Skip to content
2000
image of Identification of Novel Tyrosinase Inhibitors with Nanomolar Potency Using Virtual Screening Approaches

Abstract

Introduction

Hyperpigmentation disorders are caused by excess production of the pigment melanin, catalyzed by the enzyme tyrosinase. Novel tyrosinase inhibitors are needed as therapeutic agents to treat these conditions.

Method

To discover new inhibitors, we performed a virtual screening of the ZINC20 library containing 1.4 billion compounds. An initial filter for drug-likeness, ADMET properties, and synthetic accessibility reduced the library to 10,217 hits. Quantitative structure-activity relationship (QSAR) modeling of this subset predicted nanomolar inhibitory potency for several chemical scaffolds. Comparative molecular docking studies and rigorous binding energy calculations further prioritized four cysteine-containing dipeptide compounds based on predicted strong binding affinity and mode to tyrosinase.

Results

Microsecond-long molecular dynamics simulations provided additional atomistic insights into the stability of inhibitor-enzyme binding interactions. This integrated computational workflow effectively sampled an extremely large chemical space to discover four novel tyrosinase inhibitors with half-maximal inhibitory concentration values below 10 nM.

Conclusion

Overall, this demonstrates the power of virtual screening and multi-faceted computational techniques to accelerate the discovery of potent bioactive ligands from massive compound libraries by efficiently sampling chemical space.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266333084240918051716
2024-10-02
2024-12-03
Loading full text...

Full text loading...

References

  1. Hearing V.J. Jiménez M. Mammalian tyrosinase — The critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 1987 19 12 1141 1147 10.1016/0020‑711X(87)90095‑4 3125075
    [Google Scholar]
  2. Lin J.Y. Fisher D.E. Melanocyte biology and skin pigmentation. Nature 2007 445 7130 843 850 10.1038/nature05660 17314970
    [Google Scholar]
  3. Kumari S. Thng S. Verma N. Gautam H. Melanogenesis Inhibitors. Acta Derm. Venereol. 2018 98 10 924 931 10.2340/00015555‑3002 29972222
    [Google Scholar]
  4. Pillaiyar T. Manickam M. Namasivayam V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2017 32 1 403 425 10.1080/14756366.2016.1256882 28097901
    [Google Scholar]
  5. Casanola-Martin G. Le-Thi-Thu H. Marrero-Ponce Y. Castillo-Garit J. Torrens F. Rescigno A. Abad C. Khan M. Tyrosinase enzyme: 1. An overview on a pharmacological target. Curr. Top. Med. Chem. 2014 14 12 1494 1501 10.2174/1568026614666140523121427 24853560
    [Google Scholar]
  6. Neves B.J. Dantas R.F. Senger M.R. Melo-Filho C.C. Valente W.C.G. de Almeida A.C.M. Rezende-Neto J.M. Lima E.F.C. Paveley R. Furnham N. Muratov E. Kamentsky L. Carpenter A.E. Braga R.C. Silva-Junior F.P. Andrade C.H. Discovery of new anti-schistosomal hits by integration of QSAR-based virtual screening and high content screening. J. Med. Chem. 2016 59 15 7075 7088 10.1021/acs.jmedchem.5b02038 27396732
    [Google Scholar]
  7. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  8. Irwin J.J. Tang K.G. Young J. Dandarchuluun C. Wong B.R. Khurelbaatar M. Moroz Y.S. Mayfield J. Sayle R.A. ZINC20 — A free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 2020 60 12 6065 6073 10.1021/acs.jcim.0c00675 33118813
    [Google Scholar]
  9. Jia C.Y. Li J.Y. Hao G.F. Yang G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today 2020 25 1 248 258 10.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  10. Pollastri M.P. Overview on the rule of five. Current Protocols in Pharmacology Wiley 2010 10.1002/0471141755.ph0912s49
    [Google Scholar]
  11. Norinder U. Bergström C.A.S. Prediction of ADMET properties. ChemMedChem 2006 1 9 920 937 10.1002/cmdc.200600155
    [Google Scholar]
  12. Bhal S.K. Kassam K. Peirson I.G. Pearl G.M. The Rule of Five Revisited: Applying log D in place of log P in drug-likeness filters. Mol. Pharmaceutics 2007 4 4 556 560 10.1002/cmdc.200600155
    [Google Scholar]
  13. Baell J.B. Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010 53 7 2719 2740 10.1021/jm901137j 20131845
    [Google Scholar]
  14. Patil V.M. Gupta S.P. Masand M. Balasubramanian K. Experimental and computational models to understand protein-ligand, metal-ligand and metal-DNA interactions pertinent to targeted cancer and other therapies. Eur. J. Med. Chem. 2024 10 2772 4174 10.1016/j.ejmcr.2024.100133
    [Google Scholar]
  15. Karplus M. Petsko G.A. Molecular dynamics simulations in biology. Nature 1990 347 6294 631 639 10.1038/347631a0 2215695
    [Google Scholar]
  16. Li X. Pan F. Yang Z. Gao F. Li J. Zhang F. Construction of QSAR model based on cysteine-containing dipeptides and screening of natural tyrosinase inhibitors. J. Food Biochem. 2022 46 10 e14338 10.1111/jfbc.14338
    [Google Scholar]
  17. Cheng A. Merz K.M. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. J. Med. Chem. 2003 46 17 3572 3580 10.1021/jm020266b 12904062
    [Google Scholar]
  18. Egan W.J. Lauri G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002 54 3 273 289 10.1016/S0169‑409X(02)00004‑2 11922948
    [Google Scholar]
  19. Egan W.J. Merz K.M. Jr Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000 43 21 3867 3877 10.1021/jm000292e 11052792
    [Google Scholar]
  20. Susnow R.G. Dixon S.L. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J. Chem. Inf. Comput. Sci. 2003 43 4 1308 1315 10.1021/ci030283p 12870924
    [Google Scholar]
  21. Cheng A. Dixon S.L. In silico models for the prediction of dose-dependent human hepatotoxicity. J. Comput. Aided Mol. Des. 2003 17 12 811 823 10.1023/B:JCAM.0000021834.50768.c6 15124930
    [Google Scholar]
  22. Votano J.R. Parham M. Hall L.M. Hall L.H. Kier L.B. Oloff S. Tropsha A. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J. Med. Chem. 2006 49 24 7169 7181 10.1021/jm051245v 17125269
    [Google Scholar]
  23. Bai Q. Tan S. Xu T. Liu H. Huang J. Yao X. MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform. 2021 22 3 bbaa161 10.1093/bib/bbaa161 32778891
    [Google Scholar]
  24. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  25. Conway P. Tyka M.D. DiMaio F. Konerding D.E. Baker D. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci. 2014 23 1 47 55 10.1002/pro.2389 24265211
    [Google Scholar]
  26. Latour R.A. Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review). Biointerphases 2008 3 3 FC2 FC12 10.1116/1.2965132 19809597
    [Google Scholar]
  27. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  28. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  29. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035 15116359
    [Google Scholar]
  30. Pan F. Li J. Zhao L. Tuersuntuoheti T. Mehmood A. Zhou N. Hao S. Wang C. Guo Y. Lin W. A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O ‐glucoside and major proteins in cow’s milk. J. Food Biochem. 2021 45 1 e13570 10.1111/jfbc.13570 33222207
    [Google Scholar]
  31. Diller D.J. Merz K.M. Jr High throughput docking for library design and library prioritization. Proteins 2001 43 2 113 124 11276081
    [Google Scholar]
  32. Diller D.J. Li R. Kinases, homology models, and high throughput docking. J. Med. Chem. 2003 46 22 4638 4647 10.1021/jm020503a 14561083
    [Google Scholar]
  33. Rao S.N. Head M.S. Kulkarni A. LaLonde J.M. Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model. 2007 47 6 2159 2171 10.1021/ci6004299 17985863
    [Google Scholar]
  34. Wu G. Robertson D.H. Brooks C.L. III Vieth M. Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm. J. Comput. Chem. 2003 24 13 1549 1562 10.1002/jcc.10306 12925999
    [Google Scholar]
  35. Wu H. Liu Y. Guo M. Xie J. Jiang X. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme. J. Food Sci. 2014 79 9 C1635 C1642 10.1111/1750‑3841.12559 25154376
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266333084240918051716
Loading
/content/journals/ctmc/10.2174/0115680266333084240918051716
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: molecular docking ; QSAR ; Tyrosinase ; molecular dynamics simulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test