Skip to content
2000
Volume 24, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

The available literature indicates that and are raw materials with great potential for use in prevention and therapy. Therefore, the aims of this study were to assess the phytochemical profile and antioxidant and cytoprotective properties of extracts prepared using various solvents, additionally taking into account different methods of drying the plant material.

Methods

Hydrodistilled oil was analysed by GC-MS. The chemical composition of the extracts was estimated by spectrophotometry and the HPLC-DAD method. Antioxidant activity was evaluated using DPPH and FRAP and measuring the intracellular level of ROS. Alamar Blue and Neutral Red tests were used to assess the cytotoxicity of the extracts on skin cells - keratinocytes and fibroblasts.

Results

The major components of hyssop essential oil were - (44.9%) and (18.2%) pinocamphone, while borneol (16.1%), and α-pinene (12.0%) were predominant in grindelia essential oil. Flavonoids were dominant in the extracts (water: ethanol, water: methanol, and water: glycerol) from hot-air dried hyssop herb, while phenolic acids were the predominant compounds in the grindelia herb extracts. The water: ethanol hyssop extract had the highest total content of flavonoids (42.26 mg CE/mL), among which isoquercitrin and rutin were present in the highest quantities (32.61 mg/mL and 21.47 mg/mL, respectively). In the case of grindelia, the highest total phenolic acid content (26.24 mg CAE/mL) was recorded in the water: ethanol extract, and the dominant compounds among them were 1,5-dicaffeoylquinic and chlorogenic acid (10.85 and 6.39 mg/mL, respectively). The water: ethanol extract from both plants also exhibited the highest antioxidant activity in the DPPH and FRAP tests (79.19% and 1.39 mmol/L, respectively, for grindelia and 67.61% and 1.04 mmol/L for hyssop) and was most effective at reducing the level of ROS in cells. In addition, water: ethanol extracts may have a positive impact on the viability of skin cells .

Conclusion

Water:ethanol extracts from and herb are promising sources of active compounds and may find application as natural materials with valuable biological properties, which require further and testing.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266319052240819104310
2024-10-01
2025-05-23
Loading full text...

Full text loading...

References

  1. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  2. KazeminiaM. MehrabiA. MahmoudiR. Chemical composition, biological activities, and nutritional application of Asteraceae family herbs: A systematic review.Trends Phytochem. Res.20226187213
    [Google Scholar]
  3. WolskiT. BajT. KwiatkowskiS. Hysop (Hyssopus officinalis L.) forgotten medicinal, flavoring and honey-yields plant.Annales UMCS2006235562
    [Google Scholar]
  4. FathiazadF. HamedeyazdanS. A review on Hyssopus officinalis L.: Composition and biological activities.Afr. J. Pharm. Pharmacol.2011519591966
    [Google Scholar]
  5. FathiazadF. MazandaraniM. HamedeyazdanS. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran.Adv. Pharm. Bull.2011126367 24312758
    [Google Scholar]
  6. MichalskiJ.A. ZielińskaD. Review of essential oils obtained from plants Lamiaceae family and their properties.Pol. J. Cosmetol.2015181624
    [Google Scholar]
  7. EshboevF. KarakozovaM. AbdurakhmanovJ. BobakulovK. DolimovK. AbdurashidovA. BaymirzaevA. MakhnyovA. TerentevaE. SasmakovS. PiyakinaG. EgamberdievaD. NazarovP.A. AzimovaS. Antimicrobial and cytotoxic activities of the secondary metabolites of endophytic fungi isolated from the medicinal plant Hyssopus officinalis.Antibiotics (Basel)2023127120110.3390/antibiotics12071201 37508297
    [Google Scholar]
  8. NowakS. MagieraA. KopkaK. KicelA. OlszewskaM. The genus Grindelia Willd. as a source of valuable medicinal plant.Farm. Pol.201874952153010.32383/farmpol/118676
    [Google Scholar]
  9. NowakS. RychlińskaI. Phenolic acids in the flowers and leaves of Grindelia robusta Nutt. and Grindelia squarrosa Dun. (Asteraceae).Acta Pol. Pharm.2012694693698 22876612
    [Google Scholar]
  10. FerreresF. GrossoC. Gil-IzquierdoA. ValentãoP. AzevedoC. AndradeP.B. HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities.J. Pharm. Biomed. Anal.20149416317210.1016/j.jpba.2014.01.046 24603350
    [Google Scholar]
  11. AdamsR.P. Identification of essential oil compounds by gas chromatography/quadrupole mass spectroscopy.J. Am. Soc. Mass Spectrom.2005161119021903
    [Google Scholar]
  12. A AgborG. VinsonJ.A. DonnellyP.E. Folin-ciocalteau reagent for polyphenolic assay.Int. J. Food Sci. Nutr. Diet.2014314715610.19070/2326‑3350‑1400028
    [Google Scholar]
  13. KimD.O. JeongS.W. LeeC.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums.Food Chem.200381332132610.1016/S0308‑8146(02)00423‑5
    [Google Scholar]
  14. JainR. RaoB. TareA.B. Comparative analysis of the spectrophotometry based total phenolic acid estimation methods.J. Anal. Chem.201772997297610.1134/S106193481709009X
    [Google Scholar]
  15. TliliH. HanenN. Ben ArfaA. NeffatiM. BoubakriA. BuonocoreD. DossenaM. VerriM. DoriaE. Biochemical profile and in vitro biological activities of extracts from seven folk medicinal plants growing wild in southern Tunisia.PLoS One2019149e021304910.1371/journal.pone.0213049 31527869
    [Google Scholar]
  16. SzopaA. StarzecA. EkiertH. The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia.J. Photochem. Photobiol. B2018179919710.1016/j.jphotobiol.2018.01.005 29351879
    [Google Scholar]
  17. SzopaA. EkiertH. In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine)--a potential biotechnological rich source of therapeutically important phenolic acids.Appl. Biochem. Biotechnol.201216681941194810.1007/s12010‑012‑9622‑y 22399445
    [Google Scholar]
  18. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  19. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.0292 8660627
    [Google Scholar]
  20. PageB. PageM. NoelC. A new fluorometric assay for cytotoxicity measurements in-vitro.Int. J. Oncol.19933347347610.3892/ijo.3.3.473 21573387
    [Google Scholar]
  21. Zagórska-DziokM. WójciakM. ZiemlewskaA. Nizioł-ŁukaszewskaZ. HoianU. KlimczakK. SzczepanekD. SowaI. Evaluation of the antioxidant, cytoprotective and antityrosinase effects of Schisandra chinensis extracts and their applicability in skin care product.Molecules20222724887710.3390/molecules27248877 36558009
    [Google Scholar]
  22. MichalakM. Zagórska-DziokM. Klimek-SzczykutowiczM. SzopaA. Phenolic profile and comparison of the antioxidant, anti-ageing, anti-inflammatory, and protective activities of Borago officinalis extracts on skin cells.Molecules202328286810.3390/molecules28020868 36677923
    [Google Scholar]
  23. MićovićT. TopalovićD. ŽivkovićL. Spremo-PotparevićB. JakovljevićV. MatićS. PopovićS. BaskićD. SteševićD. SamardžićS. StojanovićD. MaksimovićZ. Antioxidant, antigenotoxic and cytotoxic activity of essential oils and methanol extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae).Plants202110471110.3390/plants10040711 33916934
    [Google Scholar]
  24. GuerriniA. SacchettiG. Echeverria GuevaraM.P. PaganettoG. GrandiniA. MarescaI. MenghiniL. Di MartinoL. MarengoA. TacchiniM. Wild italian Hyssopus officinalis subsp. aristatus (Godr.) Nyman: from morphological and phytochemical evidences to biological activities.Plants202110463110.3390/plants10040631 33810509
    [Google Scholar]
  25. ZawiślakG. Morphological characters of Hyssopus officinalis L. and chemi cal composition of its essential oil.Mod. Phytomorphol.201349395
    [Google Scholar]
  26. HajdariA. GiorgiA. BerettaG. GelminiF. BurattiS. BenedettiS. MerkouriA. MalaX. KabashiS. PentimalliD. PulajB. MustafaB. Phytochemical and sensorial characterization of Hyssopus officinalis subsp. aristatus (godr.) Nyman (Lamiaceae) by GC-MS, HPLC-UV-DAD, spectrophotometric assays and e-nose with aid of chemometric techniques.Eur. Food Res. Technol.201824471313132710.1007/s00217‑018‑3046‑z
    [Google Scholar]
  27. VargaE. HajdúZ. VeresK. MáthéI. NémethE. PluhárZ. BernáthJ. Investigation of variation of the production of biological and chemical compounds of Hyssopus officinalis L.Acta Pharm. Hung.1998683183188 9703705
    [Google Scholar]
  28. MiticV. DordevicS. Essential oil composition ofHyssopus officinalis L. cultivated in Serbia.FU Phys. Chem. Tech20002105108
    [Google Scholar]
  29. FigueredoG. Musa ÖzcanM. ChalchatJ.C. BagciY. ChalardP. Chemical composition of essential oil of Hyssopus officinalis L. and Origanum acutidens.J. Essent. Oil-Bear. Plants201215230030610.1080/0972060X.2012.10644051
    [Google Scholar]
  30. GorunovicM.S. BogavacP.M. ChalchatJ.C. ChabardJ.L. Essential oil of Hyssopus officinalis L., lamiaceae of montenegro origin.J. Essent. Oil Res.199571394310.1080/10412905.1995.9698459
    [Google Scholar]
  31. SchäferM. SchimmerO. Composition of the essential oils from flowers, leaves and stems of Grindelia robusta and G. squarrosa.J. Essent. Oil Res.200012554755210.1080/10412905.2000.9712156
    [Google Scholar]
  32. FraternaleD. GiamperiL. BucchiniA. RicciD. Essential oil composition and antioxidant activity of aerial parts of Grindelia robusta from Central Italy.Fitoterapia200778644344510.1016/j.fitote.2007.04.011 17600634
    [Google Scholar]
  33. MichalakM. Plant-derived antioxidants: significance in skin health and the ageing process.Int. J. Mol. Sci.202223258510.3390/ijms23020585 35054770
    [Google Scholar]
  34. StankovićN. Mihajilov-KrstevT. ZlatkovićB. Stankov-JovanovićV. MitićV. JovićJ. ČomićL. KocićB. BernsteinN. Antibacterial and antioxidant activity of traditional medicinal plants from the balkan peninsula.NJAS Wagening. J. Life Sci.2016781212810.1016/j.njas.2015.12.006
    [Google Scholar]
  35. Nakilcioğlu-TaşE. ÖtleşS. Influence of extraction solvents on the polyphenol contents, compositions, and antioxidant capacities of fig (Ficus carica L.) seeds.An. Acad. Bras. Cienc.2021931e2019052610.1590/0001‑3765202120190526 33886699
    [Google Scholar]
  36. QasimM. AzizI. RasheedM. GulB. KhanM.A. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes.Pak. J. Bot.201648621627
    [Google Scholar]
  37. DoQ.D. AngkawijayaA.E. Tran-NguyenP.L. HuynhL.H. SoetaredjoF.E. IsmadjiS. JuY-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica.Yao Wu Shi Pin Fen Xi2014223296302 28911418
    [Google Scholar]
  38. NgoT.V. ScarlettC.J. BowyerM.C. NgoP.D. VuongQ.V. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L.J. Food Qual.201720171810.1155/2017/9305047
    [Google Scholar]
  39. EbrahimzadehM.A. NabaviS.M. NabaviS.F. BahramianF. BekhradniaA.R. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum.Pak. J. Pharm. Sci.20102312934 20067863
    [Google Scholar]
  40. VlaseL. BenedecD. HanganuD. DamianG. CsillagI. SevastreB. MotA. Silaghi-DumitrescuR. TileaI. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys.Molecules20141955490550710.3390/molecules19055490 24786688
    [Google Scholar]
  41. SultanaB. AnwarF. AshrafM. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts.Molecules20091462167218010.3390/molecules14062167 19553890
    [Google Scholar]
  42. WangN. YangX.W. Two new flavonoid glycosides from the whole herbs of Hyssopus officinalis.J. Asian Nat. Prod. Res.201012121044105010.1080/10286020.2010.533120 21128145
    [Google Scholar]
  43. HaminiukC.W.I. Plata-OviedoM.S.V. de MattosG. CarpesS.T. BrancoI.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents.J. Food Sci. Technol.201451102862286610.1007/s13197‑012‑0759‑z 25328239
    [Google Scholar]
  44. CocanI. AlexaE. DanciuC. RadulovI. GaluscanA. ObistioiuD. MorvayA.A. SumalanR.M. PoianaM.A. PopG. DeheleanC.A. Phytochemical screening and biological activity of Lamiaceae family plant extracts.Exp. Ther. Med.201815218631870 29434776
    [Google Scholar]
  45. ZgórkaG. GłowniakK. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family.J. Pharm. Biomed. Anal.2001261798710.1016/S0731‑7085(01)00354‑5 11451645
    [Google Scholar]
  46. MarinF. OrtuñoA. Benavente-GarciaO. Del RioJ. Distribution of flavone glycoside diosmin in Hyssopus officinalis plants: changes during growth.Planta Med.199864218118210.1055/s‑2006‑957401 17253233
    [Google Scholar]
  47. Barral-MartinezM. Garcia-OliveiraP. Nuñez-EstevezB. SilvaA. FinimundyT.C. CalhelhaR. NenadicM. SokovicM. BarrosoF. Simal-GandaraJ. FerreiraI.C.F.R. BarrosL. PrietoM.A. Plants of the family asteraceae: evaluation of biological properties and identification of phenolic compounds.Chem. Proc202155110.3390/CSAC2021‑10486
    [Google Scholar]
  48. ZebA. Concept, mechanism, and applications of phenolic antioxidants in foods.J. Food Biochem.2020449e1339410.1111/jfbc.13394 32691460
    [Google Scholar]
  49. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  50. LeeC.Y. SharmaA. SemenyaJ. AnamoahC. ChapmanK.N. BaroneV. Computational study of ortho-substituent effects on antioxidant activities of phenolic dendritic antioxidants.Antioxidants20209318910.3390/antiox9030189 32106494
    [Google Scholar]
  51. PerronN.R. BrumaghimJ.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.Cell Biochem. Biophys.20095327510010.1007/s12013‑009‑9043‑x 19184542
    [Google Scholar]
  52. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  53. SpeiskyH. ShahidiF. Costa de CamargoA. FuentesJ. Revisiting the oxidation of flavonoids: loss, conservation or enhancement of their antioxidant properties.Antioxidants202211113310.3390/antiox11010133 35052636
    [Google Scholar]
  54. ChaJ.W. PiaoM.J. KimK.C. YaoC.W. ZhengJ. KimS.M. HyunC.L. AhnY.S. HyunJ.W. The polyphenol chlorogenic acid attenuates uvb-mediated oxidative stress in human hacat keratinocytes.Biomol. Ther. (Seoul)201422213614210.4062/biomolther.2014.006 24753819
    [Google Scholar]
  55. ChittasuphoC. ManthaisongA. OkonogiS. TadtongS. SameeW. Effects of quercetin and curcumin combination on antibacterial, antioxidant, in vitro wound healing and migration of human dermal fibroblast cells.Int. J. Mol. Sci.202123114210.3390/ijms23010142 35008566
    [Google Scholar]
  56. GęgotekA. BielawskaK. BiernackiM. DobrzyńskaI. SkrzydlewskaE. Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation.Redox Biol.20171273374410.1016/j.redox.2017.04.014 28412651
    [Google Scholar]
  57. ZduńskaK. DanaA. KolodziejczakA. RotsztejnH. Antioxidant Properties of Ferulic Acid and Its Possible Application.Skin Pharmacol. Physiol.201831633233610.1159/000491755 30235459
    [Google Scholar]
  58. DaréR.G. OliveiraM.M. TruitiM.C.T. NakamuraC.V. XimenesV.F. LautenschlagerS.O.S. Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line.J. Photochem. Photobiol. B202020311177110.1016/j.jphotobiol.2019.111771 31911399
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266319052240819104310
Loading
/content/journals/ctmc/10.2174/0115680266319052240819104310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test