10.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  8. Pęczek P. Gajda M. Rutkowski K. Fudalej M. Deptała A. Badowska-Kozakiewicz A.M. Cancer-associated inflammation: Pathophysiology and clinical significance. J. Cancer Res. Clin. Oncol. 2023 149 6 2657 2672 10.1007/s00432‑022‑04399‑y 36260158
    [Google Scholar]
  9. Liu X. Yin L. Shen S. Hou Y. Inflammation and cancer: Paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis. 2023 10 1 151 164 10.1016/j.gendis.2021.09.006 37013041
    [Google Scholar]
  10. Ahmed E.A. Mohamed M.F.A. Omran O.A. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: Synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Advances 2022 12 39 25204 25216 10.1039/D2RA04498F 36199335
    [Google Scholar]
  11. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  12. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  13. Demir A.B. Tumor promoting inflammation. Curr. Mol. Biol. Rep. 2023 9 3 21 32 10.1007/s40610‑023‑00153‑6
    [Google Scholar]
  14. Khusnurrokhman G. Wati F.F. Tumor-promoting inflammation in lung cancer: A literature review. Ann. Med. Surg. (Lond.) 2022 79 104022 10.1016/j.amsu.2022.104022 35860063
    [Google Scholar]
  15. Korniluk A. Koper O. Kemona H. Dymicka-Piekarska V. From inflammation to cancer. Ir. J. Med. Sci. 186 57 62 2017 10.1007/s11845‑016‑1464‑0
    [Google Scholar]
  16. Li S.M. Tsai S.E. Chiang C.Y. Chung C.Y. Chuang T.J. Tseng C.C. Jiang W.P. Huang G.J. Lin C.Y. Yang Y.C. Fuh M.T. Wong F.F. New methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: Design, synthesis, biological evaluation, and docking study. Bioorg. Chem. 2020 104 104333 10.1016/j.bioorg.2020.104333 33142408
    [Google Scholar]
  17. Chan B.D. Wong W.Y. Lee M.M.L. Cho W.C.S. Yee B.K. Kwan Y.W. Tai W.C.S. Exosomes in inflammation and inflammatory disease. Proteomics 2019 19 8 1800149 10.1002/pmic.201800149 30758141
    [Google Scholar]
  18. Diakos C.I. Charles K.A. McMillan D.C. Clarke S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014 15 11 e493 e503 10.1016/S1470‑2045(14)70263‑3 25281468
    [Google Scholar]
  19. Colotta F. Allavena P. Sica A. Garlanda C. Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009 30 7 1073 1081 10.1093/carcin/bgp127 19468060
    [Google Scholar]
  20. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  21. Berasain C. Castillo J. Perugorria M.J. Latasa M.U. Prieto J. Avila M.A. Inflammation and liver cancer: New molecular links. Ann. N. Y. Acad. Sci. 2009 1155 1 206 221 10.1111/j.1749‑6632.2009.03704.x 19250206
    [Google Scholar]
  22. Grivennikov S.I. Karin M. Inflammation and oncogenesis: A vicious connection. Curr. Opin. Genet. Dev. 2010 20 1 65 71 10.1016/j.gde.2009.11.004 20036794
    [Google Scholar]
  23. Rani P. Pal D. Hegde R.R. Hashim S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother. 2016 28 4 255 265 10.1179/1973947815Y.0000000060 26198312
    [Google Scholar]
  24. Lu X.Y. Wang Z.C. Ren S.Z. Shen F.Q. Man R.J. Zhu H.L. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg. Med. Chem. Lett. 2016 26 15 3491 3498 10.1016/j.bmcl.2016.06.037 27349331
    [Google Scholar]
  25. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  26. Hou J. Karin M. Sun B. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 2021 18 5 261 279 10.1038/s41571‑020‑00459‑9 33469195
    [Google Scholar]
  27. Singh N. Baby D. Rajguru J. Patil P. Thakkannavar S. Pujari V. Inflammation and cancer. Ann. Afr. Med. 2019 18 3 121 126 10.4103/aam.aam_56_18 31417011
    [Google Scholar]
  28. Balkwill F. Mantovani A. Inflammation and cancer: Back to Virchow? Lancet 2001 357 9255 539 545 10.1016/S0140‑6736(00)04046‑0 11229684
    [Google Scholar]
  29. Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer. Cell 2010 140 6 883 899 10.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  30. Zang J. Zhang B. Wang Y. Wang X. Gou S. Design, synthesis and biological evaluation of antitumor platinum(II) agents conjugated with non-steroidal anti-inflammatory drug species. Bioorg. Chem. 2022 120 105633 10.1016/j.bioorg.2022.105633 35091288
    [Google Scholar]
  31. Abdellatif K.R.A. Abdelall E.K.A. Elshemy H.A.H. Philoppes J.N. Hassanein E.H.M. Kahk N.M. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study. Bioorg. Chem. 2022 120 105627 10.1016/j.bioorg.2022.105627 35065465
    [Google Scholar]
  32. Zelenay S. van der Veen A.G. Böttcher J.P. Snelgrove K.J. Rogers N. Acton S.E. Chakravarty P. Girotti M.R. Marais R. Quezada S.A. Sahai E. Reis e Sousa C. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015 162 6 1257 1270 10.1016/j.cell.2015.08.015 26343581
    [Google Scholar]
  33. Greten F.R. Grivennikov S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019 51 1 27 41 10.1016/j.immuni.2019.06.025 31315034
    [Google Scholar]
  34. Zappavigna S. Cossu A.M. Grimaldi A. Bocchetti M. Ferraro G.A. Nicoletti G.F. Filosa R. Caraglia M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  35. Crusz S.M. Balkwill F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015 12 10 584 596 10.1038/nrclinonc.2015.105 26122183
    [Google Scholar]
  36. Ju Z. Li M. Xu J. Howell D.C. Li Z. Chen F.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm. Sin. B 2022 12 6 2790 2807 10.1016/j.apsb.2022.01.002 35755295
    [Google Scholar]
  37. Elzahhar P.A. Abd El Wahab S.M. Elagawany M. Daabees H. Belal A.S.F. EL-Yazbi A.F. Eid A.H. Alaaeddine R. Hegazy R.R. Allam R.M. Helmy M.W. Bahaa Elgendy Angeli A. El-Hawash S.A. Supuran C.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur. J. Med. Chem. 2020 200 112439 10.1016/j.ejmech.2020.112439 32485532
    [Google Scholar]
  38. Tseng T.S. Chuang S.M. Hsiao N.W. Chen Y.W. Lee Y.C. Lin C.C. Huang C. Tsai K.C. Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations. Mol. Biosyst. 2016 12 8 2541 2551 10.1039/C6MB00229C 27265567
    [Google Scholar]
  39. Chan T.A. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 2002 3 3 166 174 10.1016/S1470‑2045(02)00680‑0 11902503
    [Google Scholar]
  40. Xin M. Wu H. Du Y. Liu S. Zhao F. Mou X. Synthesis and biological evaluation of resveratrol amide derivatives as selective COX-2 inhibitors. Chem. Biol. Interact. 2023 380 110522 10.1016/j.cbi.2023.110522 37179037
    [Google Scholar]
  41. Meenakshi M. Antojenifer P. Karthikeyan M. Prahalathan C. Srinivasan K. Synthesis and biological evaluation of new 1, 4‐benzothiazine derivatives as potential COX‐2 inhibitors. J. Heterocycl. Chem. 2022 59 2 351 358 10.1002/jhet.4389
    [Google Scholar]
  42. Ismael A.S. Amin N.H. Elsaadi M.T. Ali M.R.A. Abdel-Rahman H.M. Design, synthesis and biological evaluation of new imidazo[1,2-a]pyridine derivatives as selective COX-2 inhibitors. J. Mol. Struct. 2022 1250 131652 10.1016/j.molstruc.2021.131652
    [Google Scholar]
  43. Srour A.M. Fahmy H.H. Khater M.A. Zarie E.S. Mohamed S.S. Abdelhameed M.F. Synthesis, anti-inflammatory properties, molecular modelling and potential COX-2, TNF-α, PGE2 and IL1β inhibitors of pyrazole-based scaffolds. J. Mol. Struct. 2022 1266 133499 10.1016/j.molstruc.2022.133499
    [Google Scholar]
  44. Neagu M. Constantin C. Popescu I.D. Zipeto D. Tzanakakis G. Nikitovic D. Fenga C. Stratakis C.A. Spandidos D.A. Tsatsakis A.M. Inflammation and metabolism in cancer cell—mitochondria key player. Front. Oncol. 2019 9 348 10.3389/fonc.2019.00348 31139559
    [Google Scholar]
  45. Coşkun G.P. Djikic T. Hayal T.B. Türkel N. Yelekçi K. Şahin F. Küçükgüzel Ş.G. Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors. Molecules 2018 23 8 1969 10.3390/molecules23081969 30082676
    [Google Scholar]
  46. Kundu J. Surh Y. Inflammation: Gearing the journey to cancer. Mutat. Res. Rev. Mutat. Res. 2008 659 1-2 15 30 10.1016/j.mrrev.2008.03.002 18485806
    [Google Scholar]
  47. Bondar T. Medzhitov R. The origins of tumor-promoting inflammation. Cancer Cell 2013 24 2 143 144 10.1016/j.ccr.2013.07.016 23948294
    [Google Scholar]
  48. Marjanović M. Zorc B. Pejnović L. Zovko M. Kralj M. Fenoprofen and ketoprofen amides as potential antitumor agents. Chem. Biol. Drug Des. 2007 69 3 222 226 10.1111/j.1747‑0285.2007.00494.x 17441909
    [Google Scholar]
  49. Morré D.J. Morre D.M. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Mol. Cell. Biochem. 2006 283 1-2 159 167 10.1007/s11010‑006‑2568‑z 16444599
    [Google Scholar]
  50. Bertrand J. Liagre B. Ghezali L. Beneytout J.L. Leger D.Y. Cyclooxygenase-2 positively regulates Akt signalling and enhances survival of erythroleukemia cells exposed to anticancer agents. Apoptosis 2013 18 7 836 850 10.1007/s10495‑013‑0825‑7 23435965
    [Google Scholar]
  51. Patel M.I. Subbaramaiah K. Du B. Chang M. Yang P. Newman R.A. Cordon-Cardo C. Thaler H.T. Dannenberg A.J. Celecoxib inhibits prostate cancer growth: Evidence of a cyclooxygenase-2-independent mechanism. Clin. Cancer Res. 2005 11 5 1999 2007 10.1158/1078‑0432.CCR‑04‑1877 15756026
    [Google Scholar]
  52. Cherukuri D.P. Nelson M.A. Could the combination of celecoxib and 4HPR be an effective lung cancer treatment? Cancer Biol. Ther. 2005 4 8 899 900 10.4161/cbt.4.8.2132 16222124
    [Google Scholar]
  53. Khan M.N.A. Lee Y.S. Cyclooxygenase inhibitors: Scope of their use and development in cancer chemotherapy. Med. Res. Rev. 2011 31 2 161 201 10.1002/med.20182 19967720
    [Google Scholar]
  54. Umar A. Viner J. Anderson W. Hawk E. Development of COX inhibitors in cancer prevention and therapy. Am. J. Clin. Oncol. 2003 26 4 S48 S57 10.1097/00000421‑200308002‑00003 12902856
    [Google Scholar]
  55. Méric J.B. Rottey S. Olaussen K. Soria J.C. Khayat D. Rixe O. Spano J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol. 2006 59 1 51 64 10.1016/j.critrevonc.2006.01.003 16531064
    [Google Scholar]
  56. Abdellatif K.R.A. Fadaly W.A.A. Mostafa Y.A. Zaher D.M. Omar H.A. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg. Chem. 2019 91 103132 10.1016/j.bioorg.2019.103132 31374529
    [Google Scholar]
  57. Liu D-B. Long G-X. Mei Q. Wang J-F. Hu G-Y. Gan L. Li W-W. Sun W. Liu S-F. Jiang J-Z. Hu G-Q. Anticancer effects of celecoxib through inhibiton of STAT3 phosphorylation and AKT phosphorylation in nasopharyngeal carcinoma cell lines. Pharmazie 2014 69 5 358 361 24855827
    [Google Scholar]
  58. Galisteo A. Jannus F. García-García A. Aheget H. Rojas S. Lupiañez J.A. Rodríguez-Diéguez A. Reyes-Zurita F.J. Quílez del Moral J.F. Diclofenac N-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect. Int. J. Mol. Sci. 2021 22 10 5067 10.3390/ijms22105067 34064702
    [Google Scholar]
  59. Kolawole O.R. Kashfi K. NSAIDs and cancer resolution: New paradigms beyond cyclooxygenase. Int. J. Mol. Sci. 2022 23 3 1432 10.3390/ijms23031432 35163356
    [Google Scholar]
  60. Wang D. DuBois R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010 29 6 781 788 10.1038/onc.2009.421 19946329
    [Google Scholar]
  61. Zarghi A. Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. 2011 10 4 655 683 24250402
    [Google Scholar]
  62. Güngör T. Ozleyen A. Yılmaz Y.B. Siyah P. Ay M. Durdağı S. Tumer T.B. New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects. Eur. J. Med. Chem. 2021 221 113566 10.1016/j.ejmech.2021.113566 34077833
    [Google Scholar]
  63. Sohail R. Mathew M. Patel K.K. Reddy S.A. Haider Z. Naria M. Habib A. Abdin Z.U. Razzaq Chaudhry W. Akbar A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus 2023 15 4 e37080 10.7759/cureus.37080 37153279
    [Google Scholar]
  64. Bosquesi P.L. Melo T.R.F. Vizioli E.O. Santos J.L. Chung M.C. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals (Basel) 2011 4 11 1450 1474 10.3390/ph4111450 27721332
    [Google Scholar]
  65. Zheng D. Liwinski T. Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020 6 1 36 10.1038/s41421‑020‑0167‑x 32550001
    [Google Scholar]
  66. Mahboubi Rabbani S.M.I. Zarghi A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat. 2019 29 6 407 427 10.1080/13543776.2019.1623880 31132889
    [Google Scholar]
  67. Obeng S. Hiranita T. León F. McMahon L.R. McCurdy C.R. Novel approaches, drug candidates, and targets in pain drug discovery. J. Med. Chem. 2021 64 10 6523 6548 10.1021/acs.jmedchem.1c00028 33956427
    [Google Scholar]
  68. Chen W. Zhong Y. Feng N. Guo Z. Wang S. Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol. Med. 2021 27 1 123 10.1186/s10020‑021‑00358‑4 34592918
    [Google Scholar]
  69. Maniewska J. Jeżewska D. Non-steroidal anti-inflammatory drugs in colorectal cancer chemoprevention. Cancers (Basel) 2021 13 4 594 10.3390/cancers13040594 33546238
    [Google Scholar]
  70. Shebl F.M. Hsing A.W. Park Y. Hollenbeck A.R. Chu L.W. Meyer T.E. Koshiol J. Non-steroidal anti-inflammatory drugs use is associated with reduced risk of inflammation-associated cancers: NIH-AARP study. PLoS One 2014 9 12 e114633 10.1371/journal.pone.0114633 25551641
    [Google Scholar]
  71. Zha S. Yegnasubramanian V. Nelson W.G. Isaacs W.B. De Marzo A.M. Cyclooxygenases in cancer: Progress and perspective. Cancer Lett. 2004 215 1 1 20 10.1016/j.canlet.2004.06.014 15374627
    [Google Scholar]
  72. Li M. Wu X. Xu X.C. Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochromeC-dependent pathway in esophageal cancer cells. Int. J. Cancer 2001 93 2 218 223 10.1002/ijc.1322 11410869
    [Google Scholar]
  73. Belayneh Y.M. Amare G.G. Meharie B.G. Updates on the molecular mechanisms of aspirin in the prevention of colorectal cancer: Review. J. Oncol. Pharm. Pract. 2021 27 4 954 961 10.1177/1078155220984846 33427041
    [Google Scholar]
  74. Xu X.C. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs 2002 13 2 127 137 10.1097/00001813‑200202000‑00003 11901304
    [Google Scholar]
  75. Kazberuk A. Zareba I. Palka J. Surazynski A. A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: The implication of proline oxidase and peroxisome proliferator-activated receptor. Pharmacol. Rep. 2020 72 5 1152 1160 10.1007/s43440‑020‑00140‑z 32710395
    [Google Scholar]
  76. Hiľovská L. Jendželovský R. Fedoročko P. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol. Clin. Oncol. 2015 3 1 3 12 10.3892/mco.2014.446 25469262
    [Google Scholar]
  77. Oshima M. Dinchuk J.E. Kargman S.L. Oshima H. Hancock B. Kwong E. Trzaskos J.M. Evans J.F. Taketo M.M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996 87 5 803 809 10.1016/S0092‑8674(00)81988‑1 8945508
    [Google Scholar]
  78. Totzke G. Schulze-Osthoff K. Jänicke R.U. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 2003 22 39 8021 8030 10.1038/sj.onc.1206837 12970750
    [Google Scholar]
  79. Kern M.A. Haugg A.M. Koch A.F. Schilling T. Breuhahn K. Walczak H. Fleischer B. Trautwein C. Michalski C. Schulze-Bergkamen H. Friess H. Stremmel W. Krammer P.H. Schirmacher P. Müller M. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 2006 66 14 7059 7066 10.1158/0008‑5472.CAN‑06‑0325 16849551
    [Google Scholar]
  80. Tanwar L. Piplani H. Sanyal S. Anti-proliferative and apoptotic effects of etoricoxib, a selective COX-2 inhibitor, on 1,2-dimethylhydrazine dihydrochloride-induced colon carcinogenesis. Asian Pac. J. Cancer Prev. 2010 11 5 1329 1333 21198287
    [Google Scholar]
  81. Dennis Bilavendran J. Manikandan A. Thangarasu P. Sivakumar K. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments. Bioorg. Chem. 2020 94 103484 10.1016/j.bioorg.2019.103484 31796215
    [Google Scholar]
  82. Kaduševičius E. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int. J. Mol. Sci. 2021 22 12 6637 10.3390/ijms22126637 34205719
    [Google Scholar]
  83. Thun M.J. Henley S.J. Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 2002 94 4 252 266 10.1093/jnci/94.4.252 11854387
    [Google Scholar]
  84. Li S. Jiang M. Wang L. Yu S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed. Pharmacother. 2020 129 110389 10.1016/j.biopha.2020.110389 32540642
    [Google Scholar]
  85. Trifan O.C. Durham W.F. Salazar V.S. Horton J. Levine B.D. Zweifel B.S. Davis T.W. Masferrer J.L. Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res. 2002 62 20 5778 5784 12384538
    [Google Scholar]
  86. Li J. Hu X. Zhang H. Peng Y. Li S. Xiong Y. Jiang W. Wang Z. N -2-(phenylamino) benzamide derivatives as dual inhibitors of COX-2 and topo I deter gastrointestinal cancers via targeting inflammation and tumor progression. J. Med. Chem. 2022 65 15 10481 10505 10.1021/acs.jmedchem.2c00635 35868003
    [Google Scholar]
  87. Abdelazeem A.H. Gouda A.M. Omar H.A. Tolba M.F. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents. Bioorg. Chem. 2014 57 132 141 10.1016/j.bioorg.2014.10.001 25462989
    [Google Scholar]
  88. Ramos-Inza S. Ruberte A.C. Sanmartín C. Sharma A.K. Plano D. NSAIDs: Old acquaintance in the pipeline for cancer treatment and prevention─structural modulation, mechanisms of action, and bright future. J. Med. Chem. 2021 64 22 16380 16421 10.1021/acs.jmedchem.1c01460 34784195
    [Google Scholar]
  89. Wang Z. Fan Z. Jiang H. Qu J. Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal transition in human lung cancer cells via activating MEK-ERK signaling. Carcinogenesis 2013 34 3 638 646 10.1093/carcin/bgs367 23172668
    [Google Scholar]
  90. Weber A. Casini A. Heine A. Kuhn D. Supuran C.T. Scozzafava A. Klebe G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004 47 3 550 557 10.1021/jm030912m 14736236
    [Google Scholar]
  91. Nocentini A. Supuran C.T. Chapter 17 - Carbonic anhydrase inhibitors for the treatment of neuropathic pain and arthritis. Carbonic Anhydrases Academic Press 2019 367 386 10.1016/B978‑0‑12‑816476‑1.00017‑4
    [Google Scholar]
  92. Qiu H.Y. Wang P.F. Li Z. Ma J.T. Wang X.M. Yang Y.H. Zhu H.L. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol. Res. 2016 104 86 96 10.1016/j.phrs.2015.12.025 26723906
    [Google Scholar]
  93. Lu X.Y. Wang Z.C. Wei T. Yan X.Q. Wang P.F. Zhu H.L. Design, synthesis and evaluation of benzenesulfonamide-substituted 1,5-diarylpyrazoles containing phenylacetohydrazide derivatives as COX-1/COX-2 agents against solid tumors. RSC Advances 2016 6 27 22917 22935 10.1039/C6RA02168A
    [Google Scholar]
  94. Raji I. Yadudu F. Janeira E. Fathi S. Szymczak L. Kornacki J.R. Komatsu K. Li J.D. Mrksich M. Oyelere A.K. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg. Med. Chem. 2017 25 3 1202 1218 10.1016/j.bmc.2016.12.032 28057407
    [Google Scholar]
  95. Guerra Faura G. Wu B. Oyelere A.K. France S. Synthetic methodology-enabled discovery of a tunable indole template for COX-1 inhibition and anti-cancer activity. Bioorg. Med. Chem. 2022 57 116633 10.1016/j.bmc.2022.116633 35134642
    [Google Scholar]
  96. Vahedpour T. Kaur J. Hemmati S. Hamzeh-Mivehroud M. Alizadeh A.A. Wuest F. Dastmalchi S. Synthesis and biological evaluation of 1,3,5‐trisubstituted 2‐pyrazolines as novel cyclooxygenase‐2 inhibitors with antiproliferative activity. Chem. Biodivers. 2021 18 3 e2000832 10.1002/cbdv.202000832 33620122
    [Google Scholar]
  97. Gouda A.M. Abdelazeem A.H. Omar H.A. Abdalla A.N. Abourehab M.A.S. Ali H.I. Pyrrolizines: Design, synthesis, anticancer evaluation and investigation of the potential mechanism of action. Bioorg. Med. Chem. 2017 25 20 5637 5651 10.1016/j.bmc.2017.08.039 28916158
    [Google Scholar]
  98. Gouda A.M. Abdelazeem A.H. Abdalla A.N. Ahmed M. Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities. Acta Pharm. 2018 68 3 251 273 10.2478/acph‑2018‑0026 31259695
    [Google Scholar]
  99. Shawky A.M. Abourehab M.A.S. Abdalla A.N. Gouda A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem. 2020 185 111780 10.1016/j.ejmech.2019.111780 31655429
    [Google Scholar]
  100. Lamie P.F. Philoppes J.N. Rárová L. Design, synthesis, and biological evaluation of novel 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4 H )‐imidazolone derivatives as cytotoxic agents and COX‐2/LOX inhibitors. Arch. Pharm. (Weinheim) 2018 351 3-4 1700311 10.1002/ardp.201700311 29400411
    [Google Scholar]
  101. El-Husseiny W.M. El-Sayed M.A.A. Abdel-Aziz N.I. El-Azab A.S. Asiri Y.A. Abdel-Aziz A.A.M. Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur. J. Med. Chem. 2018 158 134 143 10.1016/j.ejmech.2018.09.007 30216848
    [Google Scholar]
  102. El-Sayed N.A. Nour M.S. Salem M.A. Arafa R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem. 2019 183 111693 10.1016/j.ejmech.2019.111693 31539778
    [Google Scholar]
  103. Akhtar W. Nainwal L.M. Khan M.F. Verma G. Chashoo G. Bakht A. Iqbal M. Akhtar M. Shaquiquzzaman M. Alam M.M. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents. J. Fluor. Chem. 2020 236 109579 10.1016/j.jfluchem.2020.109579
    [Google Scholar]
  104. Akhtar W. Nainwal L.M. Kaushik S.K. Akhtar M. Shaquiquzzaman M. Almalki F. Saifullah K. Marella A. Alam M.M. Methylene‐bearing sulfur‐containing cyanopyrimidine derivatives for treatment of cancer: Part‐II. Arch. Pharm. (Weinheim) 2020 353 5 e1900333 10.1002/ardp.201900333 32115728
    [Google Scholar]
  105. AL-Ghulikah H.A. El-Sebaey S.A. Bass A.K.A El-Zoghbi M.S. New pyrimidine-5-carbonitriles as COX-2 inhibitors: Design, synthesis, anticancer screening, molecular docking, and in silico ADME profile studies. Molecules 2022 27 21 7485 10.3390/molecules27217485
    [Google Scholar]
  106. Şenkardeş S. Han M.İ. Kulabaş N. Abbak M. Çevik Ö. Küçükgüzel İ. Küçükgüzel Ş.G. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors. Mol. Divers. 2020 24 3 673 689 10.1007/s11030‑019‑09974‑z 31302853
    [Google Scholar]
  107. Hawash M. Jaradat N. Hameedi S. Mousa A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem. 2020 14 1 54 10.1186/s13065‑020‑00706‑1 32944715
    [Google Scholar]
  108. Li J. Hu X. Luo T. Lu Y. Feng Y. Zhang H. Liu D. Fan X. Wang Y. Jiang L. Wang Y. Hao X. Shi T. Wang Z. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. Eur. J. Med. Chem. 2021 226 113817 10.1016/j.ejmech.2021.113817 34537445
    [Google Scholar]
  109. Sakr A. Rezq S. Ibrahim S.M. Soliman E. Baraka M.M. Romero D.G. Kothayer H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: Anti-inflammatory, analgesic and anticancer activities. J. Enzyme Inhib. Med. Chem. 2021 36 1 1810 1828 10.1080/14756366.2021.1956912 34338135
    [Google Scholar]
  110. Musa A. Mostafa E.M. Bukhari S.N.A. Alotaibi N.H. El-Ghorab A.H. Farouk A. Nayl A.A. Ghoneim M.M. Abdelgawad M.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones. Molecules 2022 27 4 1158 10.3390/molecules27041158 35208952
    [Google Scholar]
  111. El-Barghouthi M.I. Hasan A.S. Al-Awaida W. Al-Ameer H.J. Kaur J. Hayashibara K.J. Fleming J. Waknin J. Hayashibara S. Slewa M. Hamzeh S.M. Bodoor K. McLoud J.D. Wuest F. Jawabrah Al Hourani B. Novel therapeutic heterocycles as selective cyclooxygenase-2 inhibitors and anti-cancer agents: Synthesis, in vitro bioassay screenings, and molecular docking studies. J. Mol. Struct. 2022 1263 133141 10.1016/j.molstruc.2022.133141
    [Google Scholar]
  112. Hassan A.Y. Abou-Amra E.S. El-Sebaey S.A. Design and synthesis of new series of chiral pyrimidine and purine analogs as COX-2 inhibitors: Anticancer screening, molecular modeling, and in silico studies. J. Mol. Struct. 2023 1278 134930 10.1016/j.molstruc.2023.134930
    [Google Scholar]
  113. Zhu M. Wang X. Zhou Y. Li M. Wang Y. Wang Y. Li T. Song S.Y. Zhang B. Hezam K. Zhang J. Breast tumor‐targeted drug delivery via polymer nanocarriers: Endogenous and exogenous strategies. J. Appl. Polym. Sci. 2023 140 31 e54227 10.1002/app.54227
    [Google Scholar]
  114. Dai J. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov. Today 2024 29 7 103981 10.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266333495241011063253
Loading
/content/journals/ctmc/10.2174/0115680266333495241011063253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test