Skip to content
2000
Volume 24, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266321659240906114742
2024-12-01
2024-11-21
Loading full text...

Full text loading...

References

  1. KaratiD. ShaooK.K. MahadikK.R. KumrD. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective.Results Chem.2022410053210.1016/j.rechem.2022.100532
    [Google Scholar]
  2. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  3. BhullarK.S. LagarónN.O. McGowanE.M. ParmarI. JhaA. HubbardB.P. RupasingheH.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions.Mol. Cancer20181714810.1186/s12943‑018‑0804‑229455673
    [Google Scholar]
  4. ArrouchiH. LakhliliW. IbrahimiA. A review on PIM kinases in tumors.Bioinformation2019151404510.6026/9732063001504031359998
    [Google Scholar]
  5. PanchalN.K. SabinaE.P. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy.Life Sci.202025511786610.1016/j.lfs.2020.11786632479955
    [Google Scholar]
  6. ZhangX. SongM. KunduJ.K. LeeM.H. LiuZ.Z. PIM kinase as an executional target in cancer.J. Cancer Prev.201823310911610.15430/JCP.2018.23.3.10930370255
    [Google Scholar]
  7. DryginD. HaddachM. PierreF. RyckmanD.M. Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.J. Med. Chem.201255198199820810.1021/jm300923422924342
    [Google Scholar]
  8. RathiA. KumarD. HasanG.M. HaqueM.M. HassanM.I. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects.Biochim. Biophys. Acta, Gen. Subj.202118651112999510.1016/j.bbagen.2021.12999534455019
    [Google Scholar]
  9. AsatiV. MahapatraD.K. BhartiS.K. PIM kinase inhibitors: Structural and pharmacological perspectives.Eur. J. Med. Chem.20191729510810.1016/j.ejmech.2019.03.05030954777
    [Google Scholar]
  10. DaenthanasanmakA. WuY. IamsawatS. NguyenH.D. BastianD. ZhangM. SofiM.H. ChatterjeeS. HillE.G. MehrotraS. KraftA.S. YuX.Z. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity.J. Clin. Invest.201812872787280110.1172/JCI9540729781812
    [Google Scholar]
  11. LeB.T. KumarasiriM. AdamsJ.R.J. YuM. MilneR. SykesM.J. WangS. Targeting Pim kinases for cancer treatment: Opportunities and challenges.Future Med. Chem.201571355310.4155/fmc.14.14525582332
    [Google Scholar]
  12. QianK.C. WangL. HickeyE.R. StudtsJ. BarringerK. PengC. KronkaitisA. LiJ. WhiteA. MischeS. FarmerB. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase.J. Biol. Chem.200528076130613710.1074/jbc.M40912320015525646
    [Google Scholar]
  13. ZhukovaIuN. AlekseevaM.G. ZakharevichN.V. Shtil’A.A. DanilenkoV.N. [The Pim family of protein kinases: Structure, functions and roles in hematopoietic malignancies].Mol. Biol. (Mosk.)201145575576422393773
    [Google Scholar]
  14. RazmazmaH. EbrahimiA. HashemiM. Structural insights for rational design of new PIM-1 kinase inhibitors based on 3,5-disubstituted indole derivatives: An integrative computational approach.Comput. Biol. Med.202011810364110.1016/j.compbiomed.2020.10364132174320
    [Google Scholar]
  15. WangY. XiuJ. RenC. YuZ. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and therapeutics.J. Cancer20211292570258110.7150/jca.5313433854618
    [Google Scholar]
  16. BachmannM. MöröyT. The serine/threonine kinase Pim-1.Int. J. Biochem. Cell Biol.200537472673010.1016/j.biocel.2004.11.00515694833
    [Google Scholar]
  17. FriedmannM. NissenM.S. HooverD.S. ReevesR. MagnusonN.S. Characterization of the proto-oncogene Pim-1: Kinase activity and substrate recognition sequence.Arch. Biochem. Biophys.1992298259460110.1016/0003‑9861(92)90454‑51416988
    [Google Scholar]
  18. EswaranJ. KnappS. Insights into protein kinase regulation and inhibition by large scale structural comparison.Biochim. Biophys. Acta. Proteins Proteomics20101804342943210.1016/j.bbapap.2009.10.01319854302
    [Google Scholar]
  19. MukaidaN. WangY.Y. LiY.Y. Roles of Pim‐3, a novel survival kinase, in tumorigenesis.Cancer Sci.201110281437144210.1111/j.1349‑7006.2011.01966.x21518143
    [Google Scholar]
  20. FujiiC. NakamotoY. LuP. TsuneyamaK. PopivanovaB.K. KanekoS. MukaidaN. Aberrant expression of serine/threonine kinase Pim‐3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines.Int. J. Cancer2005114220921810.1002/ijc.2071915540201
    [Google Scholar]
  21. Narlik-GrassowM. Blanco-AparicioC. CarneroA. The PIM family of serine/threonine kinases in cancer.Med. Res. Rev.201434113615910.1002/med.2128423576269
    [Google Scholar]
  22. HoganC. HutchisonC. MarcarL. MilneD. SavilleM. GoodladJ. KernohanN. MeekD. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma.J. Biol. Chem.200828326180121802310.1074/jbc.M70969520018467333
    [Google Scholar]
  23. WangZ. BhattacharyaN. WeaverM. PetersenK. MeyerM. GapterL. MagnusonN.S. Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis.J. Vet. Sci.20012316717910.4142/jvs.2001.2.3.16712441685
    [Google Scholar]
  24. WhiteE. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines.Genes Dev.200317151813181610.1101/gad.112310312897050
    [Google Scholar]
  25. Jiménez-GarcíaM.P. Lucena-CacaceA. Robles-FríasM.J. Narlik-GrassowM. Blanco-AparicioC. CarneroA. The role of PIM1/PIM2 kinases in tumors of the male reproductive system.Sci. Rep.2016613807910.1038/srep3807927901106
    [Google Scholar]
  26. LiangC. LiY.Y. Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review).Mol. Med. Rep.2014962051206010.3892/mmr.2014.213924737044
    [Google Scholar]
  27. GuL. VogiatziP. PuhrM. DagvadorjA. LutzJ. RyderA. AddyaS. FortinaP. CooperC. LeibyB. DasguptaA. HyslopT. BubendorfL. AlanenK. MirttiT. NevalainenM.T. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. Relat. Cancer201017248149310.1677/ERC‑09‑032820233708
    [Google Scholar]
  28. HorinagaM. OkitaH. NakashimaJ. KanaoK. SakamotoM. MuraiM. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer.Urology200566367167510.1016/j.urology.2005.03.06616140113
    [Google Scholar]
  29. HellstenR. LilljebjörnL. JohanssonM. LeanderssonK. BjartellA. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC‐like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors.Prostate201979141611162110.1002/pros.2388531348843
    [Google Scholar]
  30. LuszczakS. KumarC. SathyadevanV.K. SimpsonB.S. GatelyK.A. WhitakerH.C. HeaveyS. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer.Signal Transduct. Target. Ther.202051710.1038/s41392‑020‑0109‑y32296034
    [Google Scholar]
  31. NosakaT. KitamuraT. Pim-1 expression is sufficient to induce cytokine independence in murine hematopoietic cells, but is dispensable for BCR-ABL–mediated transformation.Exp. Hematol.200230769770210.1016/S0301‑472X(02)00808‑112135666
    [Google Scholar]
  32. BraultL. GasserC. BracherF. HuberK. KnappS. SchwallerJ. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers.Haematologica201095610041510.3324/haematol.2009.017079.
    [Google Scholar]
  33. JankuF. YapT.A. Meric-BernstamF. Targeting the PI3K pathway in cancer: Are we making headway?Nat. Rev. Clin. Oncol.201815527329110.1038/nrclinonc.2018.2829508857
    [Google Scholar]
  34. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  35. MabuchiS. KurodaH. TakahashiR. SasanoT. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer.Gynecol. Oncol.2015137117317910.1016/j.ygyno.2015.02.00325677064
    [Google Scholar]
  36. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers (Basel)2017955210.3390/cancers905005228513565
    [Google Scholar]
  37. AzizA. FaridS. QinK. WangH. LiuB. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer.Biomolecules201881710.3390/biom801000729401696
    [Google Scholar]
  38. GyoriD. ChessaT. HawkinsP. StephensL. Class (I) phosphoinositide 3-kinases in the tumor microenvironment.Cancers (Basel)2017932410.3390/cancers903002428273837
    [Google Scholar]
  39. FrumanD.A. RommelC. PI3K and cancer: Lessons, challenges and opportunities.Nat. Rev. Drug Discov.201413214015610.1038/nrd420424481312
    [Google Scholar]
  40. DobbinZ. LandenC. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer.Int. J. Mol. Sci.20131448213822710.3390/ijms1404821323591839
    [Google Scholar]
  41. LaychockS.G. Insulin receptor signaling.Encyclopedia of Hormones200336838010.1016/B0‑12‑341103‑3/00177‑7.
    [Google Scholar]
  42. MuraskiJ.A. RotaM. MisaoY. FransioliJ. CottageC. GudeN. EspositoG. DelucchiF. ArcareseM. AlvarezR. SiddiqiS. EmmanuelG.N. WuW. FischerK. MartindaleJ.J. GlembotskiC.C. LeriA. KajsturaJ. MagnusonN. BernsA. BerettaR.M. HouserS.R. SchaeferE.M. AnversaP. SussmanM.A. Pim-1 regulates cardiomyocyte survival downstream of Akt.Nat. Med.200713121467147510.1038/nm167118037896
    [Google Scholar]
  43. WarfelN.A. KraftA.S. PIM kinase (and Akt) biology and signaling in tumors.Pharmacol. Ther.2015151414910.1016/j.pharmthera.2015.03.00125749412
    [Google Scholar]
  44. CenB. XiongY. SongJ.H. MahajanS. DuPontR. McEachernK. DeAngeloD.J. CortesJ.E. MindenM.D. EbensA. MimsA. LaRueA.C. KraftA.S. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling.Mol. Cell. Biol.201434132517253210.1128/MCB.00147‑1424777602
    [Google Scholar]
  45. LaplanteM. SabatiniD.M. mTOR signaling in growth control and disease.Cell201214922749310.1016/j.cell.2012.03.017.
    [Google Scholar]
  46. MabuchiS. HisamatsuT. KimuraT. Targeting mTOR signaling pathway in ovarian cancer.Curr. Med. Chem.201118192960296810.2174/09298671179615045021651485
    [Google Scholar]
  47. LaplanteM. SabatiniD.M. mTOR signaling at a glance.J. Cell Sci.2009122203589359410.1242/jcs.05101119812304
    [Google Scholar]
  48. VielS. BessonL. MarotelM. WalzerT. MarçaisA. Regulation of mTOR, metabolic fitness, and effector functions by cytokines in natural killer cells.Cancers (Basel)201791013210.3390/cancers910013228956813
    [Google Scholar]
  49. FaesS. SantoroT. DemartinesN. DormondO. Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy.Cancers (Basel)201791115210.3390/cancers911015229104248
    [Google Scholar]
  50. LuJ. ZavorotinskayaT. DaiY. NiuX.H. CastilloJ. SimJ. YuJ. WangY. LangowskiJ.L. HolashJ. ShannonK. GarciaP.D. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation.Blood201312291610162010.1182/blood‑2013‑01‑48145723818547
    [Google Scholar]
  51. BellonM. NicotC. Targeting Pim kinases in hematological cancers: Molecular and clinical review.Mol. Cancer20232211810.1186/s12943‑023‑01721‑136694243
    [Google Scholar]
  52. van der LugtN.M. DomenJ. VerhoevenE. LindersK. van der GuldenH. AllenJ. BernsA. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2.EMBO J.199514112536254410.1002/j.1460‑2075.1995.tb07251.x7781606
    [Google Scholar]
  53. Blanco-AparicioC. CarneroA. Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities.Biochem. Pharmacol.201385562964310.1016/j.bcp.2012.09.01823041228
    [Google Scholar]
  54. HoriuchiD. KusdraL. HuskeyN.E. ChandrianiS. LenburgM.E. Gonzalez-AnguloA.M. CreasmanK.J. BazarovA.V. SmythJ.W. DavisS.E. YaswenP. MillsG.B. EssermanL.J. GogaA. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition.J. Exp. Med.2012209467969610.1084/jem.2011151222430491
    [Google Scholar]
  55. ShiroganeT. FukadaT. MullerJ.M.M. ShimaD.T. HibiM. HiranoT. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis.Immunity199911670971910.1016/S1074‑7613(00)80145‑410626893
    [Google Scholar]
  56. AndersonP.D. McKissicS.A. LoganM. RohM. FrancoO.E. WangJ. DoubinskaiaI. MeerR. HaywardS.W. EischenC.M. EltoumI.E. AbdulkadirS.A. Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis.J. Clin. Invest.201212251907191910.1172/JCI5854022484818
    [Google Scholar]
  57. PestellR.G. AlbaneseC. ReutensA.T. SegallJ.E. LeeR.J. ArnoldA. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation.Endocr. Rev.199920450153410453356
    [Google Scholar]
  58. MorishitaD. KatayamaR. SekimizuK. TsuruoT. FujitaN. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels.Cancer Res.200868135076508510.1158/0008‑5472.CAN‑08‑063418593906
    [Google Scholar]
  59. JessusC. OzonR. Function and regulation of cdc25 protein phosphatase through mitosis and meiosis.Prog. Cell Cycle Res.1995121522810.1007/978‑1‑4615‑1809‑9_179552365
    [Google Scholar]
  60. KumagaiA. DunphyW.G. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25.Genes Dev.19991391067107210.1101/gad.13.9.106710323858
    [Google Scholar]
  61. YangE. ZhaJ. JockelJ. BoiseL.H. ThompsonC.B. KorsmeyerS.J. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death.Cell199580228529110.1016/0092‑8674(95)90411‑57834748
    [Google Scholar]
  62. AsanoJ. NakanoA. OdaA. AmouH. HiasaM. TakeuchiK. MikiH. NakamuraS. HaradaT. FujiiS. KagawaK. EndoI. YataK. SakaiA. OzakiS. MatsumotoT. AbeM. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells.Leukemia20112571182118810.1038/leu.2011.6021475253
    [Google Scholar]
  63. Kapelko-SlowikK. OwczarekT.B. GrzymajloK. Urbaniak-KujdaD. JazwiecB. SlowikM. KuliczkowskiK. UgorskiM. Elevated PIM2 gene expression is associated with poor survival of patients with acute myeloid leukemia.Leuk. Lymphoma20165792140214910.3109/10428194.2015.112499126764044
    [Google Scholar]
  64. Kapelko-SłowikK. DybkoJ. GrzymajłoK. JaźwiecB. Urbaniak-KujdaD. SłowikM. PotoczekS. WołowiecD. Expression of the PIM2 gene is associated with more aggressive clinical course in patients with chronic lymphocytic leukemia.Adv. Clin. Exp. Med.201828338539010.17219/acem/9077130525315
    [Google Scholar]
  65. DaiH. LiR. WheelerT. de VivarA.D. FrolovA. TahirS. AgoulnikI. ThompsonT. RowleyD. AyalaG. Pim‐2 upregulation: Biological implications associated with disease progression and perinueral invasion in prostate cancer.Prostate200565327628610.1002/pros.2029416015593
    [Google Scholar]
  66. LiY.Y. MukaidaN. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression.World J. Gastroenterol.201420289392940425071334
    [Google Scholar]
  67. ZhaJ. HaradaH. YangE. JockelJ. KorsmeyerS.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L).Cell199687461962810.1016/S0092‑8674(00)81382‑38929531
    [Google Scholar]
  68. LiangC. YuX.J. GuoX.Z. SunM.H. WangZ. SongY. NiQ.X. LiH.Y. MukaidaN. LiY.Y. MicroRNA-33a-mediated downregulation of Pim-3 kinase expression renders human pancreatic cancer cells sensitivity to gemcitabine.Oncotarget2015616144401445510.18632/oncotarget.388525971209
    [Google Scholar]
  69. GapterL.A. MagnusonN.S. NgK. HosickH.L. Pim-1 kinase expression during murine mammary development.Biochem. Biophys. Res. Commun.2006345398999710.1016/j.bbrc.2006.04.11016712793
    [Google Scholar]
  70. Brasó-MaristanyF. FilostoS. CatchpoleS. MarlowR. QuistJ. Francesch-DomenechE. PlumbD.A. ZakkaL. GazinskaP. LiccardiG. MeierP. Gris-OliverA. CheangM.C.U. Perdrix-RosellA. ShafatM. NoëlE. PatelN. McEachernK. ScaltritiM. CastelP. NoorF. BuusR. MathewS. WatkinsJ. SerraV. MarraP. GrigoriadisA. TuttA.N. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer.Nat. Med.201622111303131310.1038/nm.419827775704
    [Google Scholar]
  71. LofterødT. MortensenE.S. NalwogaH. WilsgaardT. FrydenbergH. RisbergT. EggenA.E. McTiernanA. AzizS. WistE.A. StensvoldA. ReitanJ.B. AkslenL.A. ThuneI. Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes.BMC Cancer201818165410.1186/s12885‑018‑4568‑229902993
    [Google Scholar]
  72. HoriuchiD. CamardaR. ZhouA.Y. YauC. MomcilovicO. BalakrishnanS. CorellaA.N. EyobH. KessenbrockK. LawsonD.A. MarshL.A. AndertonB.N. RohrbergJ. KunderR. BazarovA.V. YaswenP. McManusM.T. RugoH.S. WerbZ. GogaA. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.Nat. Med.201622111321132910.1038/nm.421327775705
    [Google Scholar]
  73. ZippoA. De RobertisA. SerafiniR. OlivieroS. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation.Nat. Cell Biol.20079893294410.1038/ncb161817643117
    [Google Scholar]
  74. ZhaoW. QiuR. LiP. YangJ. PIM1: A promising target in patients with triple-negative breast cancer.Med. Oncol.201734814210.1007/s12032‑017‑0998‑y28721678
    [Google Scholar]
  75. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  76. TorreL.A. SiegelR.L. JemalA. Lung cancer statistics.Adv Exp Med Biol201689311910.1007/978‑3‑319‑24223‑1_1
    [Google Scholar]
  77. JiangW. ChenY. SongX. ShaoY. NingZ. GuW. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway.OncoTargets Ther.2019123043305010.2147/OTT.S20314231114247
    [Google Scholar]
  78. SunZ. ZengL. ZhangM. ZhangY. YangN. PIM1 inhibitor synergizes the anti-tumor effect of osimertinib via STAT3 dephosphorylation in EGFR-mutant non-small cell lung cancer.Ann. Transl. Med.20208636610.21037/atm.2020.02.43
    [Google Scholar]
  79. LiaoY. FengY. ShenJ. GaoY. CoteG. ChoyE. HarmonD. MankinH. HornicekF. DuanZ. Clinical and biological significance of PIM1 kinase in osteosarcoma.J. Orthop. Res.20163471185119410.1002/jor.2313426687194
    [Google Scholar]
  80. AltieriD.C. The molecular basis and potential role of survivin in cancer diagnosis and therapy.Trends Mol. Med.200171254254710.1016/S1471‑4914(01)02243‑211733216
    [Google Scholar]
  81. Narlik-GrassowM. Blanco-AparicioC. CeciliaY. PerezM. Muñoz-GalvanS. CañameroM. CarneroA. CarneroA. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia.PLoS One201384e6027710.1371/journal.pone.006027723565217
    [Google Scholar]
  82. LiY.Y. PopivanovaB.K. NagaiY. IshikuraH. FujiiC. MukaidaN. Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines.Cancer Res.200666136741674710.1158/0008‑5472.CAN‑05‑427216818649
    [Google Scholar]
  83. XuJ. ZhangT. WangT. YouL. ZhaoY. PIM kinases: An overview in tumors and recent advances in pancreatic cancer.Future Oncol.201410586587610.2217/fon.13.22924799066
    [Google Scholar]
  84. ZhangY. WangZ. LiX. MagnusonN.S. Pim kinase-dependent inhibition of c-Myc degradation.Oncogene200827354809481910.1038/onc.2008.12318438430
    [Google Scholar]
  85. IngleK. LaCombJ.F. GravesL.M. BainesA.T. BialkowskaA.B. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor.PLoS One20231811e029406510.1371/journal.pone.029406537943821
    [Google Scholar]
  86. BleekerF.E. MolenaarR.J. LeenstraS. Recent advances in the molecular understanding of glioblastoma.J. Neurooncol.20121081112710.1007/s11060‑011‑0793‑022270850
    [Google Scholar]
  87. Serrano-SaenzS. PalaciosC. Delgado-BellidoD. López-JiménezL. Garcia-DiazA. Soto-SerranoY. CasalJ.I. BartoloméR.A. Fernández-LunaJ.L. López-RivasA. OliverF.J. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism.Cell Death Dis.20191025110.1038/s41419‑018‑1293‑330718520
    [Google Scholar]
  88. SeifertC. BalzE. HerzogS. KorolevA. GaßmannS. PalandH. FinkM.A. GrubeM. MarxS. JedlitschkyG. TzvetkovM.V. RauchB.H. SchroederH.W.S. Bien-MöllerS. PIM-1 inhibition affects glioblastoma stem cell behavior and kills glioblastoma stem-like cells.Int. J. Mol. Sci.202122201112610.3390/ijms22201112634681783
    [Google Scholar]
  89. IqbalA. EckerdtF. BellJ. NakanoI. GilesF.J. ChengS.Y. LullaR.R. GoldmanS. PlataniasL.C. Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110α inhibition.Oncotarget2016722331923320110.18632/oncotarget.889927120806
    [Google Scholar]
  90. AkhavanD. CloughesyT.F. MischelP.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside.Neuro-oncol.201012888288910.1093/neuonc/noq05220472883
    [Google Scholar]
  91. SamiA. KarsyM. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: Novel therapeutic agents and advances in understanding.Tumour Biol.20133441991200210.1007/s13277‑013‑0800‑523625692
    [Google Scholar]
  92. ZhaoH. WangJ. ShaoW. WuC. ChenZ. ToS.T. LiW. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development.Mol. Cancer201716110010.1186/s12943‑017‑0670‑328592260
    [Google Scholar]
  93. BhargaviR. KhilwaniB. KourB. ShuklaN. AradhyaR. SharmaD. VijayvargiyaM. AnsariA.S. SugunakarV. MathurP. MishraA. Prostate cancer in India: Current perspectives and the way forward.J. Reprod. Health Med.2023481
    [Google Scholar]
  94. FangF. RycyzynM.A. ClevengerC.V. Role of c-Myb during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells.Endocrinology200915041597160610.1210/en.2008‑107919036881
    [Google Scholar]
  95. RenK. GouX. XiaoM. WangM. LiuC. TangZ. HeW. The over-expression of Pim-2 promote the tumorigenesis of prostatic carcinoma through phosphorylating eIF4B.Prostate201373131462146910.1002/pros.2269323813671
    [Google Scholar]
  96. KirschnerA.N. WangJ. van der MeerR. AndersonP.D. Franco-CoronelO.E. KushnerM.H. EverettJ.H. HameedO. KeetonE.K. AhdesmakiM. GrosskurthS.E. HuszarD. AbdulkadirS.A. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer.J. Natl. Cancer Inst.2014107210725505253
    [Google Scholar]
  97. ChatterjeeS. ChakrabortyP. DaenthanasanmakA. IamsawatS. AndrejevaG. LuevanoL.A. WolfM. BaligaU. KriegC. BeesonC.C. MehrotraM. HillE.G. RathmellJ.C. YuX.Z. KraftA.S. MehrotraS. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response.Clin. Cancer Res.20192531036104910.1158/1078‑0432.CCR‑18‑070630327305
    [Google Scholar]
  98. AlvaradoY. GilesF.J. SwordsR.T. The PIM kinases in hematological cancers.Expert Rev. Hematol.201251819610.1586/ehm.11.6922272708
    [Google Scholar]
  99. WoodlandR.T. FoxC.J. SchmidtM.R. HammermanP.S. OpfermanJ.T. KorsmeyerS.J. HilbertD.M. ThompsonC.B. Multiple signaling pathways promote B lymphocyte stimulator–dependent B-cell growth and survival.Blood2008111275076010.1182/blood‑2007‑03‑07722217942753
    [Google Scholar]
  100. BraultL. MenterT. ObermannE.C. KnappS. ThommenS. SchwallerJ. TzankovA. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma.Br. J. Cancer2012107349150010.1038/bjc.2012.27222722314
    [Google Scholar]
  101. BahramiA. HasanzadehM. HassanianS.M. ShahidSalesS. Ghayour-MobarhanM. FernsG.A. AvanA. The potential value of the PI3K/Akt/mTOR signaling pathway for assessing prognosis in cervical cancer and as a target for therapy.J. Cell. Biochem.2017118124163416910.1002/jcb.2611828475243
    [Google Scholar]
  102. YangH. HeK. DongW. FangJ. ZhongS. TangL. LongL. PIM-1 may function as an oncogene in cervical cancer via activating the EGFR signaling.Int. J. Biol. Markers2020353677310.1177/172460082093629532914663
    [Google Scholar]
  103. LiuZ. HeW. GaoJ. LuoJ. HuangX. GaoC. Computational prediction and experimental validation of a novel synthesized pan-PIM inhibitor PI003 and its apoptosis-inducing mechanisms in cervical cancer.Oncotarget20156108019803510.18632/oncotarget.313925749522
    [Google Scholar]
  104. NakanoH. HasegawaT. KojimaH. OkabeT. NaganoT. Design and synthesis of potent and selective PIM kinase inhibitors by targeting unique structure of ATP-binding pocket.ACS Med. Chem. Lett.20178550450910.1021/acsmedchemlett.6b0051828523101
    [Google Scholar]
  105. issa HammamA. SakrH. AyyadR. PIM kinases inhibitors and pyrimidine-based anticancer agents.Al-Azhar J Pharm Sci2023671688310.21608/ajps.2023.311247
    [Google Scholar]
  106. XuY. BrenningB.G. KultgenS.G. FoulksJ.M. CliffordA. LaiS. ChanA. MerxS. McCullarM.V. KannerS.B. HoK.K. Synthesis and biological evaluation of pyrazolo [1, 5-a] pyrimidine compounds as potent and selective PIM-1 inhibitors.ACS Med. Chem. Lett.201561636710.1021/ml500300c25589932
    [Google Scholar]
  107. RachelK.T. NoelA.F. Targeting PIM kinases to overcome therapeutic resistance in cancer.Mol. Cancer Ther.2021201
    [Google Scholar]
  108. FoulksJ.M. CarpenterK.J. LuoB. XuY. SeninaA. NixR. ChanA. CliffordA. WilkesM. VollmerD. BrenningB. MerxS. LaiS. McCullarM.V. HoK.K. AlbertsonD.J. CallL.T. BearssJ.J. TrippS. LiuT. StephensB.J. MollardA. WarnerS.L. BearssD.J. KannerS.B. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas.Neoplasia201416540341210.1016/j.neo.2014.05.00424953177
    [Google Scholar]
  109. BurgerM.T. NishiguchiG. HanW. LanJ. SimmonsR. AtallahG. DingY. TamezV. ZhangY MathurM. MullerK. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies.J Med Chem2015582183738610.1021/acs.jmedchem.5b01275.
    [Google Scholar]
  110. PaínoT. Garcia-GomezA. González-MéndezL. San-SegundoL. Hernández-GarcíaS. López-IglesiasA.A. AlgarínE.M. Martín-SánchezM. CorbachoD. Ortiz-de-SolorzanoC. CorcheteL.A. GutiérrezN.C. MaetosM.V. GarayoaM. OcioE.M. The novel pan-PIM kinase inhibitor, PIM447, displays dual antimyeloma and bone-protective effects, and potently synergizes with current standards of care.Clin. Cancer Res.201723122523810.1158/1078‑0432.CCR‑16‑023027440267
    [Google Scholar]
  111. KoblishH. LiY. ShinN. HallL. WangQ. WangK. CovingtonM. MarandoC. BowmanK. BoerJ. BurkeK. WynnR. MargulisA. ReutherG.W. LambertQ.T. Dostalik RomanV. ZhangK. FengH. XueC.B. DiamondS. HollisG. YeleswaramS. YaoW. HuberR. VaddiK. ScherleP. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies.PLoS One2018136e019910810.1371/journal.pone.019910829927999
    [Google Scholar]
  112. XiaZ. KnaakC. MaJ. BeharryZ.M. McInnesC. WangW. KraftA.S. SmithC.D. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.J. Med. Chem.2009521748610.1021/jm800937p19072652
    [Google Scholar]
  113. AnizonF. ShtilA.A. DanilenkoV.N. MoreauP. Fighting tumor cell survival: Advances in the design and evaluation of Pim inhibitors.Curr. Med. Chem.201017344114413310.2174/09298671079334855420939820
    [Google Scholar]
  114. XuL. MengY.C. GuoP. LiM. ShaoL. HuangJ.H. Recent research advances in small-molecule Pan-PIM inhibitors.Pharm Fronts202244e207e22210.1055/s‑0042‑1758692
    [Google Scholar]
  115. AykulS. Martinez-HackertE. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.Anal. Biochem.20165089710310.1016/j.ab.2016.06.02527365221
    [Google Scholar]
  116. XiangR. LuM. WuT. YangC. JiaY. LiuX. DengM. GeY. XuJ. CaiT. LingY. ZhouY. Discovery of a high potent PIM kinase inhibitor for acute myeloid leukemia based on N-pyridinyl amide scaffold by optimizing the fragments toward to Lys67 and Asp128/Glu171.Eur. J. Med. Chem.202325711551410.1016/j.ejmech.2023.11551437262997
    [Google Scholar]
  117. NaguibB.H. El-NassanH.B. AbdelghanyT.M. Synthesis of new pyridothienopyrimidinone derivatives as Pim-1 inhibitors.J. Enzyme Inhib. Med. Chem.201732145746710.1080/14756366.2016.126113028097906
    [Google Scholar]
  118. NafieM.S. AmerA.M. MohamedA.K. TantawyE.S. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells.Bioorg. Med. Chem.2020282411582810.1016/j.bmc.2020.11582833166925
    [Google Scholar]
  119. AbouzidK.A.M. Al-AnsaryG.H. El-NaggarA.M. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities.Eur. J. Med. Chem.201713435736510.1016/j.ejmech.2017.04.02428431341
    [Google Scholar]
  120. FarragA.M. IbrahimM.H. MehanyA.B.M. IsmailM.M.F. New cyanopyridine-based scaffold as PIM-1 inhibitors and apoptotic inducers: Synthesis and SARs study.Bioorg. Chem.202010510437810.1016/j.bioorg.2020.10437833099167
    [Google Scholar]
  121. NaguibB.H. El-NassanH.B. Synthesis of new thieno[2,3- b ]pyridine derivatives as pim-1 inhibitors.J. Enzyme Inhib. Med. Chem.20163161718172510.3109/14756366.2016.115871127541740
    [Google Scholar]
  122. El-NassanH.B. NaguibB.H. BeshayE.A. Synthesis of new pyridothienopyrimidinone and pyridothienotriazolopyrimidine derivatives as pim-1 inhibitors.J. Enzyme Inhib. Med. Chem.2018331586610.1080/14756366.2017.138992129161928
    [Google Scholar]
  123. WurzR.P. SastriC. D’AmicoD.C. HerberichB. JacksonC.L.M. PettusL.H. TaskerA.S. WuB. GuerreroN. LipfordJ.R. WinstonJ.T. YangY. WangP. NguyenY. AndrewsK.L. HuangX. LeeM.R. MohrC. ZhangJ.D. ReidD.L. XuY. ZhouY. WangH.L. Discovery of imidazopyridazines as potent Pim-1/2 kinase inhibitors.Bioorg. Med. Chem. Lett.201626225580559010.1016/j.bmcl.2016.09.06727769621
    [Google Scholar]
  124. CastanetA.S. NafieM.S. SaidS.A. ArafaR.K. Discovery of PIM-1 kinase inhibitors based on the 2,5-disubstituted 1,3,4-oxadiazole scaffold against prostate cancer: Design, synthesis, in vitro and in vivo cytotoxicity investigation.Eur. J. Med. Chem.202325011522010.1016/j.ejmech.2023.11522036848846
    [Google Scholar]
  125. El-MiligyM.M.M. AbdelazizM.E. FahmyS.M. IbrahimT.M. Abu-SerieM.M. MahranM.A. HazzaaA.A. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities.J. Enzyme Inhib. Med. Chem.2023381215281010.1080/14756366.2022.215281036629075
    [Google Scholar]
  126. MoreK.N. HongV.S. LeeA. ParkJ. KimS. LeeJ. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors.Bioorg. Med. Chem. Lett.201828142513251710.1016/j.bmcl.2018.05.05429871845
    [Google Scholar]
  127. BarberisC. ErdmanP. CzekajM. FireL. PribishJ. TserlinE. ManiarS. BatchelorJ.D. LiuJ. PatelV.F. HebertA. LevitM. WangA. SunF. HuangS.M.A. Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model.Bioorg. Med. Chem. Lett.2020302312762510.1016/j.bmcl.2020.12762533096160
    [Google Scholar]
  128. CeeV.J. ChavezF.Jr HerberichB. LanmanB.A. PettusL.H. ReedA.B. WuB. WurzR.P. AndrewsK.L. ChenJ. HickmanD. LaszloJ.III LeeM.R. GuerreroN. MattsonB.K. NguyenY. MohrC. RexK. SastriC.E. WangP. WuQ. WuT. XuY. ZhouY. WinstonJ.T. LipfordJ.R. TaskerA.S. WangH.L. Discovery and optimization of macrocyclic quinoxaline-pyrrolo-dihydropiperidinones as potent PIM-1/2 kinase inhibitors.ACS Med. Chem. Lett.20167440841210.1021/acsmedchemlett.5b0040327096050
    [Google Scholar]
  129. BatailleC.J.R. BrennanM.B. ByrneS. DaviesS.G. DurbinM. FedorovO. HuberK.V.M. JonesA.M. KnappS. LiuG. NadaliA. QuevedoC.E. RussellA.J. WalkerR.G. WestwoodR. WynneG.M. Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family.Bioorg. Med. Chem.20172592657266510.1016/j.bmc.2017.02.05628341403
    [Google Scholar]
  130. WangH.L. AndrewsK.L. BookerS.K. CanonJ. CeeV.J. ChavezF.Jr ChenY. EastwoodH. GuerreroN. HerberichB. HickmanD. LanmanB.A. LaszloJ.III LeeM.R. LipfordJ.R. MattsonB. MohrC. NguyenY. NormanM.H. PettusL.H. PowersD. ReedA.B. RexK. SastriC. TamayoN. WangP. WinstonJ.T. WuB. WuQ. WuT. WurzR.P. XuY. ZhouY. TaskerA.S. Discovery of ( R )-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b ]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H )-one, a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies.J. Med. Chem.20196231523154010.1021/acs.jmedchem.8b0173330624936
    [Google Scholar]
  131. IbrahimM.H. HarrasM.F. MostafaS.K. MohyeldinS.M. Al kamalyO. AltwaijryN. SabourR. Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation.Bioorg. Chem.202212910612210.1016/j.bioorg.2022.10612236084418
    [Google Scholar]
  132. Al-SaneaM.M. NasrT.M. BondockS. GawishA.Y. MohamedN.M. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study.J. Enzyme Inhib. Med. Chem.2023381216693610.1080/14756366.2023.216693636728746
    [Google Scholar]
  133. PettusL.H. AndrewsK.L. BookerS.K. ChenJ. CeeV.J. ChavezF.Jr ChenY. EastwoodH. GuerreroN. HerberichB. HickmanD. LanmanB.A. LaszloJ.III LeeM.R. LipfordJ.R. MattsonB. MohrC. NguyenY. NormanM.H. PowersD. ReedA.B. RexK. SastriC. TamayoN. WangP. WinstonJ.T. WuB. WuT. WurzR.P. XuY. ZhouY. TaskerA.S. WangH.L. Discovery and optimization of quinazolinone-pyrrolopyrrolones as potent and orally bioavailable pan-pim kinase inhibitors.J. Med. Chem.201659136407643010.1021/acs.jmedchem.6b0061027285051
    [Google Scholar]
  134. ShabanS.M. EltamanyE.H. BoraeiA.T.A. NafieM.S. GadE.M. Design and synthesis of novel pyridine-based compounds as Potential PIM-1 Kinase inhibitors, apoptosis, and autophagy inducers targeting MCF-7 cell lines: In vitro and in vivo studies.ACS Omega2023849469224693310.1021/acsomega.3c0670038107909
    [Google Scholar]
  135. RizkO.H. TelebM. Abu-SerieM.M. ShaabanO.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation.Bioorg. Chem.20199210318910.1016/j.bioorg.2019.10318931473473
    [Google Scholar]
  136. AboulMagdA.M. HassanH.M. SayedA.M. AbdelmohsenU.R. Abdel-RahmanH.M. Saccharomonosporine A inspiration; Synthesis of potent analogues as potential PIM kinase inhibitors.RSC Advances202010126752676210.1039/C9RA10216G35493904
    [Google Scholar]
  137. TursynbayY. ZhangJ. LiZ. TokayT. ZhumadilovZ. WuD. XieY. Pim-1 kinase as cancer drug target: An update.Biomed. Rep.20164214014610.3892/br.2015.56126893828
    [Google Scholar]
  138. KimJ. RohM. AbdulkadirS.A. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity.BMC Cancer201010124810.1186/1471‑2407‑10‑248
    [Google Scholar]
  139. WangJ. KimJ. RohM. FrancoO.E. HaywardS.W. WillsM.L. AbdulkadirS.A. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma.Oncogene201029172477248710.1038/onc.2010.1020140016
    [Google Scholar]
  140. NawijnM.C. AlendarA. BernsA. For better or for worse: The role of Pim oncogenes in tumorigenesis.Nat. Rev. Cancer2011111233410.1038/nrc298621150935
    [Google Scholar]
  141. PengY. CroceC.M. The role of MicroRNAs in human cancer.Signal Transduct. Target. Ther.2016111500410.1038/sigtrans.2015.429263891
    [Google Scholar]
  142. Esquela-KerscherA. SlackF.J. Oncomirs — microRNAs with a role in cancer.Nat. Rev. Cancer20066425926910.1038/nrc184016557279
    [Google Scholar]
  143. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc199717060945
    [Google Scholar]
  144. ThomasM. Lange-GrünwellerK. WeirauchU. GutschD. AignerA. GrünwellerA. HartmannR.K. The proto-oncogene Pim-1 is a target of miR-33a.Oncogene201231791892810.1038/onc.2011.27821743487
    [Google Scholar]
  145. ZhangG. LiuZ. CuiG. WangX. YangZ. MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells.Tumour Biol.20143511111371114510.1007/s13277‑014‑2412‑025104088
    [Google Scholar]
  146. TianZ. ZhaoJ. TaiY.T. AminS.B. HuY. BergerA.J. RichardsonP. ChauhanD. AndersonK.C. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells.Blood2012120193958396710.1182/blood‑2012‑01‑40179422983447
    [Google Scholar]
  147. ChangW. LiuM. XuJ. FuH. ZhouB. YuanT. ChenP. MiR-377 inhibits the proliferation of pancreatic cancer by targeting Pim-3.Tumour Biol.20163711148131482410.1007/s13277‑016‑5295‑427638830
    [Google Scholar]
  148. PanX.P. WangH.X. TongD.M. LiY. HuangL.H. WangC. miRNA-370 acts as a tumor suppressor via the downregulation of PIM1 in hepatocellular carcinoma.Eur. Rev. Med. Pharmacol. Sci.20172161254126328387905
    [Google Scholar]
  149. CharbeN.B. AmnerkarN.D. RameshB. TambuwalaM.M. BakshiH.A. AljabaliA.A.A. KhadseS.C. SatheeshkumarR. SatijaS. MethaM. ChellappanD.K. ShrivastavaG. GuptaG. NegiP. DuaK. ZacconiF.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery.Acta Pharm. Sin. B202010112075210910.1016/j.apsb.2020.10.00533304780
    [Google Scholar]
  150. FanX. XieY. ZhangL. GaoX. HanJ. ChenY. YangJ. LiS. Effect of PIM-3 downregulation on proliferation and apoptosis in lung adenocarcinoma A549 cells.Ann. Clin. Lab. Sci.201949677077631882428
    [Google Scholar]
  151. MawasA.S. AmatyaV.J. SuzukiR. KushitaniK. Mohi El-DinM.M. TakeshimaY. PIM1 knockdown inhibits cell proliferation and invasion of mesothelioma cells.Int. J. Oncol.20175031029103410.3892/ijo.2017.386328197633
    [Google Scholar]
  152. LiS. XiY. ZhangH. WangY. WangX. LiuH. ChenK. A pivotal role for Pim-1 kinase in esophageal squamous cell carcinoma involving cell apoptosis induced by reducing Akt phosphorylation.Oncol. Rep.2010244997100420811681
    [Google Scholar]
  153. ArrouchiH. LakhliliW. IbrahimiA. Re-positioning of known drugs for Pim-1 kinase target using molecular docking analysis.Bioinformation201915211612010.6026/9732063001511631435157
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266321659240906114742
Loading
/content/journals/ctmc/10.2174/0115680266321659240906114742
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Epigenetic; FDA approved; JAK/STAT; microRNA; PIM kinase; Tumorigenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test