Skip to content
2000
image of Therapeutic Potential of Simvastatin: Cellular Mechanism, Binding Energetics, and Resistance Developments

Abstract

Statins are a class of hypolipidemic agents that have been shown to promote osteogenic differentiation through enhanced alveolar bone recovery, inserted osseointegration, and cartilage regeneration. This review uses Molecular Docking (MD) simulations and additional Computer-Aided Drug Design (CADD) methods to present the state of the art in statin therapy. Furthermore, several studies have shown that factors such as limited overall absorption, metabolism in the first pass, and systemic side effects are among those that affect the oral administration of statins. In addition, these variables include susceptibility to efflux mechanisms, drug permeability, dissolution percentage, aqueous solubility, initial metabolism, and pre-systemic metabolism. Additionally examined are the pharmacokinetics of the statin and mechanisms of action. As a result of the numerous problems associated with the consumption of statins, including their low total bioavailability, first-pass metabolism, low aqueous solubility, and systemic adverse reactions, a non-oral mode of administration was looked into for this crucial and primary class of pharmacokinetic agents. However, to optimize bioavailability and minimize side effects, more research is required.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266327892241223052456
2025-01-30
2025-06-21
Loading full text...

Full text loading...

References

  1. Cziraky M.J. Watson K.E. Talbert R.L. Targeting low HDL-cholesterol to decrease residual cardiovascular risk in the managed care setting. J. Manag. Care Pharm. 2008 14 8 Supp A Suppl. 1 31 10.18553/jmcp.2008.14.S8‑A.1 19891279
    [Google Scholar]
  2. Shitara Y. Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol. Ther. 2006 112 1 71 105 10.1016/j.pharmthera.2006.03.003 16714062
    [Google Scholar]
  3. McTaggart F. Buckett L. Davidson R. Holdgate G. McCormick A. Schneck D. Smith G. Warwick M. Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy- 3-methylglutaryl coenzyme A reductase inhibitor11CRESTOR is a trademark, the property of AstraZeneca PLC. Research discussed in this article was supported by AstraZeneca. Am. J. Cardiol. 2001 87 5 28 32 10.1016/S0002‑9149(01)01454‑0 11256847
    [Google Scholar]
  4. Liao J.K. Laufs U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005 45 1 89 118 10.1146/annurev.pharmtox.45.120403.095748 15822172
    [Google Scholar]
  5. Parihar S.P. Guler R. Lang D.M. Suzuki H. Marais A.D. Brombacher F. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape. PLoS One 2013 8 9 e75490 10.1371/journal.pone.0075490 24086542
    [Google Scholar]
  6. Parihar S.P. Guler R. Khutlang R. Lang D.M. Hurdayal R. Mhlanga M.M. Suzuki H. Marais A.D. Brombacher F. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis. 2014 209 5 754 763 10.1093/infdis/jit550 24133190
    [Google Scholar]
  7. Janda S. Young A. FitzGerald J.M. Etminan M. Swiston J. The effect of statins on mortality from severe infections and sepsis: A systematic review and meta-analysis. J. Crit. Care 2010 25 4 656.e7 656.e22 10.1016/j.jcrc.2010.02.013 20413251
    [Google Scholar]
  8. Björkhem-Bergman L. Bergman P. Andersson J. Lindh J.D. Statin treatment and mortality in bacterial infections--A systematic review and meta-analysis. PLoS One 2010 5 5 e10702 10.1371/journal.pone.0010702 20502712
    [Google Scholar]
  9. Rohilla A. Rohilla S. Kumar A. Khan M.U. Deep A. Pleiotropic effects of statins: A boulevard to cardioprotection. Arab. J. Chem. 2016 9 S21 S27 10.1016/j.arabjc.2011.06.025
    [Google Scholar]
  10. Alizadeh J. Zeki A.A. Mirzaei N. Tewary S. Rezaei Moghadam A. Glogowska A. Nagakannan P. Eftekharpour E. Wiechec E. Gordon J.W. Xu F.Y. Field J.T. Yoneda K.Y. Kenyon N.J. Hashemi M. Hatch G.M. Hombach-Klonisch S. Klonisch T. Ghavami S. Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci. Rep. 2017 7 1 44841 10.1038/srep44841 28344327
    [Google Scholar]
  11. Wang C.Z. Wang Y.H. Lin C.W. Lee T.C. Fu Y.C. Ho M.L. Wang C.K. Combination of a bioceramic scaffold and simvastatin nanoparticles as a synthetic alternative to autologous bone grafting. Int. J. Mol. Sci. 2018 19 12 4099 10.3390/ijms19124099 30567319
    [Google Scholar]
  12. Xu R. Shi G. Xu L. Gu Q. Fu Y. Zhang P. Cheng J. Jiang H. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity. J. Tissue Eng. Regen. Med. 2018 12 5 1209 1219 10.1002/term.2652 29498229
    [Google Scholar]
  13. Xu L. Sun X. Zhu G. Mao J. Baban B. Qin X. Local delivery of simvastatin maintains tooth anchorage during mechanical tooth moving via anti‐inflammation property and AMPK/MAPK/NF‐kB inhibition. J. Cell. Mol. Med. 2021 25 1 333 344 10.1111/jcmm.16058 33314684
    [Google Scholar]
  14. Zhu J. Zhang C. Jia J. Wang H. Leng H. Xu Y. Wu C. Zhang Q. Song C. Osteogenic effects in a rat osteoporosis model and femur defect model by simvastatin microcrystals. Ann. N. Y. Acad. Sci. 2021 1487 1 31 42 10.1111/nyas.14513 33098131
    [Google Scholar]
  15. Kato S. Smalley S. Sadarangani A. Chen-Lin K. Oliva B. Brañes J. Carvajal J. Gejman R. Owen G.I. Cuello M. Lipophilic but not hydrophilic statins selectively induce cell death in gynecological cancers expressing high levels of HMGCoA reductase. J. Cell. Mol. Med. 2009 14 5 1180 1193 10.1111/j.1582‑4934.2009.00771.x 19432822
    [Google Scholar]
  16. Gazzerro P. Proto M.C. Gangemi G. Malfitano A.M. Ciaglia E. Pisanti S. Santoro A. Laezza C. Bifulco M. Pharmacological actions of statins: A critical appraisal in the management of cancer. Pharmacol. Rev. 2012 64 1 102 146 10.1124/pr.111.004994 22106090
    [Google Scholar]
  17. Vogel T.J. Goodman M.T. Li A.J. Jeon C.Y. Statin treatment is associated with survival in a nationally representative population of elderly women with epithelial ovarian cancer. Gynecol. Oncol. 2017 146 2 340 345 10.1016/j.ygyno.2017.05.009 28596017
    [Google Scholar]
  18. Verdoodt F. Kjær Hansen M. Kjaer S.K. Pottegård A. Friis S. Dehlendorff C. Statin use and mortality among ovarian cancer patients: A population‐based cohort study. Int. J. Cancer 2017 141 2 279 286 10.1002/ijc.30738 28411390
    [Google Scholar]
  19. Urpilainen E. Marttila M. Hautakoski A. Arffman M. Sund R. Ilanne-Parikka P. Arima R. Kangaskokko J. Puistola U. Hinkula M. Läärä E. Prognosis of ovarian cancer in women with type 2 diabetes using metformin and other forms of antidiabetic medication or statins: A retrospective cohort study. BMC Cancer 2018 18 1 767 10.1186/s12885‑018‑4676‑z 30055585
    [Google Scholar]
  20. Nielsen S.F. Nordestgaard B.G. Bojesen S.E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 2013 368 6 576 577 10.1056/NEJMoa1201735 23388012
    [Google Scholar]
  21. Harding B.N. Delaney J.A. Urban R.R. Weiss N.S. Use of statin medications following diagnosis in relation to survival among women with ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 2019 28 7 1127 1133 10.1158/1055‑9965.EPI‑18‑1194 31064757
    [Google Scholar]
  22. Majidi A. Na R. Dixon-Suen S. Jordan S.J. Webb P.M. Common medications and survival in women with ovarian cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2020 157 3 678 685 10.1016/j.ygyno.2020.03.028 32317171
    [Google Scholar]
  23. Jones P.J. Regulation of cholesterol biosynthesis by diet in humans. Am. J. Clin. Nutr. 1997 66 2 438 446 10.1093/ajcn/66.2.438 9250128
    [Google Scholar]
  24. Luchoomun J. Zhou Z. Bakillah A. Jamil H. Hussain M.M. Assembly and secretion of VLDL in nondifferentiated Caco-2 cells stably transfected with human recombinant ApoB48 cDNA. Arterioscler. Thromb. Vasc. Biol. 1997 17 11 2955 2963 10.1161/01.ATV.17.11.2955 9409282
    [Google Scholar]
  25. Cooper A.D. Hepatic uptake of chylomicron remnants. J. Lipid Res. 1997 38 11 2173 2192 10.1016/S0022‑2275(20)34932‑4 9392416
    [Google Scholar]
  26. Zanoni P. Velagapudi S. Yalcinkaya M. Rohrer L. von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018 275 273 295 10.1016/j.atherosclerosis.2018.06.881 29980055
    [Google Scholar]
  27. Dubland J.A. Francis G.A. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism. Front. Cell Dev. Biol. 2015 3 3 10.3389/fcell.2015.00003 25699256
    [Google Scholar]
  28. Li F. Zhang H. Lysosomal acid lipase in lipid metabolism and beyond. Arterioscler. Thromb. Vasc. Biol. 2019 39 5 850 856 10.1161/ATVBAHA.119.312136 30866656
    [Google Scholar]
  29. Genaro-Mattos T.C. Anderson A. Allen L.B. Korade Z. Mirnics K. Cholesterol biosynthesis and uptake in developing neurons. ACS Chem. Neurosci. 2019 10 8 3671 3681 10.1021/acschemneuro.9b00248 31244054
    [Google Scholar]
  30. Vuu Y.M. Roberts C.T. Rastegar M. MeCP2 is an epigenetic factor that links DNA methylation with brain metabolism. Int. J. Mol. Sci. 2023 24 4 4218 10.3390/ijms24044218 36835623
    [Google Scholar]
  31. Tsukamoto K. Tangirala R.K. Chun S. Usher D. Puré E. Rader D.J. Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice. Mol. Ther. 2000 1 2 189 194 10.1006/mthe.2000.0028 10933930
    [Google Scholar]
  32. Johnson L.A. Olsen R.H.J. Merkens L.S. DeBarber A. Steiner R.D. Sullivan P.M. Maeda N. Raber J. Apolipoprotein E–low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner. Neurobiol. Dis. 2014 64 150 162 10.1016/j.nbd.2013.12.016 24412220
    [Google Scholar]
  33. Cuchillo-Ibañez I. Lennol M.P. Escamilla S. Mata-Balaguer T. Valverde-Vozmediano L. Lopez-Font I. Ferrer I. Sáez-Valero J. The apolipoprotein receptor LRP3 compromises APP levels. Alzheimers Res. Ther. 2021 13 1 181 10.1186/s13195‑021‑00921‑5 34727970
    [Google Scholar]
  34. Beckwitt C.H. Brufsky A. Oltvai Z.N. Wells A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res. 2018 20 1 144 10.1186/s13058‑018‑1066‑z 30458856
    [Google Scholar]
  35. Longo J. van Leeuwen J.E. Elbaz M. Branchard E. Penn L.Z. Statins as anticancer agents in the era of precision medicine. Clin. Cancer Res. 2020 26 22 5791 5800 10.1158/1078‑0432.CCR‑20‑1967 32887721
    [Google Scholar]
  36. Mayengbam S.S. Singh A. Pillai A.D. Bhat M.K. Influence of cholesterol on cancer progression and therapy. Transl. Oncol. 2021 14 6 101043 10.1016/j.tranon.2021.101043 33751965
    [Google Scholar]
  37. Kamio K. Liu X.D. Sugiura H. Togo S. Kawasaki S. Wang X. Ahn Y. Hogaboam C. Rennard S.I. Statins inhibit matrix metalloproteinase release from human lung fibroblasts. Eur. Respir. J. 2010 35 3 637 646 10.1183/09031936.00134707 19797126
    [Google Scholar]
  38. Massaro M. Zampolli A. Scoditti E. Carluccio M.A. Storelli C. Distante A. De Caterina R. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: Anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc. Res. 2010 86 2 311 320 10.1093/cvr/cvp375 19946014
    [Google Scholar]
  39. López-Otín C. Hunter T. The regulatory crosstalk between kinases and proteases in cancer. Nat. Rev. Cancer 2010 10 4 278 292 10.1038/nrc2823 20300104
    [Google Scholar]
  40. Provenzano M. Andreucci M. Garofalo C. Faga T. Michael A. Ielapi N. Grande R. Sapienza P. de Franciscis S. Mastroroberto P. Serra R. The association of matrix metalloproteinases with chronic kidney disease and peripheral vascular disease: A light at the end of the tunnel? Biomolecules 2020 10 1 154 10.3390/biom10010154 31963569
    [Google Scholar]
  41. López-Álvarez M. López-Puente V. Rodríguez-Valencia C. Angelomé P.C. Liz-Marzán L.M. Serra J. Pastoriza-Santos I. González P. Osteogenic effects of simvastatin-loaded mesoporous titania thin films. Biomed. Mater. 2018 13 2 025017 10.1088/1748‑605X/aa95f1 29068320
    [Google Scholar]
  42. Duman N. Duman R. Tosun M. Akıcı M. Göksel E. Gökçe B. Alagöz O. Topical folinic acid enhances wound healing in rat model. Adv. Med. Sci. 2018 63 2 347 352 10.1016/j.advms.2018.04.011 30092503
    [Google Scholar]
  43. Yamashita M. Otsuka F. Mukai T. Yamanaka R. Otani H. Matsumoto Y. Nakamura E. Takano M. Sada K. Makino H. Simvastatin inhibits osteoclast differentiation induced by bone morphogenetic protein-2 and RANKL through regulating MAPK, AKT and Src signaling. Regul. Pept. 2010 162 1-3 99 108 10.1016/j.regpep.2010.03.003 20346376
    [Google Scholar]
  44. Sonobe M. Hattori K. Tomita N. Yoshikawa T. Aoki H. Takakura Y. Suguro T. Stimulatory effects of statins on bone marrow-derived mesenchymal stem cells. Study of a new therapeutic agent for fracture. Biomed. Mater. Eng. 2005 15 4 261 267 16010034
    [Google Scholar]
  45. Maeda T. Matsunuma A. Kurahashi I. Yanagawa T. Yoshida H. Horiuchi N. Induction of osteoblast differentiation indices by statins in MC3T3‐E1 cells. J. Cell. Biochem. 2004 92 3 458 471 10.1002/jcb.20074 15156558
    [Google Scholar]
  46. Grasser W.A. Baumann A.P. Petras S.F. Harwood H.J. Jr Devalaraja R. Renkiewicz R. Baragi V. Thompson D.D. Paraklar V.M. Regulation of osteoclast differentiation by statins. J. Musculoskelet. Neuronal Interact. 2003 3 1 53 62 15758366
    [Google Scholar]
  47. Park J. Matralis A.N. Berghuis A.M. Tsantrizos Y.S. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem. 2014 2 50 10.3389/fchem.2014.00050 25101260
    [Google Scholar]
  48. Wong W.W-L. Dimitroulakos J. Minden M.D. Penn L.Z. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 2002 16 4 508 519 10.1038/sj.leu.2402476 11960327
    [Google Scholar]
  49. Björkhem-Bergman L. Acimovic J. Torndal U.B. Parini P. Eriksson L.C. Lovastatin prevents carcinogenesis in a rat model for liver cancer. Effects of ubiquinone supplementation. Anticancer Res. 2010 30 4 1105 1112 20530415
    [Google Scholar]
  50. Atil B. Berger-Sieczkowski E. Bardy J. Werner M. Hohenegger M. In vitro and in vivo downregulation of the ATP binding cassette transporter B1 by the HMG-CoA reductase inhibitor simvastatin. Naunyn Schmiedebergs Arch. Pharmacol. 2016 389 1 17 32 10.1007/s00210‑015‑1169‑3 26319048
    [Google Scholar]
  51. Martínez-Botas J. Ferruelo A.J. Suárez Y. Fernández C. Gómez-Coronado D. Lasunción M.A. Dose-dependent effects of lovastatin on cell cycle progression. Distinct requirement of cholesterol and non-sterol mevalonate derivatives. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2001 1532 3 185 194 10.1016/S1388‑1981(01)00125‑1 11470239
    [Google Scholar]
  52. Tsubaki M. Mashimo K. Takeda T. Kino T. Fujita A. Itoh T. Imano M. Sakaguchi K. Satou T. Nishida S. Statins inhibited the MIP-1α expression via inhibition of Ras/ERK and Ras/Akt pathways in myeloma cells. Biomed. Pharmacother. 2016 78 23 29 10.1016/j.biopha.2015.12.017 26898421
    [Google Scholar]
  53. Tsubaki M. Satou T. Itoh T. Imano M. Yanae M. Kato C. Takagoshi R. Komai M. Nishida S. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol. Cell. Endocrinol. 2012 361 1-2 219 231 10.1016/j.mce.2012.05.002 22579611
    [Google Scholar]
  54. Yanae M. Tsubaki M. Satou T. Itoh T. Imano M. Yamazoe Y. Nishida S. Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma. J. Exp. Clin. Cancer Res. 2011 30 1 74 10.1186/1756‑9966‑30‑74 21831290
    [Google Scholar]
  55. Nishida S. Matsuoka H. Tsubaki M. Tanimori Y. Yanae M. Fujii Y. Iwaki M. Mevastatin induces apoptosis in HL60 cells dependently on decrease in phosphorylated ERK. Mol. Cell. Biochem. 2005 269 1 109 114 10.1007/s11010‑005‑3086‑0 15786722
    [Google Scholar]
  56. Tsubaki M. Itoh T. Satou T. Imano M. Komai M. Ogawa N. Mukai J. Nishida S. Nitrogen-containing bisphosphonates induce apoptosis of hematopoietic tumor cells via inhibition of Ras signaling pathways and Bim-mediated activation of the intrinsic apoptotic pathway. Biochem. Pharmacol. 2013 85 2 163 172 10.1016/j.bcp.2012.10.009 23085435
    [Google Scholar]
  57. Tsubaki M. Fujiwara D. Takeda T. Kino T. Tomonari Y. Itoh T. Imano M. Satou T. Sakaguchi K. Nishida S. The sensitivity of head and neck carcinoma cells to statins is related to the expression of their Ras expression status, and statin‐induced apoptosis is mediated via suppression of the Ras/ ERK and Ras/ mTOR pathways. Clin. Exp. Pharmacol. Physiol. 2017 44 2 222 234 10.1111/1440‑1681.12690 27805296
    [Google Scholar]
  58. Efuet E.T. Keyomarsi K. Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasome. Cancer Res. 2006 66 2 1040 1051 10.1158/0008‑5472.CAN‑05‑3416 16424040
    [Google Scholar]
  59. Fan J. Im C.S. Cui Z.K. Guo M. Bezouglaia O. Fartash A. Lee J.Y. Nguyen J. Wu B.M. Aghaloo T. Lee M. Delivery of phenamil enhances BMP-2-induced osteogenic differentiation of adipose-derived stem cells and bone formation in calvarial defects. Tissue Eng. Part A 2015 21 13-14 2053 2065 10.1089/ten.tea.2014.0489 25869476
    [Google Scholar]
  60. Zhou N. Li Q. Lin X. Hu N. Liao J.Y. Lin L.B. Zhao C. Hu Z.M. Liang X. Xu W. Chen H. Huang W. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016 366 1 101 111 10.1007/s00441‑016‑2403‑0 27083447
    [Google Scholar]
  61. Sieker J.T. Kunz M. Weißenberger M. Gilbert F. Frey S. Rudert M. Steinert A.F. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage 2015 23 3 433 442 10.1016/j.joca.2014.11.008 25463442
    [Google Scholar]
  62. Gelse K. von der Mark K. Aigner T. Park J. Schneider H. Articular cartilage repair by gene therapy using growth factor–producing mesenchymal cells. Arthritis Rheum. 2003 48 2 430 441 10.1002/art.10759 12571853
    [Google Scholar]
  63. Oryan A. Kamali A. Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J. Control. Release 2015 215 12 24 10.1016/j.jconrel.2015.07.022 26226345
    [Google Scholar]
  64. Pathania S. Bhatia R. Baldi A. Singh R. Rawal R.K. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed. Pharmacother. 2018 105 53 65 10.1016/j.biopha.2018.05.117 29843045
    [Google Scholar]
  65. Ko H.H.T. Lareu R.R. Dix B.R. Hughes J.D. Statins: Antimicrobial resistance breakers or makers? PeerJ 2017 5 e3952 10.7717/peerj.3952 29085751
    [Google Scholar]
  66. Figueiredo E.P. Ribeiro J.M. Nishio E.K. Scandorieiro S. Costa A.F. Cardozo V.F. de Oliveira A.G. Durán N. Panagio L.A. Kobayashi R.K.T. Nakazato G. New approach for simvastatin as an antibacterial: Synergistic effect with bio-synthesized silver nanoparticles against multidrug-resistant bacteria. Int. J. Nanomedicine 2019 14 7975 7985 10.2147/IJN.S211756 31632012
    [Google Scholar]
  67. Fiegenbaum M. Dasilveira F. Vandersand C. Vandersand L. Ferreira M. Pires R. Hutz M. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. Ther. 2005 78 5 551 558 10.1016/j.clpt.2005.08.003 16321621
    [Google Scholar]
  68. Nguyen V.T.M. Barozzi I. Faronato M. Lombardo Y. Steel J.H. Patel N. Darbre P. Castellano L. Győrffy B. Woodley L. Meira A. Patten D.K. Vircillo V. Periyasamy M. Ali S. Frige G. Minucci S. Coombes R.C. Magnani L. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat. Commun. 2015 6 1 10044 10.1038/ncomms10044 26610607
    [Google Scholar]
  69. Guerra B. Recio C. Aranda-Tavío H. Guerra-Rodríguez M. García-Castellano J.M. Fernández-Pérez L. The mevalonate pathway, a metabolic target in cancer therapy. Front. Oncol. 2021 11 626971 10.3389/fonc.2021.626971 33718197
    [Google Scholar]
  70. Hirata R.D.C. Cerda A. Genvigir F.D.V. Hirata M.H. Pharmacogenetic implications in the management of metabolic diseases in Brazilian populations. Braz. J. Pharm. Sci. 2018 54 spe e01005 10.1590/s2175‑97902018000001005
    [Google Scholar]
  71. Arrigoni E. Del Re M. Fidilio L. Fogli S. Danesi R. Di Paolo A. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int. J. Mol. Sci. 2017 18 1 104 10.3390/ijms18010104 28067828
    [Google Scholar]
  72. Corsini A. Maggi F.M. Catapano A.L. Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol. Res. 1995 31 1 9 27 10.1016/1043‑6618(95)80042‑5 7784310
    [Google Scholar]
  73. Weitz-Schmidt G. Welzenbach K. Brinkmann V. Kamata T. Kallen J. Bruns C. Cottens S. Takada Y. Hommel U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med. 2001 7 6 687 692 10.1038/89058 11385505
    [Google Scholar]
  74. Weitz-Schmidt G. Statins as anti-inflammatory agents. Trends Pharmacol. Sci. 2002 23 10 482 487 10.1016/S0165‑6147(02)02077‑1 12368073
    [Google Scholar]
  75. Chapman M.J. Caslake M. Packard C. McTaggart F. New dimension of statin action on apoB atherogenicity. Clin. Cardiol. 2003 26 S1 Suppl. 1 7 10 10.1002/clc.4960261304 12539816
    [Google Scholar]
  76. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004 109 23_suppl_1 Suppl. 1 III39 III43 10.1161/01.CIR.0000131517.20177.5a 15198965
    [Google Scholar]
  77. Liao J.K. Beyond lipid lowering: The role of statins in vascular protection. Int. J. Cardiol. 2002 86 1 5 18 10.1016/S0167‑5273(02)00195‑X 12243846
    [Google Scholar]
  78. Libby P Aikawa M Schönbeck U. Cholesterol and atherosclerosis. Biochim. Biophys. Acta 2000 1529 1-3 299 309 10.1016/S1388‑1981(00)00161‑X
    [Google Scholar]
  79. Sica D.A. Gehr T.W.B. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and rhabdomyolysis: Considerations in the renal failure patient. Curr. Opin. Nephrol. Hypertens. 2002 11 2 123 133 10.1097/00041552‑200203000‑00001 11856903
    [Google Scholar]
  80. Graham D.J. Staffa J.A. Shatin D. Andrade S.E. Schech S.D. La Grenade L. Gurwitz J.H. Chan K.A. Goodman M.J. Platt R. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004 292 21 2585 2590 10.1001/jama.292.21.2585 15572716
    [Google Scholar]
  81. Istvan E.S. Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001 292 5519 1160 1164 10.1126/science.1059344 11349148
    [Google Scholar]
  82. Holdgate G.A. Ward W.H.J. McTaggart F. Molecular mechanism for inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase by rosuvastatin. Biochem. Soc. Trans. 2003 31 3 528 531 10.1042/bst0310528 12773150
    [Google Scholar]
  83. Carbonell T. Freire E. Binding thermodynamics of statins to HMG-CoA reductase. Biochemistry 2005 44 35 11741 11748 10.1021/bi050905v 16128575
    [Google Scholar]
  84. Corsini A. Bellosta S. Baetta R. Fumagalli R. Paoletti R. Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 1999 84 3 413 428 10.1016/S0163‑7258(99)00045‑5 10665838
    [Google Scholar]
  85. Vega S. Kang L.W. Velazquez-Campoy A. Kiso Y. Amzel L.M. Freire E. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV‐1 protease. Proteins 2004 55 3 594 602 10.1002/prot.20069 15103623
    [Google Scholar]
  86. Ohtaka H. Muzammil S. Schön A. Velazquez-Campoy A. Vega S. Freire E. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets. Int. J. Biochem. Cell Biol. 2004 36 9 1787 1799 10.1016/j.biocel.2004.02.021 15183345
    [Google Scholar]
  87. Cozzini P. Fornabaio M. Marabotti A. Abraham D.J. Kellogg G.E. Mozzarelli A. Free energy of ligand binding to protein: Evaluation of the contribution of water molecules by computational methods. Curr. Med. Chem. 2004 11 23 3093 3118 10.2174/0929867043363929 15579003
    [Google Scholar]
  88. Kukić P. Nielsen J.E. Electrostatics in proteins and protein-ligand complexes. Future Med. Chem. 2010 2 4 647 666 10.4155/fmc.10.6 21426012
    [Google Scholar]
  89. Lawrence C.M. Rodwell V.W. Stauffacher C.V. Crystal structure of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstrom resolution. Science 1995 268 5218 1758 1762 10.1126/science.7792601 7792601
    [Google Scholar]
  90. Tabernero L. Bochar D.A. Rodwell V.W. Stauffacher C.V. Substrate-induced closure of the flap domain in the ternary complex structures provides insights into the mechanism of catalysis by 3-hydroxy-3-methylglutaryl–CoA reductase. Proc. Natl. Acad. Sci. USA 1999 96 13 7167 7171 10.1073/pnas.96.13.7167 10377386
    [Google Scholar]
  91. Kuroda M. Tsujita Y. Tanzawa K. Endo A. Hypolipidemic effects in monkeys of ML‐236B, a competitive inhibitor of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase. Lipids 1979 14 6 585 589 10.1007/BF02533537 110993
    [Google Scholar]
  92. Fong C.W. Statins in therapy: Understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies. Eur. J. Med. Chem. 2014 85 661 674 10.1016/j.ejmech.2014.08.037 25128668
    [Google Scholar]
  93. Garcia A. Clarke R.J. Evidence for ATP interaction with phosphatidylcholine bilayers. Biophys. J. 2019 116 3 229a 10.1016/j.bpj.2018.11.1259
    [Google Scholar]
  94. Alghalayini A. Garcia A. Berry T. Cranfield C.G. The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers. Antibiotics 2019 8 1 12 10.3390/antibiotics8010012 30704119
    [Google Scholar]
  95. Bruno M.J. Rusinova R. Gleason N.J. Koeppe R.E. II Andersen O.S. Interactions of drugs and amphiphiles with membranes: Modulation of lipid bilayer elastic properties by changes in acyl chain unsaturation and protonation. Faraday Discuss. 2013 161 461 480 10.1039/C2FD20092A 23805753
    [Google Scholar]
  96. Casey D. Charalambous K. Gee A. Law R.V. Ces O. Amphiphilic drug interactions with model cellular membranes are influenced by lipid chain-melting temperature. J. R. Soc. Interface 2014 11 94 20131062 10.1098/rsif.2013.1062 24621813
    [Google Scholar]
  97. Galiullina L.F. Aganova O.V. Latfullin I.A. Musabirova G.S. Aganov A.V. Klochkov V.V. Interaction of different statins with model membranes by NMR data. Biochim. Biophys. Acta Biomembr. 2017 1859 3 295 300 10.1016/j.bbamem.2016.12.006 27989745
    [Google Scholar]
  98. Galiullina L.F. Musabirova G.S. Latfullin I.A. Aganov A.V. Klochkov V.V. Spatial structure of atorvastatin and its complex with model membrane in solution studied by NMR and theoretical calculations. J. Mol. Struct. 2018 1167 69 77 10.1016/j.molstruc.2018.04.012
    [Google Scholar]
  99. Rakhmatullin I.Z. Galiullina L.F. Klochkova E.A. Latfullin I.A. Aganov A.V. Klochkov V.V. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy. J. Mol. Struct. 2016 1105 25 29 10.1016/j.molstruc.2015.10.059
    [Google Scholar]
  100. Sariisik E. Koçak M. Kucuk Baloglu F. Severcan F. Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2019 1861 4 810 818 10.1016/j.bbamem.2019.01.014 30707888
    [Google Scholar]
  101. Custódio J.A. Almeida L.M. Madeira V.M.C. The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes. Biochim. Biophys. Acta Biomembr. 1993 1150 2 123 129 10.1016/0005‑2736(93)90080‑J 8347666
    [Google Scholar]
  102. Sahu S.S. Sarkar P. Shrivastava S. Chattopadhyay A. Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chem. Phys. Lipids 2019 225 104831 10.1016/j.chemphyslip.2019.104831 31568757
    [Google Scholar]
  103. Sahoo R.N. Pattanaik S. Pattnaik G. Mallick S. Mohapatra R. Review on the use of molecular docking as the first line tool in drug discovery and development. Indian J. Pharm. Sci. 2022 84 5 10.36468/pharmaceutical‑sciences.1031
    [Google Scholar]
  104. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  105. Hasham K. Hu Y. Proteomics techniques in focus: From basics to advanced applications. Authorea Preprints 2023 10.22541/au.169565643.33867398/v1
    [Google Scholar]
  106. Sugiki T. Kobayashi N. Fujiwara T. Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists. Comput. Struct. Biotechnol. J. 2017 15 328 339 10.1016/j.csbj.2017.04.001 28487762
    [Google Scholar]
  107. de Ruyck J. Brysbaert G. Blossey R. Lensink M. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem. 2016 9 1 11 10.2147/AABC.S105289 27390530
    [Google Scholar]
  108. Salmaso V. Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018 9 923 10.3389/fphar.2018.00923 30186166
    [Google Scholar]
  109. De Vivo M. Masetti M. Bottegoni G. Cavalli A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016 59 9 4035 4061 10.1021/acs.jmedchem.5b01684 26807648
    [Google Scholar]
  110. Alonso H. Bliznyuk A.A. Gready J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 2006 26 5 531 568 10.1002/med.20067 16758486
    [Google Scholar]
  111. Graham I. Cooney M.T. Bradley D. Dudina A. Reiner Z. Dyslipidemias in the prevention of cardiovascular disease: Risks and causality. Curr. Cardiol. Rep. 2012 14 6 709 720 10.1007/s11886‑012‑0313‑7 22965836
    [Google Scholar]
  112. Bełtowski J. Wójcicka G. Jamroz-Wiśniewska A. Adverse effects of statins - Mechanisms and consequences. Curr. Drug Saf. 2009 4 3 209 228 10.2174/157488609789006949 19534648
    [Google Scholar]
  113. Chow S.C. Immunomodulation by statins: Mechanisms and potential impact on autoimmune diseases. Arch. Immunol. Ther. Exp. 2009 57 4 243 251 10.1007/s00005‑009‑0038‑5 19578811
    [Google Scholar]
  114. Wang Q. Huang C. Jiang M. Zhu Y. Wang J. Chen J. Shi J. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 156 155 163 10.1016/j.saa.2015.12.003 26688207
    [Google Scholar]
  115. Bandaru S. Alvala M. Nayarisseri A. Sharda S. Goud H. Mundluru H.P. Singh S.K. Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of β2 adrenergic receptor. PLoS One 2017 12 10 e0186666 10.1371/journal.pone.0186666 29053759
    [Google Scholar]
  116. Wallace A.C. Laskowski R.A. Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995 8 2 127 134 10.1093/protein/8.2.127 7630882
    [Google Scholar]
  117. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035 15116359
    [Google Scholar]
  118. Belachew A.M. Feyisa A. Ufgaa M.G. Yesuf T.Y. Investigate inhibitory effects of ginger polyphenols compare to simvastatin towards HMG-CoA reductase: An integrated molecular docking and molecular dynamic simulation. bioRxiv 2021 10.1101/2021.08.11.455913
    [Google Scholar]
  119. Lestari S.R. Alimah A.R. Lukiati B. Molecular docking: Single bulb garlic (Allium sativum) active compounds as a drug candidate to inhibit cholesterol biosynthesis. AIP Conference Proceedings 2021 2353 1 10.1063/5.0052643
    [Google Scholar]
  120. Pamu D Ayyamperumal S Manne M Tallapaneni V Moola CJ Karri VV Preliminary hypothetical assessment and in silico molecular docking of statin to VEGFR2 and VEGFR3 protein complex associated with angiogenesis and lymphangiogenesis in diabetic wounds. J. Appl. Pharm. Sci. 2023 13 1 009 20 10.7324/JAPS.2023.118396
    [Google Scholar]
  121. Abdul-Rahman T. Bukhari S.M.A. Herrera E.C. Awuah W.A. Lawrence J. de Andrade H. Patel N. Shah R. Shaikh R. Capriles C.A.A. Ulusan S. Ahmad S. Corriero A.C. Mares A.C. Goel A. Hajra A. Bandyopadhyay D. Gupta R. Lipid lowering therapy: An era beyond statins. Curr. Probl. Cardiol. 2022 47 12 101342 10.1016/j.cpcardiol.2022.101342 35918009
    [Google Scholar]
  122. Chruściel P. Sahebkar A. Rembek-Wieliczko M. Serban M.C. Ursoniu S. Mikhailidis D.P. Jones S.R. Mosteoru S. Blaha M.J. Martin S.S. Rysz J. Toth P.P. Lip G.Y.H. Pencina M.J. Ray K.K. Banach M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis 2016 253 194 208 10.1016/j.atherosclerosis.2016.07.897 27498397
    [Google Scholar]
  123. Parizadeh S.M.R. Azarpazhooh M.R. Moohebati M. Nematy M. Ghayour-Mobarhan M. Tavallaie S. Rahsepar A.A. Amini M. Sahebkar A. Mohammadi M. Ferns G.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids 2011 46 4 333 340 10.1007/s11745‑010‑3517‑x 21207250
    [Google Scholar]
  124. Sahebkar A. Kotani K. Serban C. Ursoniu S. Mikhailidis D.P. Jones S.R. Ray K.K. Blaha M.J. Rysz J. Toth P.P. Muntner P. Lip G.Y.H. Banach M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis 2015 241 2 433 442 10.1016/j.atherosclerosis.2015.05.022 26074317
    [Google Scholar]
  125. Sahebkar A. Pećin I. Tedeschi-Reiner E. Derosa G. Maffioli P. Reiner Ž. Effects of statin therapy on augmentation index as a measure of arterial stiffness: A systematic review and meta-analysis. Int. J. Cardiol. 2016 212 160 168 10.1016/j.ijcard.2016.03.010 27038725
    [Google Scholar]
  126. Sahebkar A. Serban C. Mikhailidis D.P. Undas A. Lip G.Y.H. Muntner P. Bittner V. Ray K.K. Watts G.F. Hovingh G.K. Rysz J. Kastelein J.J. Banach M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost. 2015 114 3 546 557 10.1016/j.ijcard.2016.03.010 26017749
    [Google Scholar]
  127. Sahebkar A. Serban C. Ursoniu S. Mikhailidis D.P. Undas A. Lip G.Y.H. Bittner V. Ray K.K. Watts G.F. Hovingh G.K. Rysz J. Kastelein J.J.P. Banach M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group The impact of statin therapy on plasma levels of von Willebrand factor antigen. Thromb. Haemost. 2016 115 3 520 532 10.1160/th15‑08‑0620 26632869
    [Google Scholar]
  128. Serban C. Sahebkar A. Ursoniu S. Mikhailidis D.P. Rizzo M. Lip G.Y.H. Kees Hovingh G. Kastelein J.J.P. Kalinowski L. Rysz J. Banach M. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep. 2015 5 1 9902 10.1038/srep09902 25970700
    [Google Scholar]
  129. Stroes E.S. Thompson P.D. Corsini A. Vladutiu G.D. Raal F.J. Ray K.K. Roden M. Stein E. Tokgözoğlu L. Nordestgaard B.G. Bruckert E. De Backer G. Krauss R.M. Laufs U. Santos R.D. Hegele R.A. Hovingh G.K. Leiter L.A. Mach F. März W. Newman C.B. Wiklund O. Jacobson T.A. Catapano A.L. Chapman M.J. Ginsberg H.N. Stroes E. Thompson P.D. Corsini A. Vladutiu G.D. Raal F.J. Ray K.K. Roden M. Stein E. Tokgözoğlu L. Nordestgaard B.G. Bruckert E. Krauss R.M. Laufs U. Santos R.D. März W. Newman C.B. John Chapman M. Ginsberg H.N. John Chapman M. Ginsberg H.N. de Backer G. Catapano A.L. Hegele R.A. Kees Hovingh G. Jacobson T.A. Leiter L. Mach F. Wiklund O. European Atherosclerosis Society Consensus Panel Statin-associated muscle symptoms: Impact on statin therapy-European atherosclerosis society consensus panel statement on assessment, Aetiology and management. Eur. Heart J. 2015 36 17 1012 1022 10.1093/eurheartj/ehv043 25694464
    [Google Scholar]
  130. de Boer L.M. Oorthuys A.O.J. Wiegman A. Langendam M.W. Kroon J. Spijker R. Zwinderman A.H. Hutten B.A. Statin therapy and lipoprotein(a) levels: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022 29 5 779 792 10.1093/eurjpc/zwab171 34849724
    [Google Scholar]
  131. Shaker M.A. Elbadawy H.M. Al Thagfan S.S. Shaker M.A. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. Int. J. Pharm. 2021 592 120077 10.1016/j.ijpharm.2020.120077 33246047
    [Google Scholar]
  132. Ahmed I.S. El-Hosary R. Shalaby S. Abd-Rabo M.M. Elkhateeb D.G. Nour S. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles. Int. J. Pharm. 2016 504 1-2 70 79 10.1016/j.ijpharm.2016.03.045 27021467
    [Google Scholar]
  133. Yao G. Song L. Xue W. Su G. Ning A. Wang J. Nano-particle engineered atorvastatin delivery to support mesenchymal stem cell survival in infarcted myocardium. Saudi J. Biol. Sci. 2018 25 6 1016 1021 10.1016/j.sjbs.2017.03.015 30174496
    [Google Scholar]
  134. Adeleke O.A. Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm. X 2019 1 100023 10.1016/j.ijpx.2019.100023 31517288
    [Google Scholar]
  135. Liberman H. Lachman L. The theory and practice of industrial pharmacy. Bombay Verghese Publication House 1991 171 193
    [Google Scholar]
  136. Tiwari R. Pathak K. Statins therapy: A review on conventional and novel formulation approaches. J. Pharm. Pharmacol. 2011 63 8 983 998 10.1111/j.2042‑7158.2011.01273.x 21718281
    [Google Scholar]
  137. Korani S. Bahrami S. Korani M. Banach M. Johnston T.P. Sahebkar A. Parenteral systems for statin delivery: A review. Lipids Health Dis. 2019 18 1 193 10.1186/s12944‑019‑1139‑8 31690335
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266327892241223052456
Loading
/content/journals/ctmc/10.2174/0115680266327892241223052456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test