Skip to content
2000
image of Recent Advances in Amperometric Biosensors for Medical Applications: A Mini-Review

Abstract

Amperometric biosensors have emerged as a cutting-edge technology in clinical diagnostics, thanks to their high level of sensitivity, rapid analytical results, compact size, and ability to monitor health parameters non-invasively and continuously using flexible and wearable sensors. This review explores the latest developments in the field of amperometric biosensing for medical applications. It discusses the materials used to construct these sensors and pays particular attention to biosensors designed to measure glucose, lactate, cholesterol, urea, and uric acid levels. The review also addresses the technological limitations and drawbacks of these devices. Furthermore, it presents the current status and identifies future trends in the development of flexible, wearable biosensors capable of providing continuous monitoring of a patient's health status.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266323004241015122441
2024-10-28
2025-01-15
Loading full text...

Full text loading...

References

  1. Kim J. Campbell A.S. de Ávila B.E.F. Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019 37 4 389 406 10.1038/s41587‑019‑0045‑y 30804534
    [Google Scholar]
  2. Dixon T.A. Williams T.C. Pretorius I.S. Sensing the future of bio-informational engineering. Nat. Commun. 2021 12 1 388 10.1038/s41467‑020‑20764‑2 33452260
    [Google Scholar]
  3. Wang M. Yang Y. Min J. Song Y. Tu J. Mukasa D. Ye C. Xu C. Heflin N. McCune J.S. Hsiai T.K. Li Z. Gao W. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022 6 11 1225 1235 10.1038/s41551‑022‑00916‑z 35970928
    [Google Scholar]
  4. Zhang Y. Sun J. Liu L. Qiao H. A review of biosensor technology and algorithms for glucose monitoring. J. Diabetes Complications 2021 35 8 107929 10.1016/j.jdiacomp.2021.107929 33902999
    [Google Scholar]
  5. Nemiwal M. Zhang T.C. Kumar D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Technol. 2022 156 8 110006 10.1016/j.enzmictec.2022.110006 35144119
    [Google Scholar]
  6. Ghorbani Zamani F. Moulahoum H. Ak M. Odaci Demirkol D. Timur S. Current trends in the development of conducting polymers-based biosensors. Trends Analyt. Chem. 2019 118 264 276 10.1016/j.trac.2019.05.031
    [Google Scholar]
  7. Reddy Y.V.M. Shin J.H. Palakollu V.N. Sravani B. Choi C.H. Park K. Kim S.K. Madhavi G. Park J.P. Shetti N.P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv. Colloid Interface Sci. 2022 304 102664 10.1016/j.cis.2022.102664 35413509
    [Google Scholar]
  8. Sadeghi S.J. Amperometric biosensors. Encyclopedia of Biophysics. Roberts G.C.K. Berlin, Heidelberg Springer 2013 61 67 10.1007/978‑3‑642‑16712‑6_713
    [Google Scholar]
  9. Gao M. Wang Z. Xiao W. Miao L. Yang Z. Liang W. Ao T. Chen W. Capacitive deionization toward fluoride elimination: Selective advantage, state of the art, and future perspectives. Desalination 2024 577 117392 10.1016/j.desal.2024.117392
    [Google Scholar]
  10. Singh A.K. Jaiswal N. Tiwari I. Ahmad M. Silva S.R.P. Electrochemical biosensors based on in situ grown carbon nanotubes on gold microelectrode array fabricated on glass substrate for glucose determination. Mikrochim. Acta 2023 190 2 55 10.1007/s00604‑022‑05626‑6 36645527
    [Google Scholar]
  11. Deffo G. Hazarika R. Deussi Ngaha M.C. Basumatary M. Kalita S. Hussain N. Njanja E. Puzari P. Ngameni E. An ultra-sensitive uric acid second generation biosensor based on chemical immobilization of uricase on functionalized multiwall carbon nanotube grafted palm oil fiber in the presence of a ferrocene mediator. Anal. Methods 2023 15 20 2456 2466 10.1039/D3AY00053B 37165935
    [Google Scholar]
  12. Josypcuk B. Tvorynska S. Electrochemical flow-through biosensors based on microfiber enzymatic filter discs placed at printed electrodes. Bioelectrochemistry 2024 157 108663 10.1016/j.bioelechem.2024.108663 38359574
    [Google Scholar]
  13. Nhu C.T. Thanh T.B. Duc T.C. Dang P.N. Development of a non-enzyme sensor to detect glucose based on the modification of copper electrode. Arab. J. Sci. Eng. 2023 48 12 1 10
    [Google Scholar]
  14. McCormick W. McCrudden D. Development of a highly nanoporous platinum screen-printed electrode and its application in glucose sensing. J. Electroanal. Chem. (Lausanne) 2020 860 113912 10.1016/j.jelechem.2020.113912
    [Google Scholar]
  15. Hondred J.A. Johnson Z.T. Claussen J.C. Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020 8 33 11376 11388 10.1039/D0TC01423K
    [Google Scholar]
  16. Gigli V. Tortolini C. Capecchi E. Angeloni A. Lenzi A. Antiochia R. Novel amperometric biosensor based on tyrosinase/chitosan nanoparticles for sensitive and interference-free detection of total catecholamine. Biosensors 2022 12 7 519 10.3390/bios12070519 35884322
    [Google Scholar]
  17. Yunita K.S. Irwan I. Nakai T. Graphene modified zno/polyaniline electrode material for electrochemical sensing of phenol compounds. Surg. Eng. Appl. Electrochem. 2023 56 6 764 771
    [Google Scholar]
  18. Medvedeva A.S. Gudkova E.I. Titova A.S. Kharkova A.S. Kuznetsova L.S. Perchikov R.N. Ivanov V.R. Ryabkov Y.D. Tikhonova A.A. Fomina E.D. Naumova A.O. Melnikov P.V. Butusov D.N. Arlyapov V.A. Nanostructured copper electrodes – A new step in the development of microbial bioelectrochemical systems. Environ. Sci.: Nano 2024 10.1039/D4EN00440J
    [Google Scholar]
  19. Suni I.I. Substrate materials for biomolecular immobilization within electrochemical biosensors. Biosensors 2021 11 7 239 10.3390/bios11070239 34356710
    [Google Scholar]
  20. Liu J. Jalali M. Mahshid S. Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst (Lond.) 2020 145 2 364 384 10.1039/C9AN02149C 31832630
    [Google Scholar]
  21. Hosseini S. Ibrahim F. Djordjevic I. Koole L.H. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst (Lond.) 2014 139 12 2933 2943 10.1039/c3an01789c 24769607
    [Google Scholar]
  22. Alijanianzadeh M. Qadami F. Molaeirad A. Detection of methamphetamine using aptamer-based biosensor chip and cyclic voltammetry technique. J. Indian Chem. Soc. 2021 98 11 100189 10.1016/j.jics.2021.100189
    [Google Scholar]
  23. Kim H.U. Kim H.Y. Seok H. Kanade V. Yoo H. Park K.Y. Lee J.H. Lee M.H. Kim T. Flexible MoS2–polyimide electrode for electrochemical biosensors and their applications for the highly sensitive quantification of endocrine hormones: PTH, T3, and T4. Anal. Chem. 2020 92 9 6327 6333 10.1021/acs.analchem.9b05172 32286047
    [Google Scholar]
  24. Yoon J. Cho H.Y. Shin M. Choi H.K. Lee T. Choi J.W. Flexible electrochemical biosensors for healthcare monitoring. J. Mater. Chem. B Mater. Biol. Med. 2020 8 33 7303 7318 10.1039/D0TB01325K 32647855
    [Google Scholar]
  25. Guan Y. Liu L. Yu S. Lv F. Guo M. Luo Q. Zhang S. Wang Z. Wu L. Lin Y. Liu G. A noninvasive sweat glucose biosensor based on glucose oxidase/multiwalled carbon nanotubes/ferrocene-polyaniline film/Cu electrodes. Micromachines 2022 13 12 2142 10.3390/mi13122142 36557441
    [Google Scholar]
  26. Chu S. Liang Y. Lu M. Yuan H. Han Y. Masson J.F. Peng W. Mode-coupling generation using ITO nanodisk arrays with Au substrate enabling narrow-band biosensing. Biosensors 2023 13 6 649 10.3390/bios13060649 37367014
    [Google Scholar]
  27. Henderson S. Strait M. Fernandes R. Xu H. Galligan J.J. Swain G.M. Ex vivo electrochemical monitoring of cholinergic signaling in the mouse colon using an enzyme-based biosensor. ACS Chem. Neurosci. 2023 14 18 3460 3471 10.1021/acschemneuro.3c00337 37681686
    [Google Scholar]
  28. Wu H. Krause R. Gogoi E. Reck A. Graf A. Wislicenus M. Hild O.R. Guhl C. Multielectrode arrays at wafer-level for miniaturized sensors applications: Electrochemical growth of Ag/AgCl reference electrodes. Sensors 2023 23 13 6130 10.3390/s23136130 37447979
    [Google Scholar]
  29. Sultangaziyev A. Ilyas A. Dyussupova A. Bukasov R. Trends in application of SERS substrates beyond Ag and Au, and their role in bioanalysis. Biosensors 2022 12 11 967 10.3390/bios12110967 36354477
    [Google Scholar]
  30. Panwar S. Sarkar P. Kasim D.S. Anand R. Priya A. Prakash S. Jha S.K. Portable optical biosensor for point-of-care monitoring of salivary glucose using a paper-based microfluidic strip. Biosens. Bioelectron. X 2024 17 100452 10.1016/j.biosx.2024.100452
    [Google Scholar]
  31. Urbanowicz M. Sadowska K. Lemieszek B. Paziewska-Nowak A. Sołdatowska A. Dawgul M. Pijanowska D.G. Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate. Bioelectrochemistry 2023 152 108407 10.1016/j.bioelechem.2023.108407 36917883
    [Google Scholar]
  32. Estrada-Osorio D.V. Escalona-Villalpando R.A. Gutiérrez A. Arriaga L.G. Ledesma-García J. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022 146 108147 10.1016/j.bioelechem.2022.108147 35504230
    [Google Scholar]
  33. Kou B.B. Chai Y.Q. Yuan Y.L. Yuan R. A DNA nanopillar as a scaffold to regulate the ratio and distance of mimic enzymes for an efficient cascade catalytic platform. Chem. Sci. (Camb.) 2021 12 1 407 411 10.1039/D0SC03584J 34168746
    [Google Scholar]
  34. Yan Y. Qiao Z. Hai X. Song W. Bi S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens. Bioelectron. 2021 174 112827 10.1016/j.bios.2020.112827 33257182
    [Google Scholar]
  35. Arlyapov V.A. Khar’kova A.S. Abramova T.N. Kuznetsova L.S. Ilyukhina A.S. Zaitsev M.G. Machulin A.V. Reshetilov A.N. A hybrid redox-active polymer based on bovine serum albumin, ferrocene, carboxylated carbon nanotubes, and glucose oxidase. J. Anal. Chem. 2020 75 9 1189 1200 10.1134/S1061934820090026
    [Google Scholar]
  36. Arlyapov V.A. Kuznetsova L.S. Kharkova A.S. Provotorova D.V. Nenarochkina E.D. Kamanina O.A. Machulin A.V. Ponamoreva O.N. Alferov V.A. Reshetilov A.N. On the development of reagent-free conductive nanocomposite systems for the modification of printed electrodes when producing glucose biosensors. Nanobiotechnology Reports 2022 17 1 106 117 10.1134/S2635167622010025
    [Google Scholar]
  37. Luo Q. Tian M. Luo F. Zhao M. Lin C. Qiu B. Wang J. Lin Z. Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids. Anal. Chem. 2023 95 4 2390 2397 10.1021/acs.analchem.2c04418 36638045
    [Google Scholar]
  38. Chmayssem A. Shalayel I. Marinesco S. Zebda A. Investigation of GOx stability in a chitosan matrix: Applications for enzymatic electrodes. Sensors 2023 23 1 465 10.3390/s23010465 36617063
    [Google Scholar]
  39. Gulotta F.A. Montenegro M.A. Vergara Diaz L. Arata Badano J. Ferreyra N.F. Paz Zanini V.I. Chitosan-based Maillard products for enzyme immobilization in multilayers structure: Its application in electrochemical sensing. Microchem. J. 2023 190 108689 10.1016/j.microc.2023.108689
    [Google Scholar]
  40. Kuznetsova L.S. Arlyapov V.A. Kamanina O.A. Lantsova E.A. Tarasov S.E. Reshetilov A.N. Development of nanocomposite materials based on conductive polymers for using in glucose biosensor. Polymers 2022 14 8 1543 10.3390/polym14081543 35458293
    [Google Scholar]
  41. Kamanina O.A. Kamanin S.S. Kharkova A.S. Arlyapov V.A. Glucose biosensor based on screen-printed electrode modified with silicone sol–gel conducting matrix containing carbon nanotubes. 3 Biotech. 9 7 290 2019 10.1007/s13205‑019‑1818‑1
    [Google Scholar]
  42. Du P. Liu S. Sun H. Wu H. Wang Z.G. Designed histidine-rich peptide self-assembly for accelerating oxidase-catalyzed reactions. Nano Res. 2022 15 5 4032 4038 10.1007/s12274‑022‑4209‑6
    [Google Scholar]
  43. Yilmaz Y.Y. Yalcinkaya E.E. Demirkol D.O. Timur S. 4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors. Sens. Actuators B Chem. 2020 307 127665 10.1016/j.snb.2020.127665
    [Google Scholar]
  44. Wang Z. Liu Y. Wang Z. Huang X. Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021 2 6 20200165 10.1002/VIW.20200165
    [Google Scholar]
  45. Liu Y. Luo X. Dong Y. Hui M. Xu L. Li H. Lv J. Yang L. Cui Y. Uric acid and creatinine biosensors with enhanced room-temperature storage stability by a multilayer enzyme matrix. Anal. Chim. Acta 2022 1227 340264 10.1016/j.aca.2022.340264 36089306
    [Google Scholar]
  46. Wang S. Zhu L. Yang R. Li M. Dai F. Sheng S. Chen L. Liang S. Insights into high Li +/Mg 2+ separation performance using a PEI-grafted graphene oxide membrane. J. Phys. Chem. C 2023 127 14 6981 6990 10.1021/acs.jpcc.3c00723
    [Google Scholar]
  47. Isailović J. Vidović K. Hočevar S.B. Simple electrochemical sensors for highly sensitive detection of gaseous hydrogen peroxide using polyacrylic-acid-based sensing membrane. Sens. Actuators B Chem. 2022 352 131053 10.1016/j.snb.2021.131053
    [Google Scholar]
  48. Svitková V. Hanzelyová M. Macková H. Blaškovičová J. Vyskočil V. Farkašová D. Labuda J. Behaviour and detection of acridine-type DNA intercalators in urine using an electrochemical DNA-based biosensor with the protective polyvinyl alcohol membrane. J. Electroanal. Chem. (Lausanne) 2018 821 87 91 10.1016/j.jelechem.2017.11.028
    [Google Scholar]
  49. Wu S. Jiang M. Mao H. Zhao N. He D. Chen Q. Liu D. Zhang W. Song X.M. A sensitive cholesterol electrochemical biosensor based on biomimetic cerasome and graphene quantum dots. Anal. Bioanal. Chem. 2022 414 12 3593 3603 10.1007/s00216‑022‑03986‑9 35217877
    [Google Scholar]
  50. Shivabalan A.P. Ambrulevicius F. Talaikis M. Pudzaitis V. Niaura G. Valincius G. Effect of pH on electrochemical impedance response of tethered bilayer lipid membranes: Implications for quantitative biosensing. Chemosensors 2023 11 8 450 10.3390/chemosensors11080450
    [Google Scholar]
  51. Pollard T.D. Ong J.J. Goyanes A. Orlu M. Gaisford S. Elbadawi M. Basit A.W. Electrochemical biosensors: A nexus for precision medicine. Drug Discov. Today 2021 26 1 69 79 10.1016/j.drudis.2020.10.021 33137482
    [Google Scholar]
  52. Haleem A. Javaid M. Singh R.P. Suman R. Rab S. Biosensors applications in medical field: A brief review. Sens. Int. 2021 2 100100 10.1016/j.sintl.2021.100100
    [Google Scholar]
  53. Nakamura S. Hayashi S. Koga K. Effect of periodate oxidation on the structure and properties of glucose oxidase. Biochimica et Biophysica Acta (BBA) - Enzymology 1976 445 2 294 308 10.1016/0005‑2744(76)90084‑X 182278
    [Google Scholar]
  54. Garzillo A.M.V. di Paolo S. Fenice M. Petruccioli M. Buonocore V. Federici F. Production, purification and characterization of glucose oxidase from Penicillium variabile P16. Biotechnol. Appl. Biochem. 1995 22 169 178
    [Google Scholar]
  55. Semashko T.V. Mikhailova R.V. Eremin A.N. Extracellular glucose oxidase of Penicillium funiculosum 46.1. Appl. Biochem. Microbiol. 2003 39 4 368 374 10.1023/A:1024512316571
    [Google Scholar]
  56. Matsushita K. Shinagawa E. Adachi O. Ameyama M. Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: Membrane-bound and soluble forms are different molecular species. Biochemistry 1989 28 15 6276 6280 10.1021/bi00441a020 2551369
    [Google Scholar]
  57. Oubrie A. Rozeboom H.J. Dijkstra B.W. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: A covalent cofactor-inhibitor complex. Proc. Natl. Acad. Sci. USA 1999 96 21 11787 11791 10.1073/pnas.96.21.11787 10518528
    [Google Scholar]
  58. Adachi O. Matsushita K. Shinagawa E. Ameyama M. Crystallization and characterization of NADPdependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agric. Biol. Chem. 1980 44 301 308
    [Google Scholar]
  59. Shatton J.B. Halver J.E. Weinhouse S. Glucose (hexose 6-phosphate) dehydrogenase in liver of rainbow trout. J. Biol. Chem. 1971 246 15 4878 4885 10.1016/S0021‑9258(18)62018‑6 4397856
    [Google Scholar]
  60. Kobayashi Y. Horikoshi K. Purification and properties of NAD-dependent D-glucose dehydrogenase produced by alkalophilic Crynebacterium sp. No. 93-1. Agric. Biol. Chem. 1980 44 2261 2269
    [Google Scholar]
  61. Sygmund C. Staudigl P. Klausberger M. Pinotsis N. Djinović-Carugo K. Gorton L. Haltrich D. Ludwig R. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb. Cell Fact. 2011 10 1 106 10.1186/1475‑2859‑10‑106 22151971
    [Google Scholar]
  62. Okuda-Shimazaki J. Yoshida H. Sode K. FAD dependent glucose dehydrogenases – Discovery and engineering of representative glucose sensing enzymes -. Bioelectrochemistry 2020 132 107414 10.1016/j.bioelechem.2019.107414 31838457
    [Google Scholar]
  63. Frias J.P. Lim C.G. Ellison J.M. Montandon C.M. Review of adverse events associated with false glucose readings measured by GDH-PQQ-based glucose test strips in the presence of interfering sugars. Diabetes Care 2010 33 4 728 729 10.2337/dc09‑1822 20351227
    [Google Scholar]
  64. Gorton L. Domínguez E. Electrocatalytic oxidation of NAD(P) H at mediator-modified electrodes. J. Biotechnol. 2002 82 4 371 392 11996217
    [Google Scholar]
  65. Navarro-Nateras L. Diaz-Gonzalez J. Aguas-Chantes D. Coria-Oriundo L.L. Battaglini F. Ventura-Gallegos J.L. Zentella-Dehesa A. Oza G. Arriaga L.G. Casanova-Moreno J.R. Development of a redox-polymer-based electrochemical glucose biosensor suitable for integration in microfluidic 3D cell culture systems. Biosensors 2023 13 6 582 10.3390/bios13060582 37366947
    [Google Scholar]
  66. Gan L. Loke F.W.L. Cheong W.C. Ng J.S.H. Tan N.C. Zhu Z. Design and development of ferrocene-containing chitosan-cografted-branched polyethylenimine redox conjugates for monitoring free flap failure after reconstructive surgery. Biosens. Bioelectron. 2021 186 113283 10.1016/j.bios.2021.113283 33979719
    [Google Scholar]
  67. Tong X. Jiang L. Ao Q. Lv X. Song Y. Tang J. Highly stable glucose oxidase polynanogel@MXene/chitosan electrochemical biosensor based on a multi-stable interface structure for glucose detection. Biosens. Bioelectron. 2024 248 115942 10.1016/j.bios.2023.115942 38154330
    [Google Scholar]
  68. Liu C.T. Liu C.H. Lai Y.T. Lee C.Y. Gupta S. Tai N.H. A salivary glucose biosensor based on immobilization of glucose oxidase in Nafion-carbon nanotubes nanocomposites modified on screen printed electrode. Microchem. J. 2023 191 108872 10.1016/j.microc.2023.108872
    [Google Scholar]
  69. Gao N. Cai Z. Chang G. He Y. Non-invasive and wearable glucose biosensor based on gel electrolyte for detection of human sweat. J. Mater. Sci. 2023 58 2 890 901 10.1007/s10853‑022‑08095‑7
    [Google Scholar]
  70. German N. Popov A. Ramanaviciene A. The development and evaluation of reagentless glucose biosensors using dendritic gold nanostructures as a promising sensing platform. Biosensors 2023 13 7 727 10.3390/bios13070727 37504125
    [Google Scholar]
  71. Deepapriya S. Rodney J.D. Flora John J. Joshi S. Udayashankar N.K. Lakshmi Devi S. Jerome Das S. A novel effective immobilization of glucose oxidase on Ni0.25Zn0.25Cu0.25Co0.25La0.06Fe1.94O4 – Chitosan nanocomposite as an enzymatic glucose biosensor. Inorg. Chem. Commun. 2023 153 110822 10.1016/j.inoche.2023.110822
    [Google Scholar]
  72. Henao-Pabon G. Gao N. Prasad K.S. Li X. Direct electron transfer of glucose oxidase on pre-anodized paper/carbon electrodes modified through zero-length cross-linkers for glucose biosensors. Biosensors 2023 13 5 566 10.3390/bios13050566 37232927
    [Google Scholar]
  73. Liang J. Huang Q. Wu L. Wang L. Sun L. Zhou Z. Li G. Silicon-based field-effect glucose biosensor based on reduced graphene oxide-carboxymethyl chitosan-platinum nanocomposite material modified LAPS. Sens. Actuators A Phys. 2024 366 114937 10.1016/j.sna.2023.114937
    [Google Scholar]
  74. Li B. Wu X. Shi C. Dai Y. Zhang J. Liu W. Wu C. Zhang Y. Huang X. Zeng W. Flexible enzymatic biosensor based on graphene sponge for glucose detection in human sweat. Surf. Interfaces 2023 36 102525 10.1016/j.surfin.2022.102525
    [Google Scholar]
  75. Kausaite-Minkstimiene A. Kaminskas A. Gayda G. Ramanaviciene A. Towards a self-powered amperometric glucose biosensor based on a single-enzyme biofuel cell. Biosensors 2024 14 3 138 10.3390/bios14030138 38534245
    [Google Scholar]
  76. Bi R. Ma X. Miao K. Ma P. Wang Q. Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol. 2023 162 110132 10.1016/j.enzmictec.2022.110132 36152594
    [Google Scholar]
  77. Kuznowicz M. Jędrzak A. Jesionowski T. Nature-inspired biomolecular corona based on poly(caffeic acid) as a low potential and time-stable glucose biosensor. Molecules 2023 28 21 7281 10.3390/molecules28217281 37959700
    [Google Scholar]
  78. Promsuwan K. Soleh A. Samoson K. Saisahas K. Wangchuk S. Saichanapan J. Kanatharana P. Thavarungkul P. Limbut W. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta 2023 256 124266 10.1016/j.talanta.2023.124266 36693284
    [Google Scholar]
  79. Wang Y. Guo H. Yuan M. Yu J. Wang Z. Chen X. One-step laser synthesis platinum nanostructured 3D porous graphene: A flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration. Talanta 2023 257 124362 10.1016/j.talanta.2023.124362 36801557
    [Google Scholar]
  80. Komkova M.A. Alexandrovich A.S. Karyakin A.A. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis. Talanta 2024 267 125219 10.1016/j.talanta.2023.125219 37734286
    [Google Scholar]
  81. Khosravi S. Soltanian S. Servati A. Khademhosseini A. Zhu Y. Servati P. Screen-printed textile-based electrochemical biosensor for noninvasive monitoring of glucose in sweat. Biosensors 2023 13 7 684 10.3390/bios13070684 37504083
    [Google Scholar]
  82. Wijayanti S.D. Schachinger F. Ludwig R. Haltrich D. Electrochemical and biosensing properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens. Bioelectrochemistry 2023 153 108480 10.1016/j.bioelechem.2023.108480 37269684
    [Google Scholar]
  83. Sun Y. Xue W. Zhao J. Bao Q. Zhang K. Liu Y. Li H. Direct electrochemistry of glucose dehydrogenasefunctionalized polymers on a modified glassy carbon electrode and its molecular recognition of glucose. Int. J. Mol. Sci. 2023 24 7 6152 10.3390/ijms24076152 37047124
    [Google Scholar]
  84. Crapnell R.D. Tridente A. Banks C.E. Dempsey-Hibbert N.C. Evaluating the possibility of translating technological advances in non-invasive continuous lactate monitoring into critical care. Sensors 2021 21 3 879 10.3390/s21030879 33525567
    [Google Scholar]
  85. Dugar S. Choudhary C. Duggal A. Sepsis and septic shock: Guideline-based management. Cleve. Clin. J. Med. 87 1 53 64 2019 10.3949/ccjm.87a.18143
    [Google Scholar]
  86. Ryoo S.M. Lee J. Lee Y.S. Lee J.H. Lim K.S. Huh J.W. Hong S.B. Lim C.M. Koh Y. Kim W.Y. Lactate level versus lactate clearance for predicting mortality in patients with septic shock defined by sepsis-3. Crit. Care Med. 2018 46 6 e489 e495 10.1097/CCM.0000000000003030 29432347
    [Google Scholar]
  87. Garcia-Morales R. Zárate-Romero A. Wang J. Vazquez-Duhalt R. Bioengineered lactate oxidase mutants for enhanced electrochemical performance at acidic pH. ChemElectroChem 2023 10 22 e202300296 10.1002/celc.202300296
    [Google Scholar]
  88. Daboss E.V. Shcherbacheva E.V. Tikhonov D.V. Karyakin A.A. On-body hypoxia monitor based on lactate biosensors with a tunable concentration range. J. Electroanal. Chem. (Lausanne) 2023 935 117330 10.1016/j.jelechem.2023.117330
    [Google Scholar]
  89. Thongkhao P. Numnuam A. Khongkow P. Sangkhathat S. Phairatana T. Disposable polyaniline/m-phenylenediamine-based electrochemical lactate biosensor for early sepsis diagnosis. Polymers 2024 16 4 473 10.3390/polym16040473 38399851
    [Google Scholar]
  90. Pleshakov V. Daboss E. Karyakin A. Novel electrochemical lactate biosensors based on prussian blue nanoparticles. Eng. Proc. 2023 35 1 2
    [Google Scholar]
  91. Li P. Kalambate P.K. Harris K.D. Jemere A.B. Tang X.S. Robust and flexible electrochemical lactate sensors for sweat analysis based on nanozyme-enhanced electrode. Biosens. Bioelectron. X 2024 17 100455 10.1016/j.biosx.2024.100455
    [Google Scholar]
  92. Shitanda I. Ozone Y. Morishita Y. Matsui H. Loew N. Motosuke M. Mukaimoto T. Kobayashi M. Mitsuhara T. Sugita Y. Matsuo K. Yanagita S. Suzuki T. Mikawa T. Watanabe H. Itagaki M. Air-bubbleinsensitive microfluidic lactate biosensor for continuous monitoring of lactate in sweat. ACS Sens. 2023 8 6 2368 2374 10.1021/acssensors.3c00490 37216270
    [Google Scholar]
  93. Ma G. Electrochemical sensing monitoring of blood lactic acid levels in sweat during exhaustive exercise. Int. J. Electrochem. Sci. 2023 18 4 100064 10.1016/j.ijoes.2023.100064
    [Google Scholar]
  94. Asaduzzaman M. Zahed M.A. Sharifuzzaman M. Reza M.S. Hui X. Sharma S. Shin Y.D. Park J.Y. A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 2023 219 114846 10.1016/j.bios.2022.114846 36327564
    [Google Scholar]
  95. Tao Y. Zhu R. Hao P. Jiang W. Li M. Liu Q. Yang L. Wang Y. Wang D. Textile-based dual-mode organic electrochemical transistors for lactate biosensing. Mater. Sci. Eng. B 2023 290 116356 10.1016/j.mseb.2023.116356
    [Google Scholar]
  96. Freeman D.M.E. Ming D.K. Wilson R. Herzog P.L. Schulz C. Felice A.K.G. Chen Y.C. O’Hare D. Holmes A.H. Cass A.E.G. Continuous measurement of lactate concentration in human subjects through direct electron transfer from enzymes to microneedle electrodes. ACS Sens. 2023 8 4 1639 1647 10.1021/acssensors.2c02780 36967522
    [Google Scholar]
  97. Probst D. Sode K. Development of closed bipolar electrode based L-lactate sensor employing quasi-direct electron transfer type enzyme with cyclic voltammetry. Biosens. Bioelectron. 2024 254 116197 10.1016/j.bios.2024.116197 38493528
    [Google Scholar]
  98. Sierra-Padilla A. Garcia-Guzman J.J. Blanco-Díaz L. Bellido-Milla D. Palacios-Santander J.M. Cubillana-Aguiler L. Innovative multipolymer-based electrochemical biosensor built on a sonogel–carbon electrode aiming for continuous and real-time lactate determination in physiological samples: A new scenario to exploit additive printing. Eng. Proc. 2023 48 1 48
    [Google Scholar]
  99. Dagar K. Narwal V. Pundir C.S. An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes. Sens. Int. 2023 4 100245 10.1016/j.sintl.2023.100245
    [Google Scholar]
  100. Khan R. Andreescu S. Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor. Biosens. Bioelectron. 2024 248 115975 10.1016/j.bios.2023.115975 38159417
    [Google Scholar]
  101. Han J. Shaohui J. Fabrication of a novel sensor for lactate screening in saliva samples before and after exercise in athletes. Alex. Eng. J. 2024 92 171 175 10.1016/j.aej.2024.02.040
    [Google Scholar]
  102. Weng X. Li M. Weng Z. Zhang J. Peng B. Jiang H. A wearable nanozyme-enzyme electrochemical biosensor for sweat lactate monitoring. SSRN 10.2139/ssrn.4640082
    [Google Scholar]
  103. Hjort R.G. Pola C.C. Soares R.R. Opare-Addo J. Smith E.A. Claussen J.C. Gomes C.L. Laser-induced graphene decorated with platinum nanoparticles for electrochemical analysis of saliva. ACS Appl. Nano Mater. 2023 6 22 20801 20811 10.1021/acsanm.3c03786
    [Google Scholar]
  104. Gorham F.D. Myers V.C. Remarks on the cholesterol content of human blood. Arch. Intern. Med. 1917 XX 4 599 612 10.1001/archinte.1917.00090040127006
    [Google Scholar]
  105. Demkiv O. Nogala W. Stasyuk N. Grynchyshyn N. Vus B. Gonchar M. The peroxidase-like nanocomposites as hydrogen peroxide-sensitive elements in cholesterol oxidase-based biosensors for cholesterol assay. J. Funct. Biomater. 2023 14 6 315 10.3390/jfb14060315 37367279
    [Google Scholar]
  106. Shi R. Chen J. Wan X. Tian J. Direct electrochemistry of cholesterol oxidase immobilized on PEDOT functionalized screen-printed electrodes. J. Electrochem. Soc. 2023 170 2 027510 10.1149/1945‑7111/acbac2
    [Google Scholar]
  107. Yan Q. Wu R. Chen H. Wang H. Nan W. Highly sensitive cholesterol biosensor based on electron mediator thionine and cubic-shaped Cu2O nanomaterials. Microchem. J. 2023 185 108201 10.1016/j.microc.2022.108201
    [Google Scholar]
  108. Kartlaşmiş K. Kökbaş U. Kayrin L. Electrochemical characterization of cholesterol biosensor formed by polymer film based on o-phenylenediamine and benzoquinone. İstanb.l Gelişim Üniv. Sağlık Bilim. Derg. 2023 20 347 360
    [Google Scholar]
  109. Atailia S. Baraket A. Rabai S. Benounis M. Jaffrezic N. Araar H. Naït-Bouda A. Boumaza A. Errachid A. Houhamdi M. Electrochemical urea biosensor based on Proteus mirabilis urease immobilized over polyaniline PANi‐Glassy carbon electrode. Electroanalysis 2023 35 9 e202200502 10.1002/elan.202200502
    [Google Scholar]
  110. Prabakaran A. Hameed B.S. Devi K.S.S. Krishnan U.M. Novel electrochemical urea biosensor employing gold nanosphere-decorated Prussian blue nanocubes. Chem. Zvesti 2023 77 8 4265 4276 10.1007/s11696‑023‑02775‑7
    [Google Scholar]
  111. Hassan R.Y.A. Kamel A.M. Hashem M.S. Hassan H.N.A. Abd El-Ghaffar M.A. A new disposable biosensor platform: Carbon nanotube/poly(o-toluidine) nanocomposite for direct biosensing of urea. J. Solid State Electrochem. 2018 22 6 1817 1823 10.1007/s10008‑017‑3857‑z
    [Google Scholar]
  112. Muthusankar E. Ponnusamy V.K. Ragupathy D. Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth. Met. 2019 254 134 140 10.1016/j.synthmet.2019.06.012
    [Google Scholar]
  113. Liu H. Jamal R. Abdiryim T. Simayi R. Liu L. Liu Y. Carboxylated cellulose as a soft template combined with PEDOT derivatives in [BMIM] Cl: A competent biosensor for detection of guanine and uric acid in the blood. ACS Sustain. Chem. Eng. 2021 9 17 5860 5871 10.1021/acssuschemeng.0c09259
    [Google Scholar]
  114. Sadanandhan N.K. Devaki S.J. Gold nanoparticle patterned on PANI nanowire modified transducer for the simultaneous determination of neurotransmitters in presence of ascorbic acid and uric acid. J. Appl. Polym. Sci. 2017 134 1 app.44351 10.1002/app.44351
    [Google Scholar]
  115. Huang X. Shi W. Li J. Bao N. Yu C. Gu H. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. Anal. Chim. Acta 2020 1103 75 83 10.1016/j.aca.2019.12.057 32081191
    [Google Scholar]
  116. Zahed M.A. Barman S.C. Toyabur R.M. Sharifuzzaman M. Xuan X. Nah J. Park J.Y. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@ MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid. J. Electrochem. Soc. 2019 166 6 B304 B311 10.1149/2.0131906jes
    [Google Scholar]
  117. de Fátima Giarola J. Mano V. Pereira A.C. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis 2018 30 1 119 127 10.1002/elan.201700538
    [Google Scholar]
  118. Zheng W. Zhao M. Liu W. Yu S. Niu L. Li G. Li H. Liu W. Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. J. Electroanal. Chem. (Lausanne) 2018 813 75 82 10.1016/j.jelechem.2018.02.022
    [Google Scholar]
  119. Zheng H. Chen H. Pu Z. Li D. A breathable flexible glucose biosensor with embedded electrodes for long-term and accurate wearable monitoring. Microchem. J. 2022 181 107707 10.1016/j.microc.2022.107707
    [Google Scholar]
  120. Yunus G. Singh R. Raveendran S. Kuddus M. Electrochemical biosensors in healthcare services: Bibliometric analysis and recent developments. PeerJ 2023 11 e15566 10.7717/peerj.15566 37397018
    [Google Scholar]
  121. Erdem A. Eksin E. Senturk H. Yildiz E. Maral M. Recent developments in wearable biosensors for healthcare and biomedical applications. Trends Analyt. Chem. 2024 171 117510 10.1016/j.trac.2023.117510
    [Google Scholar]
  122. Clarke W.L. Kovatchev B. Chapter 8 - Accuracy of CGM systems. Glucose Monitoring Devices Academic Press 2020 159 171
    [Google Scholar]
  123. Lemkes B.A. Hermanides J. Devries J.H. Holleman F. Meijers J.C.M. Hoekstra J.B.L. Hyperglycemia: a prothrombotic factor? J. Thromb. Haemost. 2010 8 8 1663 1669 10.1111/j.1538‑7836.2010.03910.x 20492456
    [Google Scholar]
  124. Jiang H. Xia C. Lin J. Garalleh H.A.L. Alalawi A. Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. Environ. Res. 2023 221 115250 10.1016/j.envres.2023.115250 36646201
    [Google Scholar]
  125. German N. Ramanaviciene A. Ramanavicius A. Dispersed conducting polymer nanocomposites with glucose oxidase and gold nanoparticles for the design of enzymatic glucose biosensors. Polymers 2021 13 13 2173 10.3390/polym13132173 34209068
    [Google Scholar]
  126. Yan L. Miao K. Ma P. Ma X. Bi R. Chen F. A feasible electrochemical biosensor for determination of glucose based on Prussian blue – Enzyme aggregates cascade catalytic system. Bioelectrochemistry 2021 141 107838 10.1016/j.bioelechem.2021.107838 34038858
    [Google Scholar]
  127. Zhao L. Wen Z. Jiang F. Zheng Z. Lu S. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Advances 2020 10 11 6163 6171 10.1039/C9RA10374K 35496012
    [Google Scholar]
  128. Samant P.P. Niedzwiecki M.M. Raviele N. Tran V. Mena-Lapaix J. Walker D.I. Felner E.I. Jones D.P. Miller G.W. Prausnitz M.R. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 2020 12 571 eaaw0285 10.1126/scitranslmed.aaw0285 33239384
    [Google Scholar]
  129. Tehrani F. Teymourian H. Wuerstle B. Kavner J. Patel R. Furmidge A. Aghavali R. Hosseini-Toudeshki H. Brown C. Zhang F. Mahato K. Li Z. Barfidokht A. Yin L. Warren P. Huang N. Patel Z. Mercier P.P. Wang J. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 2022 6 11 1214 1224 10.1038/s41551‑022‑00887‑1 35534575
    [Google Scholar]
  130. Yin S. Yu Z. Song N. Guo Z. Li W. Ma J. Wang X. Liu J. Liang M. A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid. Biosens. Bioelectron. 2024 244 115822 10.1016/j.bios.2023.115822 37956637
    [Google Scholar]
  131. Jin X. Li G. Xu T. Su L. Yan D. Zhang X. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 2022 196 113760 10.1016/j.bios.2021.113760 34741953
    [Google Scholar]
  132. Li L. Zhou Y. Sun C. Zhou Z. Zhang J. Xu Y. Xiao X. Deng H. Zhong Y. Li G. Chen Z. Deng W. Hu X. Wang Y. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring. Acta Biomater. 2024 175 199 213 10.1016/j.actbio.2023.12.044 38160859
    [Google Scholar]
  133. Foucher C.D. Tubben R.E. Lactic Acidosis. Treasure Island, FL StatPearls Publishing 2023 29262026
    [Google Scholar]
  134. Yang M. Wang H. Cheng J. Continuous monitoring of multiple biomarkers with an ultrasensitive 3D-structured wearable biosensor. Cell Rep. Methods 2023 3 9 100579 10.1016/j.crmeth.2023.100579 37751686
    [Google Scholar]
  135. Wu Y.T. Tsao P.K. Chen K.J. Lin Y.C. Aulia S. Chang L.Y. Ho K.C. Chang C.Y. Mizuguchi H. Yeh M.H. Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors. Sens. Actuators B Chem. 2021 346 130505 10.1016/j.snb.2021.130505
    [Google Scholar]
  136. Reza M.S. Seonu S. Abu Zahed M. Asaduzzaman M. Song H. Hoon Jeong S. Park J.Y. Reduced graphene oxide-functionalized polymer microneedle for continuous and wide-range monitoring of lactate in interstitial fluid. Talanta 2024 270 125582 10.1016/j.talanta.2023.125582 38176248
    [Google Scholar]
  137. Bollella P. Sharma S. Cass A.E.G. Antiochia R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 2019 123 152 159 10.1016/j.bios.2018.08.010 30177422
    [Google Scholar]
  138. Komkova M.A. Eliseev A.A. Poyarkov A.A. Daboss E.V. Evdokimov P.V. Eliseev A.A. Karyakin A.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens. Bioelectron. 2022 202 113970 10.1016/j.bios.2022.113970 35032921
    [Google Scholar]
  139. Xuan X. Pérez-Ràfols C. Chen C. Cuartero M. Crespo G.A. Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 2021 6 7 2763 2771 10.1021/acssensors.1c01009 34228919
    [Google Scholar]
  140. Xuan X. Chen C. Pérez-Ràfols C. Swarén M. Wedholm L. Cuartero M. Crespo G.A. A wearable biosensor for sweat lactate as a proxy for sport performance monitoring. Anal. Sens. 2023 3 4 e202200047 10.1002/anse.202200047
    [Google Scholar]
  141. Deng S. Application of graphene oxide nanosheet lactate biosensors in continuous assessment of athlete fitness. Alex. Eng. J. 2024 88 31 35 10.1016/j.aej.2024.01.017
    [Google Scholar]
  142. Kim J. Sempionatto J.R. Imani S. Hartel M.C. Barfidokht A. Tang G. Campbell A.S. Mercier P.P. Wang J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. (Weinh.) 2018 5 10 1800880 10.1002/advs.201800880 30356971
    [Google Scholar]
  143. Daboss E.V. Shcherbacheva E.V. Karyakin A.A. Simultaneous noninvasive monitoring of diabetes and hypoxia using core-shell nanozyme – Oxidase enzyme biosensors. Sens. Actuators B Chem. 2023 380 133337 10.1016/j.snb.2023.133337
    [Google Scholar]
  144. He W. Wang C. Wang H. Jian M. Lu W. Liang X. Zhang X. Yang F. Zhang Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 2019 5 11 eaax0649 10.1126/sciadv.aax0649 31723600
    [Google Scholar]
  145. Bargnoux A.S. Kuster N. Sutra T. Laroche L. Rodriguez A. Morena M. Chenine L. Chalabi L. Dupuy A.M. Badiou S. Cristol J.P. Evaluation of a new point-of-care testing for creatinine and urea measurement. Scand. J. Clin. Lab. Invest. 2021 81 4 290 297 10.1080/00365513.2021.1914344 33908840
    [Google Scholar]
  146. Kucherenko D.Y. Kucherenko I.S. Soldatkin O.O. Topolnikova Y.V. Dzyadevych S.V. Soldatkin A.P. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry 2019 128 100 108 10.1016/j.bioelechem.2019.03.010 30959397
    [Google Scholar]
  147. Cheraghi S. Taher M.A. Karimi-Maleh H. Karimi F. Shabani-Nooshabadi M. Alizadeh M. Al-Othman A. Erk N. Yegya Raman P.K. Karaman C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 2022 287 Pt 2 132187 10.1016/j.chemosphere.2021.132187 34509007
    [Google Scholar]
  148. Nave O.P. Modification of semi-analytical method applied system of ODE. Mod. Appl. Sci. 2020 14 6 75 10.5539/mas.v14n6p75
    [Google Scholar]
  149. Cay G. Finco M.G. Garcia J. McNitt-Gray J.L. Armstrong D.G. Najafi B. Towards a remote patient monitoring platform for comprehensive risk evaluations for people with diabetic foot ulcers. Sensors 2024 24 10 2979 10.3390/s24102979 38793835
    [Google Scholar]
  150. Miller K.M. Hermann J. Foster N. Hofer S.E. Rickels M.R. Danne T. Clements M.A. Lilienthal E. Maahs D.M. Holl R.W. Longitudinal changes in continuous glucose monitoring use among individuals with type 1 diabetes: International comparison in the German and Austrian DPV and US T1D exchange registries. Diabetes Care 2020 43 1 e1 e2 10.2337/dc19‑1214 31672703
    [Google Scholar]
  151. Bloss C.S. Wineinger N.E. Peters M. Boeldt D.L. Ariniello L. Kim J.Y. Sheard J. Komatireddy R. Barrett P. Topol E.J. A prospective randomized trial examining health care utilization in individuals using multiple smartphone-enabled biosensors. PeerJ 2016 4 e1554 10.7717/peerj.1554 26788432
    [Google Scholar]
  152. Karim M.E. Biosensors: Ethical, regulatory, and legal issues. Handbook of Cell Biosensors. Thouand G. Cham Springer 2021 679 705 10.1007/978‑3‑030‑23217‑7_23
    [Google Scholar]
  153. Restrepo M. Huffenberger A.M. Hanson C.W. Draugelis M. Laudanski K. Remote monitoring of critically-ill post-surgical patients: Lessons from a biosensor implementation trial. Healthcare 2021 9 3 343 10.3390/healthcare9030343 33803575
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266323004241015122441
Loading
/content/journals/ctmc/10.2174/0115680266323004241015122441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test