Skip to content
2000
image of Bioanalysis, Analysis, Chemistry, and Pharmacological Aspects of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors

Abstract

The development of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHIs), such as Roxadustat (ROX), Enarodustat (ENA), Desidustat (DES), Vadadustat (VAD), Molidustat (MOL), and Daprodustat (DAP), has significant effects on anemia in chronic kidney disease. This review presents comprehensive information about the synthesis, pharmacology, and analysis of HIF-PHIs across several matrices. The literature has presented several approaches for quantifying HIF-PHIs in diverse sample matrices. Furthermore, HIF-PHIs exhibit similar modes of action, demonstrating distinct pharmacokinetic parameters. The pharmacological insights encompass their half-life, mechanism of action, absorption, distribution, metabolism, excretion, and therapeutic uses. Research indicates that most studies concentrate on hyphenated methodologies for drug estimation in various biological fluids. Consequently, this study assesses the biological efficacy of HIF-PHIs and elucidates the analytical methodologies currently employed for measurement across various matrices.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266324419241227102847
2025-01-08
2025-04-14
Loading full text...

Full text loading...

References

  1. Kalantar-Zadeh K. Aronoff G.R. Hemoglobin variability in anemia of chronic kidney disease. J. Am. Soc. Nephrol. 2009 20 3 479 487 10.1681/ASN.2007070728 19211716
    [Google Scholar]
  2. Zuo Q. Wang T. Zhu L. Li X. Luo Q. A systemic review and meta-analysis on the efficacy and safety of ferumoxytol for anemia in chronic kidney disease patients. Ren. Fail. 2022 44 1 94 102 10.1080/0886022X.2021.2021237 35156909
    [Google Scholar]
  3. Coyne D.W. Goldsmith D. Macdougall I.C. New options for the anemia of chronic kidney disease. Kidney Int. Suppl. 2017 7 3 157 163 10.1016/j.kisu.2017.09.002 30675430
    [Google Scholar]
  4. Fishbane S. Pollock C.A. El-Shahawy M. Escudero E.T. Rastogi A. Van B.P. Frison L. Houser M. Pola M. Little D.J. Guzman N. Pergola P.E. Roxadustat versus epoetin alfa for treating anemia in patients with chronic kidney disease on dialysis: Results from the randomized phase 3 ROCKIES study. J. Am. Soc. Nephrol. 2022 33 4 850 866 10.1681/ASN.2020111638 35361724
    [Google Scholar]
  5. Wish J.B. Treatment of Anemia in Kidney Disease: Beyond Erythropoietin. Kidney Int. Rep. 2021 6 10 2540 2553 10.1016/j.ekir.2021.05.028 34622095
    [Google Scholar]
  6. Habas E. Rayani A. Habas A.M. Akbar R.A. Khan F.Y. Elzouki A.N. Anemia in chronic kidney disease patients: An update. Ibnosina J. Med. Biomed. Sci. 2022 14 1 006 011 10.1055/s‑0042‑1748774
    [Google Scholar]
  7. Minutolo R. Liberti M.E. Simeon V. Sasso F.C. Borrelli S. De Nicola L. Garofalo C. Efficacy and safety of hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with chronic kidney disease: meta-analysis of phase 3 randomized controlled trials. Clin. Kidney J. 2024 17 1 sfad143 10.1093/ckj/sfad143 38186871
    [Google Scholar]
  8. Ren S. Yao X. Li Y. Zhang Y. Tong C. Feng Y. Efficacy and safety of hypoxia-inducible factor-prolyl hydroxylase inhibitor treatment for anemia in chronic kidney disease: an umbrella review of meta-analyses. Front. Pharmacol. 2023 14 1296702 10.3389/fphar.2023.1296702 38099145
    [Google Scholar]
  9. Study of roxadustat conversion in participants receiving stable erythropoiesis-stimulating agent (ESA) or as initial anemia treatment in chronic dialysis participants. NCT04410198 2022
  10. Study of roxadustat conversion in participants receiving stable ESA or as initial anemia treatment in hemodialysis participants (ASPEN). NCT04484857 2022
  11. Evaluate the efficacy and safety of multiple roxadustat dosing regimens for the treatment of anemia in dialysis participants with chronic kidney disease. NCT04059913 2022
  12. Effect of hemodialysis on the PK of JTZ-951 in subjects with end-stage renal disease. NCT01978587 2014
  13. Safety, tolerability, PK & PD study of JTZ-951 in anemic subjects with end-stage renal disease. NCT01971164 2014
  14. A study to evaluate efficacy and safety of JTZ-951 compared to darbepoetin alfa in korean renal anemia patients receiving hemodialysis. NCT04027517 2021
  15. Desidustat in the treatment of anemia in CKD (DREAM-ND). NCT04012957 2021
  16. Desidustat in the treatment of anemia in CKD on dialysis patients (DREAM-D). NCT04215120 2021
  17. Desidustat in the management of COVID-19 patients. NCT04463602 2021
  18. Desidustat in the treatment of chemotherapy induced anemia. NCT04667533 2022
  19. Trial evaluating the efficacy and safety of oral vadadustat once daily (QD) and three times weekly (TIW) for the maintenance treatment of anemia in hemodialysis subjects converting from erythropoiesis-stimulating agents (ESAs). NCT04313153 2022
  20. Efficacy and safety study to evaluate vadadustat for the correction or maintenance treatment of anemia in participants with incident dialysis-dependent chronic kidney disease (DD-CKD). NCT02865850 2022
  21. Efficacy and safety study to evaluate vadadustat for the maintenance treatment of anemia in participants with dialysis-dependent chronic kidney disease (DD-CKD). NCT02892149 2022
  22. A study of molidustat for correction of renal anemia in non-dialysis subjects (MIYABI ND-C). NCT03350321 2021
  23. A study of molidustat for maintenance treatment of renal anemia in non-dialysis subjects (MIYABI ND-M). NCT03350347 2021
  24. A study of molidustat for correction of renal anemia in dialysis subjects (MIYABI HD-C). NCT03351166 2021
  25. A study of molidustat for treatment of renal anemia in peritoneal dialysis subjects (MIYABI PD). NCT03418168 2021
  26. Maintenance treatment of renal anemia in dialysis subjects (MIYABI HD-M). NCT03543657 2021
  27. Anemia studies in chronic kidney disease: Erythropoiesis via a novel prolyl hydroxylase inhibitor daprodustat-non-dialysis (ASCEND-ND). NCT02876835 2024
  28. Anemia studies in chronic kidney disease: erythropoiesis via a novel prolyl hydroxylase inhibitor daprodustat-dialysis (ASCEND-D). NCT02879305 2021
  29. Anemia studies in chronic kidney disease (CKD): Erythropoiesis via a novel prolyl hydroxylase inhibitor (PHI) daprodustat in non-dialysis subjects evaluating hemoglobin (Hgb) and quality of life (ASCEND-NHQ). NCT03409107 2024
  30. Anemia studies in chronic kidney disease (CKD): Erythropoiesis via a novel prolyl hydroxylase inhibitor (PHI) daprodustat-in incident dialysis (ASCEND-ID). NCT03029208 2021
  31. Anemia studies in chronic kidney disease (CKD): Erythropoiesis via a novel prolyl hydroxylase inhibitor (PHI) daprodustat-three-times weekly dosing in dialysis (ASCEND-TD). NCT03400033 2021
  32. Lautre C. Sharma S. Sahu J.K. Chemistry, biological properties and analytical methods of levonadifloxacin: A review. Crit. Rev. Anal. Chem. 2022 52 5 1069 1077 10.1080/10408347.2020.1855412 33307757
    [Google Scholar]
  33. Beuck S. Schänzer W. Thevis M. Hypoxia‐inducible factor stabilizers and other small‐molecule erythropoiesis‐stimulating agents in current and preventive doping analysis. Drug Test. Anal. 2012 4 11 830 845 10.1002/dta.390 22362605
    [Google Scholar]
  34. Kallem D.J. Thipparaboina R. Pathivada D. Peddy V. Gopi S.P. Polymorphs and co-crystals of roxadustat. WO Patent 2019030711A1 2019
  35. Enarodustat. Available from: https://go.drugbank.com/drugs/DB14985(Accessed on: August 6, 2022)
  36. Desidustat. Available from: https://go.drugbank.com/drugs/DB16135(Accessed on: July 22, 2022)
  37. Vadadustat. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vadadustat(Accessed on: September 15, 2022)
  38. Molidustat. Available from: https://go.drugbank.com/drugs/DB15642(Accessed on: August 5, 2022).
  39. Šamec D.S. Landeka I. Travančić V. Solid state forms of daprodustat and process for preparation thereof. WO Patent 2020102302A1 2020
  40. Pawar N. Bhardwaj A. Vora A. Sharma S. A multianalyte LC-MS/MS method for accurate quantification of Nitrosamines in Olmesartan tablets. J. Chromatogr. A 2024 1732 465176 10.1016/j.chroma.2024.465176 39088899
    [Google Scholar]
  41. Nováková L. Svoboda P. Pavlík J. Chapter 29 - Ultra-high performance liquid chromatography. Liquid Chromatography Elsevier 2017 719 769 10.1016/B978‑0‑12‑805393‑5.00029‑4
    [Google Scholar]
  42. Krebs F. Zagst H. Stein M. Ratih R. Minkner R. Olabi M. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications - Updated and completely revised edition. Electrophoresis 2023 44 17-18 1279 1341 10.1002/elps.202300158
    [Google Scholar]
  43. Steiner D. Malachová A. Sulyok M. Krska R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021 413 1 25 34 10.1007/s00216‑020‑03015‑7 33188454
    [Google Scholar]
  44. Damle M.C. Sonule J.A. Hydrolytic degradation study of roxadustat by RP-HPLC and HPTLC. Int. J. Pharm. Pharm. Sci. 2023 2023 36 49 10.22159/ijpps.2023v15i8.48355
    [Google Scholar]
  45. Patel R. Yadav P. Stability indicating RP-HPLC method development and validation for estimation of desidustat in tablet dosage form. WwwWjppsCom 2015 12 1290 10.20959/wjpps20237‑25215
    [Google Scholar]
  46. Zheng X. Chen X. Liu T. Jiang J. Cui X. Zhao Q. Hu P. Liquid chromatography-tandem mass spectrometry methods for quantification of roxadustat (FG-4592) in human plasma and urine and the applications in two clinical pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1203 123274 10.1016/j.jchromb.2022.123274 35662878
    [Google Scholar]
  47. Mazzarino M. Perretti I. Stacchini C. Comunità F. de la Torre X. Botrè F. UPLC–MS-based procedures to detect prolyl-hydroxylase inhibitors of HIF in urine. J. Anal. Toxicol. 2021 45 2 184 194 10.1093/jat/bkaa055 32435795
    [Google Scholar]
  48. Mathew B. Philip M. Perwad Z. Karatt T.K. Caveney M.R. Subhahar M.B. Karakka Kal A.K. Identification of Hypoxia‐inducible factor (HIF) stabilizer roxadustat and its possible metabolites in thoroughbred horses for doping control. Drug Test. Anal. 2021 13 6 1203 1215 10.1002/dta.3014 33569900
    [Google Scholar]
  49. Provenzano R. Tumlin J. Zabaneh R. Chou J. Hemmerich S. Neff T.B. Yu K.H.P. Oral hypoxia‐inducible factor prolyl hydroxylase inhibitor roxadustat (FG‐4592) for treatment of anemia in chronic kidney disease: A placebo‐controlled study of pharmacokinetic and pharmacodynamic profiles in hemodialysis patients. J. Clin. Pharmacol. 2020 60 11 1432 1440 10.1002/jcph.1648 32603526
    [Google Scholar]
  50. Saigusa D. Suzuki N. Matsumoto Y. Umeda K. Tomioka Y. Koshiba S. Yamamoto M. Retracted: Detection of novel metabolite for Roxadustat doping by global metabolomics. J. Biochem. 2018 ••• 10.1093/jb/mvy028 29438490
    [Google Scholar]
  51. Hansson A. Thevis M. Cox H. Miller G. Eichner D. Bondesson U. Hedeland M. Investigation of the metabolites of the HIF stabilizer FG-4592 (roxadustat) in five different in vitro models and in a human doping control sample using high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2017 134 228 236 10.1016/j.jpba.2016.11.041 27918992
    [Google Scholar]
  52. Groenendaal-van de Meent D. Adel M. Noukens J. Rijnders S. Krebs-Brown A. Mateva L. Alexiev A. Schaddelee M. Effect of moderate hepatic impairment on the pharmacokinetics and pharmacodynamics of roxadustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor. Clin. Drug Investig. 2016 36 9 743 751 10.1007/s40261‑016‑0422‑y 27352308
    [Google Scholar]
  53. Buisson C. Marchand A. Bailloux I. Lahaussois A. Martin L. Molina A. Detection by LC–MS/MS of HIF stabilizer FG-4592 used as a new doping agent: Investigation on a positive case. J. Pharm. Biomed. Anal. 2016 121 181 187 10.1016/j.jpba.2016.01.029 26808067
    [Google Scholar]
  54. Pai S. Huang M.Q. Maki K. Waldron M. Yoshikawa T. Keller T. Burnett J. A highly sensitive and selective UPLC-MS/MS assay for the determination of enarodustat (JTZ-951) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021 1176 122754 10.1016/j.jchromb.2021.122754 34052557
    [Google Scholar]
  55. Pai S.M. Connaire J. Yamada H. Enya S. Gerhardt B. Maekawa M. Tanaka H. Koretomo R. Ishikawa T. A mass balance study of 14 C‐labeled JTZ‐951 (Enarodustat), a novel orally available erythropoiesis‐stimulating agent, in patients with end‐stage renal disease on hemodialysis. Clin. Pharmacol. Drug Dev. 2020 9 6 728 741 10.1002/cpdd.752 31876104
    [Google Scholar]
  56. Garzinsky A.M. Thomas A. Krug O. Thevis M. Probing for the presence of doping agents in exhaled breath using chromatographic/mass spectrometric approaches. Rapid Commun. Mass Spectrom. 2021 35 1 e8939 10.1002/rcm.8939 32881194
    [Google Scholar]
  57. Patel H. Soni K. Trivedi R. Heading H. Geue J. Kansagra K. Gupta R.J. Pandya V.B. Srinivas N.R. Patel P.R. Desai R.C. A sensitive assay for ZYAN1 in human whole blood and urine utilizing positive LC-MS/MS electrospray ionization. Bioanalysis 2017 9 9 719 732 10.4155/bio‑2017‑0014 28488896
    [Google Scholar]
  58. Chavan A. Burke L. Sawant R. Navarro-Gonzales P. Vargo D. Paulson S.K. Effect of moderate hepatic impairment on the pharmacokinetics of vadadustat, an oral hypoxia‐inducible factor prolyl hydroxylase inhibitor. Clin. Pharmacol. Drug Dev. 2021 10 8 950 958 10.1002/cpdd.927 33661566
    [Google Scholar]
  59. Dib J. Mongongu C. Buisson C. Molina A. Schänzer W. Thuss U. Thevis M. Mass spectrometric characterization of the hypoxia‐inducible factor (HIF) stabilizer drug candidate BAY 85‐3934 (molidustat) and its glucuronidated metabolite BAY‐348, and their implementation into routine doping controls. Drug Test. Anal. 2017 9 1 61 67 10.1002/dta.2011 27346747
    [Google Scholar]
  60. Thevis M. Milosovich S. Licea-Perez H. Knecht D. Cavalier T. Schänzer W. Mass spectrometric characterization of a prolyl hydroxylase inhibitor GSK1278863, its bishydroxylated metabolite, and its implementation into routine doping controls. Drug Test. Anal. 2016 8 8 858 863 10.1002/dta.1870 26361079
    [Google Scholar]
  61. Pai S.M. Yamada H. Hemodialysis clearance of enarodustat (JTZ‐951), an oral erythropoiesis stimulating agent, in patients with end‐stage renal disease. Clin. Pharmacol. Drug Dev. 2021 10 5 463 470 10.1002/cpdd.923 33788422
    [Google Scholar]
  62. Píša O. Rádl S. Čerňa I. Šembera F. A scalable synthesis of roxadustat (FG-4592). Org. Process Res. Dev. 2021 23 3 915 924 10.1021/acs.oprd.1c00281
    [Google Scholar]
  63. Zhikun Y. Lei P. Wei H. Longlin W. Yan Z. Preparation method of Rosxastat. CN Patent 111533691A 2020
  64. Xuchun Z. Yiping Z. Preparation method of medicine for treating chronic anemia. CN Patent 108424388B 2020
  65. Mitani I. Mitani I. Ogose Y. Takuya M. Matsui T. Yokota M. Masa M.T. Terashita K. Triazolopyridine compounds and their action as prolyl hydroxylase inhibitors and erythropoietin production inducers. JP Patent 6434575B2 2018
  66. Sharma R. Process of preparation of quinolone based compounds. 2019
    [Google Scholar]
  67. Kawamoto R.M. Wu S. Evdokimov A.G. Greis K.D. Boyer A.S. Warshakoon N.C. Prolyl hydroxylase inhibitors and method of use. US Patent8722895B2 2014
  68. Thede K. Flamme I. Oehme F. Ergüden J.K. Stoll F. Schuhmacher J. Wild H. Kolkhof P. Beck H. Keldenich J. Substituted dihydropyrazolones for treating cardiovascular and hematological diseases. US Patent 8987261B2 2015
  69. Duffy K.J. Fitch D.M. Jin J. Liu R. Shaw A.N. Wiggall K. Prolyl hydroxylase inhibitors. WO Patent 2007150011A2 2007
  70. Portolés J. Martín L. Broseta J.J. Cases A. Anemia in Chronic Kidney Disease: From Pathophysiology and Current Treatments, to Future Agents. Front. Med. (Lausanne) 2021 8 642296 10.3389/fmed.2021.642296 33842503
    [Google Scholar]
  71. Roxadustat. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/11256664(Accessed on: August 22, 2022)
  72. Rekić D. Kerbusch-Herben V. Någård M. Chou J. Huang J. Bradley C. Åstrand M. Tannenbaum S. Hamrén B. Pharmacokinetics of roxadustat: A population analysis of 2855 dialysis- and non-dialysis-dependent patients with chronic kidney disease. Clin. Pharmacokinet. 2021 60 6 759 773 10.1007/s40262‑020‑00974‑z 33486718
    [Google Scholar]
  73. Czock D. Keller F. Clinical pharmacokinetics and pharmacodynamics of roxadustat. Clin. Pharmacokinet. 2022 61 3 347 362 10.1007/s40262‑021‑01095‑x 34905154
    [Google Scholar]
  74. Fujikawa R. Nagao Y. Treatment of anemia associated with chronic kidney disease with the HIF prolyl hydroxylase inhibitor enarodustat: A review of the evidence. Ther. Apher. Dial. 2022 26 4 679 693 10.1111/1744‑9987.13820
    [Google Scholar]
  75. Markham A. Enarodustat: First approval. Drugs 2021 81 1 169 174 10.1007/s40265‑020‑01444‑3 33320297
    [Google Scholar]
  76. Fukui K. Shinozaki Y. Kobayashi H. Deai K. Yoshiuchi H. Matsui T. Matsuo A. Matsushita M. Tanaka T. Nangaku M. JTZ-951 (enarodustat), a hypoxia-inducibe factor prolyl hydroxylase inhibitor, stabilizes HIF-α protein and induces erythropoiesis without effects on the function of vascular endothelial growth factor. Eur. J. Pharmacol. 2019 859 172532 10.1016/j.ejphar.2019.172532 31301309
    [Google Scholar]
  77. Akizawa T. Nangaku M. Yamaguchi T. Arai M. Koretomo R. Maeda K. Miyazawa Y. Hirakata H. Enarodustat, conversion and maintenance therapy for anemia in hemodialysis patients: A randomized, placebo-controlled phase 2b trial followed by long-term trial. Nephron J. 2019 143 2 77 85 10.1159/000500487 31117088
    [Google Scholar]
  78. Kansagra K.A. Parmar D. Jani R.H. Srinivas N.R. Lickliter J. Patel H.V. Parikh D.P. Heading H. Patel H.B. Gupta R.J. Shah C.Y. Patel M.R. Dholakia V.N. Sukhadiya R. Jain M.R. Parmar K.V. Barot K. Phase I clinical study of ZYAN1, a novel prolyl-hydroxylase (PHD) inhibitor to evaluate the safety, tolerability, and pharmacokinetics following oral administration in healthy volunteers. Clin. Pharmacokinet. 2018 57 1 87 102 10.1007/s40262‑017‑0551‑3 28508936
    [Google Scholar]
  79. Jain M. Joharapurkar A. Patel V. Kshirsagar S. Sutariya B. Patel M. Patel H. Patel P.R. Pharmacological inhibition of prolyl hydroxylase protects against inflammation-induced anemia via efficient erythropoiesis and hepcidin downregulation. Eur. J. Pharmacol. 2019 843 113 120 10.1016/j.ejphar.2018.11.023 30458168
    [Google Scholar]
  80. Huang Q. Liao Z. Liu X. Xia Y. Wang J. Efficacy and safety of vadadustat compared to darbepoetin alfa on anemia in patients with chronic kidney disease: A meta-analysis. Int. Urol. Nephrol. 2022 55 2 325 334 10.1007/s11255‑022‑03316‑z 35960479
    [Google Scholar]
  81. Lentini S. Kaiser A. Kapsa S. Matsuno K. van der Mey D. Effects of oral iron and calcium supplement on the pharmacokinetics and pharmacodynamics of molidustat: An oral HIF–PH inhibitor for the treatment of renal anaemia. Eur. J. Clin. Pharmacol. 2020 76 2 185 197 10.1007/s00228‑019‑02813‑y 31919558
    [Google Scholar]
  82. Lentini S. van der Mey D. Kern A. Thuss U. Kaiser A. Matsuno K. Gerisch M. Absorption, distribution, metabolism and excretion of molidustat in healthy participants. Basic Clin. Pharmacol. Toxicol. 2020 127 3 221 233 10.1111/bcpt.13409 32248614
    [Google Scholar]
  83. Yamamoto H. Nobori K. Matsuda Y. Hayashi Y. Hayasaki T. Akizawa T. Efficacy and safety of molidustat for anemia in ESA-naive nondialysis patients: A randomized, phase 3 trial. Am. J. Nephrol. 2021 52 10-11 871 883 10.1159/000518071 34569489
    [Google Scholar]
  84. Mahar K.M. Shaddinger B.C. Ramanjineyulu B. Andrews S. Caltabiano S. Lindsay A.C. Cobitz A.R. Pharmacokinetics of daprodustat and metabolites in individuals with normal and impaired hepatic function. Clin. Pharmacol. Drug Dev. 2022 11 5 562 575 10.1002/cpdd.1090 35355447
    [Google Scholar]
  85. Labes R. Brinkmann L. Kulow V.A. Roegner K. Mathia S. Balcerek B. Persson P.B. Rosenberger C. Fähling M. Daprodustat prevents cyclosporine-A–mediated anemia and peritubular capillary loss. Kidney Int. 2022 102 4 750 765 10.1016/j.kint.2022.04.025 35643373
    [Google Scholar]
  86. Horváth I.T. Anastas P.T. Innovations and green chemistry. Chem. Rev. 2007 107 6 2169 2173 10.1021/cr078380v 17564478
    [Google Scholar]
  87. Gaikwad J. Sharma S. Hatware K.V. Review on characteristics and analytical methods of tazarotene: An update. Crit. Rev. Anal. Chem. 2020 50 1 90 96 10.1080/10408347.2019.1586519 30942085
    [Google Scholar]
  88. Kumari S. Sharma A. Kumar S. Thakur A. Thakur R. Bhatia S.K. Sharma A.K. Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability. Chemosphere 2022 306 135464 10.1016/j.chemosphere.2022.135464 35760140
    [Google Scholar]
  89. Becker J. Manske C. Randl S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. 2022 33 100562 10.1016/j.cogsc.2021.100562
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266324419241227102847
Loading
/content/journals/ctmc/10.2174/0115680266324419241227102847
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chemistry ; analysis ; chronic kidney disease ; pharmacology ; HIF-PHIs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test